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Exact analytic formula for the correlation time of a single-domain ferromagnetic particle
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Exact solutions for the longitudinal relaxation time Tii and the complex susceptibility pic(co) of a
thermally agitated single-domain ferromagnetic particle are presented for the simple uniaxial potential
of the crystalline anisotropy considered by Brown [Phys. Rev. 130, 1677 (1963)]. This is accomplished

by expanding the spatial part of the distribution function of magnetic-moment orientations on the unit

sphere in the Fokker-Planck equation in Legendre polynomials. This leads to the three-term recurrence
relation for the Laplace transform of the decay functions. The recurrence relation may be solved exactly
in terms of continued fractions. The zero-frequency limit of the solution yields an analytic formula for

T~i as a series of confluent hypergeometric (Kummer) functions which is easily tabulated for all

potential-barrier heights. The asymptotic formula for Tii of Brown is recovered in the limit of high bar-
riers. On conversion of the exact solution for Tii to integral form, it is shown using the method of
steepest descents that an asymptotic correction to Brown s high-barrier result is necessary. The inade-

quacy of the effective-eigenvalue method as applied to the calculation of Tii is discussed.

PACS number(s): 05.40.+j, 75.60.Jp, 76.20.+q

I. INTRODUCI iON

A single-dotnain ferromagnetic particle with uniaxial

anisotropy is characterized by an internal magnetic po-
tential which has two stable stationary points with a po-
tential barrier between them. The direction of the mag-
netization may undergo a rotation due to thermal agita-
tion, surmounting the barrier, as first described by Neel

[1). He obtained an expression for the relaxation time Tl
associated with the transition between two stable orienta-
tional states by assuming that the energy barrier between
the states is so large compared to the thermal energy kT
that the directions of the magnetic moment of the parti-
cle are concentrated at the energy minima [2]. In addi-
tion, he restricted his analysis to two particular forms for
the barrier potential V. First

V(8)=K sin 8,
and then

orientation for M on a sphere of radius M, (the satura-
tion magnetization} is specified by the spherical polar
coordinates 8 and P, 8 being the polar angle. In the pres-
ence of an external field H applied in the 8=0 direction
the free energy per unit volume of the particle becomes
asymmetric so that V obeys Eq. (2).

Neel's calculation of Tl was criticized by Brown [3,4]
on two counts: (i) the system is not explicitly treated as a
gyromagnetic one, and (ii} it relies on a discrete orienta-
tion approximation. Brown [3] suggested that both these
difficulties could be resolved by constructing the Fokker-
Planck equation for the distribution of magnetic-moment
orientations on the unit sphere from the underlying
Langevin equation. In his analysis Brown took as the
Langevin equation the Landau-Lifshitz-Gilbert equation,
[3,5] governing the behavior of M, augmented by
random-field terms which are assumed to be white noise.
Thus he was able to deduce a Fokker-Planck equation,
which for the axially symmetric potentials of Eqs. (1) and
(2) becomes [3,5]

V(8)=E sin 8—HM, cos@ . (2)
BW 1 B . Bra v BV

Equation (1) is an axially symmetric bistable potential
with anisotropy constant EC representing the free energy
per unit volume of a particle. The stable configurations
of the magnetization M are at 8=0 and 8=@., where the 1 B v BV + 1 BW

sin8 By kT aBB sin8' By

(3)
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where W(8, y, t) is the probability density of orientations
of M at time t, v is the volume of the particle, k is
Boltzmann's constant, and T is the absolute temperature.
The characteristic time v.& and damping parameter a are
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defined as [3]

dM dM—yMX H, —q

where Hr=H —vgrad(V(8)).
Having written down the Fokker-Planck equation,

Brown converted it [3] into a Sturm-Liouville problem
for the special case of longitudinal relaxation. He did not
calculate the eigenvalues for VAO, merely assuming [6]
that

2VN

II
(4)

where A, , is the smallest nonvanishing eigenvalue of the
Sturm-Liouville equation. He then used perturbation
theory to obtain an approximate formula for A, , in the
low-barrier limit and the Kramers transition-state
method [7,8] to obtain the high-barrier approximation.
Thus using the simple uniaxial potential of Eq. (1) he was
able to deduce that

i/7r Ev0. ~e, c = &2.
2 kT

(5)

This has recently been rederived rigorously [9] by apply-
ing perturbation theory to the singular integral equation
arising from Brown's Sturm-Liouville equation.

The assumption [Eq. (4)] used by Brown supposes [6]
that, in the set of eigenvalues [A,k I of the Sturm-Liouville
equation, A. , «A, k, k )2, since all the exponential func-
tions exp( AI, t/2™~—), , k) 2, are small compared with
exp( —Air/2') except in the very early stages of the ap-
proach to equilibrium. This is an accurate assumption
only for high-energy barriers [6].

Exact numerical calculations for the potential of Eq.
(1) were first carried out by Aharoni [2]. He expanded
Brown s Sturm-Liouville equation in Legendre polynomi-
als and solved the resulting recursion formula numerical-
ly. Aharoni's calculations along with later work have
been succinctly reviewed by Scully [6]. An essentially
similar procedure was used by Martin, Meier, and Saupe
[10] in a study of the analogous problem of dielectric re-
laxation of nematic liquid crystals.

Lately [11—14] there has been a revival of interest in
the problem of calculating TII for the purpose of obtain-
ing an analytical formula for TII, which is valid for all
values of the barrier height parameter o in Eq. (1).

The analyses presented by Bessais, Ben Jaffel, and Dor-
mann [11,12] and by Aharoni [13] proceed from the as-
sumption embodied in Eq. (4). Both conclude with sim-

ple analytic formulas for TII valid for a11 values of o.
These appear to be derived as a result of a curve fitting to
the exact A, , as determined by the numerical solution of
the problem. On the other hand, the analysis presented
by Garanin, Ischenko, and Panina [14] and that for the

(1/y +q M, ), a=gyM, ,
2gkT

where y is the gyrornagnetic ratio and q is the damping
constant from Gilbert's equation, namely [3,5]

analogous liquid-crystal problem by Moro and Nordio
[15] utilize the definition from linear-response theory of
the relaxation time as the correlation time —that is, the
area under the curve of the magnetization autocorrela-
tion function [16,17]. The use of the exact definition of
the relaxation time enabled these investigators to write
down integral expressions for the relaxation time from
the Sturm-Liouville equation. However, rather than cal-
culating exact analytic results from their formal equation,
they both presented various asymptotic formulas for TII.

It is the principal purpose of this paper to show how
the definition of TII as the area under the curve of the au-

tocorrelation function enables one to obtain the exact
solution for T~~ for the simple uniaxial potential of Eq. (1).
The solution is presented both as a series of conAuent hy-

pergeometric (Kummer) functions [18] [Eq. (40)], which
is easily tabulated for all cr values, and in integral form
[Eq. (54}]. The integral form is particularly suitable for
the application of the method of steepest descents [19]for
the purpose of obtaining an asymptotic expansion in the
high-cr limit. The leading term in the asymptotic expan-
sion so derived coincides with the high-barrier formula of
Brown [Eq. (5)].

This paper is arranged as follows. In Sec. II we

demonstrate how the expansion of the distribution func-
tion of orientations in Legendre polynomials leads to the
set of differential-difference equations [Eq. (7}] for the
aftereffect solution. These equations are then arranged in
matrix form [Eq. (9}], with the initial conditions being
given as a ratio of two confluent hypergeometric (Kum-
mer) functions [18]. The set of equations is then solved
numerically to yield the eigenvalues and their corre-
sponding amplitudes as given in Table I.

Proceeding to Sec. III, TII is now regarded as the zero-

frequency limit of the Laplace transform of the auto-
correlation function of the magnetization. This
definition, used in conjunction with the matrix formula-
tion of the problem, circumvents the solution of the
characteristic equation which is required in the lowest-

eigenvalue method. Furthermore, it allows Ti to be cal-
culated by simply calculating the inverse of the system

1 0.428 0.000 975 9.17X 10
2 0.528 0.003 65 0.000 014 6
3 0.619 0.006 76 0.000 066 2
4 0.696 0.008 8 0.000 171
5 0.755 0.009 16 0.000 319
6 0.799 0.008 24 0.000 481
7 0.832 0.006 74 0.000 624
8 0.856 0.005 2 0.000 73
9 0.875 0.003 9 0.000 792

10 0.889 0.002 89 0.000 812

0.653
0.404
0.236
0.13
0.067 7
0.033 6
0.016
0.007 36
0.003 29
0.001 44

5.81 14.8
5.77 14.8
5.91 14.8
6.23 15.0
6.74 15.4
7.45 15.9
8.37 16.5
9.49 17.3

10.8 18.1
12.3 19.2

TABLE I. Amplitudes A~k+& of the 6rst three modes of the
decay of the longitudinal polarization as a function of the bar-
rier height parameter cr and corresponding eigenvalues A,2k+&,
k =0, 1,2, in the form A,,k+, /2~~. A 12X12 matrix was used

for the amplitudes 32k+& and a 20X20 matrix was used to en-

sure convergence of the eigenvalues A,2k+ &.

A3
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matrix A [Eq. (10)], which is a function of tr only. It is
further shown that the method is not confined to the
problem at hand.

In Sec. IV it is shown how the longitudina1 susceptibili-
ty and correlation time may be obtained exactly from the
Laplace transform of the hierarchy of differential-
difFerence equations in terms of products of infinite con-
tinued fractions in the frequency co and barrier-height pa-
rameter o. The definition of T~~ in the zero-frequency
limit is then further exploited, using the final value
theorem for Laplace transforms [20], to write down the
exact analytic solution for T~~ [Eq. (34)] in terms of an
infinite continued fraction in n alone. This solution in
turn (Sec. V) may be written (just as in the corresponding
two-dimensional problem [21]) as a series of Kummer
functions [Eq. (40)]. The analytic solution rendered by
Eqs. (33) and (40) is the central result of the paper,
whence a table of values of Tl valid for all values of o
may be constructed as given in Appendix E.

In Sec. VI the asymptotic form of the Kummer func-
tions is used to demonstrate how the exact solution yields
Brown's asymptotic formula [Eq. (5)] in the high-barrier
limit. In Sec. VII the representation for the product of
two Kummer functions as an integral [22] is used to
render the series representation of the exact solution in
integral form [Eq. (54)]. The method of steepest descents
[19] is then applied to the integral form of the solution in
Sec. VIII to obtain correction terms to Brown's asymp-
totic formula [Eq. (5)]. This procedure reproduces the
exact solution to a high degree of accuracy in the high-o
limit.

In order to facilitate for the reader, the mathematical
details of the calculations, which are very lengthy, have
been given in Appendixes A-D at the end of the paper.
Appendix E constitutes a table of the exact solution [Eq.
(40)].

II. REPRESENTATION OF THE
LONGITUDINAL RELAXATION PROBLEM AS A SET

OF DII'FKRENTIAI DIFFERENCE EQUATIONS

2Ttt . 2a
n(n+1) " (2n —1)(2n+3)

2o (n —1) 2o (n +2)f. z-
(2n +1)(2n —1) " (2n +1)(2n +3)

(7)
where

a„(t)f„(t)= (g)
2~ +1 ~o

By inspection of Eq. (7) it is obvious that it decouples into
sets for even and odd f„(t) Here, .only the odd
f„(t)=f2k+, (t) are of interest since we seek the relaxa-
tion behavior of f, (t)

The set of equations (7) may be solved numerically by
forming the matrix equation and writing

X= AX, (9)

where

In order to study the longitudinal relaxation behavior
we suppose that a small constant field H
(vM, HlkT «1) applied along the z axis is switched off
at t =0, so that we determine the aftereffect solution of
Eq. (3}. We can disregard the dependence of 8' on y for
the longitudinal relaxation; hence we may assume that
the distribution function 8'is

W(P, t) = g a„(t)P„(cos8 ), (6)
n=0

where the P„(x) are the Legendre polynomials [18]. On
substituting Eq. (6) into Eq. (3) we obtain the differential-
difference equation [5,23,24]

fi(t)
f,(t) 24~

35

—CT
2
5

(6—
—,', o ) —020

21

0 0

0 0

~ ~ ~

fz +i(t}

A=— 40~
33 ( 15 10~ ) 210~

39 l43
(10)

In Eq. (7},n is taken large enough (equal to P say) to en-

sure convergence of the set of equations (9).
The lowest eigenvalue, which corresponds to the re-

ciprocal of the longest relaxation time, is then the small-

est root of the characteristic equation

I

tions. The initial value vector Xo is determined as fol-
lows. At time t =0 the steady probe field H is switched
off. Thus the initial value of f2„+,(t} is in the linear ap-
proximation

A.2E ~plX(t)=b, e R, +b2e Rz+ . . +bi, e R~, (12)

where the b; are to be determined from the initial condi-

det(A, I—A) =0 . (11}
The relaxation modes off1 (t) may be found from Eq. (9)
by assuming that [25] A has a linearly independent set of
P eigenvectors (R„.. . , R~ },so that

P ~ e C7X +gXd

f (0)=2n +1 +]
—1

+1 O'X

gf xP2„+,(x)e " dx

C~xP2 +1 }0 (13)
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where (=vM, H/kT. The subscript 0 denotes that the
statistical average is taken in the absence of the external
field H. Equation (13} is evaluated as a ratio of two
confiuent hypergeometric (Kummer) functions as de-
scribed in detail in Appendix B. The Kummer function
M(a, b, z) [18]is defined as

This leads to

a a(a+I) z

b b(b+1) 2!

a(a+i}(a+2}z
b (b + 1)(b +2) 3!

(14)

mNf, (t)=mN(cost) = g Azk+, e
k=o

ger
"I (n +3/2)M(n +3/2, 2n +5/2, 0 )

21'(2n +5/2)M ( ,', '„—cr—)
(15)

so yielding the initial value vector Xo. The set of equa-
tions (9) may now be solved to any desired degree of ac-
curacy to yield the decay of the longitudinal component
of the magnetization as

correlation function and

A, k, »A, k+, A,,k+, , k ) I, (21)

The definition of the correlation time given above sug-
gests a simpler way of finding T~t than solving the charac-
teristic Eq. (11). First we note that according to Eq. (19)

T~j=lim C& t e " t=C, 0 (22)
s~o 0

where C, (s) is the Laplace transform of C, (t) and C, (0)
is the value of that quantity at zero frequency. The La-
place transform of Eq. (9) is

sX(s)—X(0)= AX(s),

which, noting the final value theorem for Laplace trans-
forms, namely [20],

then T~I =A,,&
. However, if different time scales are in-

volved, T~~ and A.,& may not be similar and in this case A,,f
gives precise information on the initial decay of the corre-
lation function.

III. MATRIX FORMULA
FOR THE CORRELATION TIME

(16)
where N is the number of particles per unit volume, and

limsf(s) = lim f (t),
s~O f~oo

becomes for s =0,

(23)

m=M, v. (17)

The first three eigenvalues in the form Azk+, /2rN and
the amplitudes 32k+& are given in Table I as a function
of o, whence the lowest mode contributes almost all the
decay. A 12X12 matrix was used for the amplitudes

22k+, and a 20X20 matrix was used to ensure conver-
gence of the eigenvalues A,zk+, . The quantity of most in-

terest to us is the correlation time T~~ which is [16,17] the
area under the curve of the longitudinal autocorrelation
function. The longitudinal autocorrelation function of
the magnetization in the linear approximation in g is

f, (t) (cos8(0)cos8(t) )o=C, (t)= (18)fi(0) ' (cos 8(0))0

so that the correlation time T~! is from Eq. (16)

+~2k+i 2k+1

(19)

~2k+1
k

By inspection of Table I, T~~ is effectively the reciprocal of
the lowest eigenvalue. Another quantity which we shall
require is the effective eigenvalue defined as [16,17]

g ~2k+1~2k+1

f (0)

k

which may also be evaluated from Table I. A.,f is the re-

ciprocal time constant associated with the initial slope of
the magnetization decay. It also contains contributions
from all the eigenvalues just as the correlation time T~~.

The behavior of Tj~ and A,,f is sometimes similar. In fact
[17], if a single eigenvalue dominates the decay of the

X( ~ )
—X(0)= AX(0) .

Furthermore,
X(oo )=0 (25)

because all the fz„+,( ~ ) vanish. Thus Eq. (24) becomes

—X(0)= AX(0),
with the solution

X(0)= —A 'X(0) .

(26)

(27)

IU. ANALYTIC FORMULA FOR THK LONGITUDINAL
SUSCEPTIBILITY AND CORRELATION TIME

Consider the Laplace transform of the recurrence rela-
tion for f„(s) [Eq. (7)]. We have

The relaxation time T~~ may be extracted from this set
merely by calculating A . This is much easier than ap-
proximating the correlation time as in Eq. (4) by the re-
ciprocal of the lowest eigenvalue obtained from Eq. (11).
This always requires one to solve the high-order polyno-
mial equation [Eq. (11)]. Such a procedure also yields T~,

from a matrix which is merely a function of cr —not, as in
the lowest eigenvalue method, a function of e and s. We
remark that the method is not confined to the set of
differential-difference equations for the fz„+,. It may be
applied to the aftereffect solution whenever the set of
equations for the expansion coefficients in the corre-
sponding Fokker-Planck equation may be written in the
matrix form [Eq. (9)]. It also allows us to calculate all the
functions fz„+,(0) and thus the correlation times of the
other f „z(r+). We shall now demonstrate how an exact
analytical formula for the Laplace transform of the
aftereffect function f, (s), and hence Ti, may be obtained
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where

n (n +1) (2n —1)(2n +3) (2n +1)(2n +3) "+
n (n +1) f (s) 4n2

(28)

R„(s)=f„(s)/J„z(s) . (29)

2o (n —1)
4n —1

S„(s)= (30)
2TNS 2o 20 (n +2)

n (n +1) (2n —1)(2n +3) (2n +1)(2n +3)
As shown in Appendix A, we can then solve [21,27-29] the inhomogeneous equation (28) in terms of the S„(s)by suc-
cessively ehminating the other variables to get

The solution of Eq. (28) will allow us to determine j,{s). The homogeneous equation (28) [i.e., with f„(0)=0) may be

readily solved in terms of the continued fraction

j', (s) N f2„~)(0) (n +—,
' }I(n + —,')

f&(0) ~Ns+1 —o+ &S3{s)
' „, f, (0) I'(n+2)l {—,') (31)

This exact formula allows one to calculate the frequency dependence of the longitudinal susceptibility
pl(co) =g'(t0) ig"(co—), since according to linear-response theory [30]

+1(~) oo . f) (ico)=1 ice —e ' 'C, (t)dt =1 ick-
y'(0) 0 f1 {0}

Thus we have

(32)

1

ico~N+1 ', o +—', o—S3(t—co)

fr+i(0)(n+)I(n+)n
X 1 ', o+ ', o—S—3(iso)—it@~&~4 —g (

—1)",g S2k+, (it0)
n=1

(33)

where

I'X M4 2 ~}
g~[(0) tnlVf )(0)/H

3 ky M( 3 )2' 2'

The most signi6cant feature of Eq. (31) is however that it yields an exact expression for the correlation time. We
have, on setting s =0 in Eq. (31),

j')(0)

f (0}
N

1 —
—,'o + —,'crS3(0)

P~ 2k+1f, ( ) I'( n+2) I—,'()
(34)

Equation (34) is an exact analytical formula which allows

Tll to be calculated to any desired degree of accuracy by
computing successive convergents of the continued frac-
tion S2k+&(0). The results obtained from Eq. (34) are
coincident with those of the matrix inversion method of
Sec. III above. We shall now demonstrate how T~~ may
be written as a series of Kummer functions, which allows
one to easily deduce the asymptotic behavior of T~l.

U. ANALYTIC FORMULA FOR Tll
IN TERMS OF KUMMER'S FUNCTIONS

The mathematical procedure involved in expressing Tll
in terms of Kummer's functions is rather lengthy and so
is described in Appendix C. We have, using the results of
Appendix C, an expression for S2k+&(0) in terms of
Kummer's functions of ascending order

4k M(k +1,2k +—2, & )

'"+' (4k+1)(4k+3) M(k, 2k+-,', o )

It is also shown in Appendix C that
1 =M(1,—'„o ) .

(35)

(36)

Equation (15) yields the ratio fz„&(0+}/f&(0} as a ratio
of two Kummer functions

f2„+&(0) 3o"I (n+ ~
)M'(n +—'„2n +—,', o }

f~(0) 2I (2n +—,
' )M( —3,—5, cr )

(37)

so that with the aid of Eqs. (35)—(37) we have the explicit
formula
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Tii 3o "I (n + —,
' )M(n + —,', 2n + '„—o )

=M(1,—', o ) 1+—', g ( —1)"

(n+ —')I (n+ —') n 4k M(k+1, 2k+ —',o)C7 7

I (n+2)I ( —,') k, (4k+1)(4k+3) M(k, 2k+ —,', o )

This may be further simplified by noting that

n M ( k + 1,2k +—,o' ) M ( n + 1,2n +—,o' )

M(k, 2k+ ,', c—r) M(1, —', , o )

and

4k n!cr "48(2m. )
'~ I'( —,

' )I ( —,
'

)

, (4k +1}(4k+3) (4n +3)(4n +1)l'(2n + —,
'

)

Using the I -function recurrence relations

zI (z)=l (z+1), I'(2z)=(2m )
' 2 ' ' I (z)1 (z+ —,'),

we have

(
—cr }"(n+ —,')I"(n + —,')I'(n + —,')

+
M( '„'„o-) „-&, (n 1)[r(2n+-', )]'

XM(n + —,', 2n + —'„o )M(n +1,2n + '„cr), —

(38)

(39)

(40)

which is the exact solution in terms of known functions for
the longitudinal relaxation time T!! for the E sin 8 poten-
tial. This function is tabulated for a wide range of values
of 0 in Appendix E. It is apparent, using the series
definition of the Kummer function Eq. (14), that
T /rs, = 1 for cr =0.

II

We remark that all the Kummer functions appearing
in Eq. (40) may be expressed in terms of the more familiar
error functions of the real and imaginary arguments [18]

erf(x) = I exp( t )dt, —
rr

( —1)"=e o ~ g, I'(n+ —,')(n+ —', ) .
r~ „0(n +1)! (41)

We sum this series by expressing it in terms of Gauss hy-
pergeometric functions 2F, (a, b;c;z) [18]as follows:

Eq. (13.1.4) of [18]].

M(a, b, z) = e'z' [1+0(~z ')], Re(z) & 0 .
r(b) . . .
r( )

Thus Eq. (40) becomes in the high-o limit

erfi(x) = —f exp(t )dt .
X

&rr

In particular ([36],p. 580)

3
M (1,—'„z ) = [v'm /4z exp(z)erf(&z ) —1],

2z n=0 n!

ca
( 1)n

o (n +1)!,
I'(n+ —,')(n+-,')

(-,' )„(1)„(—1)"

4 0 (2) n!

M(3, —', ,z) =&~/4z erfi(&z ) .

Equations for the other M functions occurring in Eq. (40)
may be obtained from Table 7.11.2 of Ref. [36] and the
recurrence relation for the Kummer functions.

We shall now demonstrate how the asymptotic formula
of Brown [Eq. (5)] may be recovered from Eq. (40) in the
high-barrier limit.

=&rr[ F ( —' b'b' —1)—( —,') 2F(( —,', 1;2; 1)]

=&~/2,

where [18]

(a)„(b)„zn
2F, (a, b;c;z)= g (c)„n!

(42)

(43)

(44)

VI. RECOVERY OF BROWN'S ASYMPTOTIC
FORMULA FROM THE HIGH-BARRIER LIMIT

OF EQ. (40)

In order to obtain the high-cr limit of Eq. (40) we note
that the asymptotic form of M(a, b, z) as ~z~~ ~ is [cf.

(a)„=a (a +1)(a +2) (a +n —1),

2F, (a, b;b;z) =(1—z)

2F, (a, a +—,';1+2a;z)=2 '[1+(1—z)' ]

(45)
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Thus, Eq. (41) becomes

T~(/rbr =(&n/2)e o (46)

which is the asymptotic formula of Brown [Eq. (5}]. It is

apparent from our previous work on the two-dimensional

problem [21] and that of Storonkin [31,32] that this for-

mula (46) will not exactly reproduce the asymptotic
behavior, as is demonstrated in Fig. 1 and Table II. Thus
it is necessary to calculate correction terms to Eq. (46).
This is accomplished by writing the exact solution for Ti
[Eq. (40)] in integral form and utilizing the method of
steepest descents [19].

14--

12--

10--

8--

4--

2.-

I

I

s
1

s

l

VII. INTEGRAL FORM OF THE EXACT SOLUTION

In order to write our series solution for Ti /re [Eq.
(40}) in integral form we note the formula from Bateman

[ [22] Vol. 1: 6.15.3, Eq. (18)]

FIG. 1. Exact solution [Eq. (40)] for the longitudinal correla-
tion time T~~ /~N (solid line) compared with the asymptotic solu-
tion [Eq.(5)] (large dashed line) of Brown. The small dashed line
is the solution rendered by the asymptotic formula (59).

M(a, b, z)M(a, b, —z)= ' sechtIb, (zsecht)e ' dt, Re{a))0, Re{b —a) )0,[I (b)]2 zt b-
(b —2a)t

(47)

where I„(z) is the modified Bessel function of the first
kind of order v [18]. Thus the product of two Kummer
functions may be expressed as an integral. In order to
apply the above formula to Eq. (40) we note the Kummer
transformation [Eq. (13.1.27) of Ref. [18])

I

comes

M (n + ,', 2n +——,', tr )M (n + 1,2n + 5, tr }—
=e M( n + '„2n +——'„o )

M(a, b, z)=e'M(b a, b, —z—) (48) XM(n + —,', 2n +—,', —o ), (49)

so that Eq. (48), taking a =n +—'„and b =2n +—'„be- so casting Eq. (40) into a form suitable for conversion to

TABLE II. Comparison of various asymptotic formulas for Tt~ /r~ with the exact solution [Eq. (40)].
Equation (60) is Brown's formula with asymptotic cr ' and o 2 corrections. Equation (59) is Brown's
formula with o ' correction; Eq. (5) is Brown's formula without correction.

0
1.0
1.5
2.0
2.5
3.0
3.5
40
4.5
5.0
6.0

10.0
14.0
18.0
22.0
26.0
30.0
34.0
38.0
42.0
46.0
50.0
54.0
58.0

Eq. (40)

1.0
1.528
1.9254
2.4603
3.1899
4.1982
5.6091
7.6061

10.463
14.589
29.43

691.02
21 986.0
8.0835X 10
3.2294X 10
1.3619X10'

5.9662X 10'
2.6885 X 10'
1.2382 X 10'
5.8028 X 10'
2.7581 X 10'
1.3264 X 10'
6.4425 X 10"
3.1558X 10'2

Eq. (60}

8.4316
5.0446
4.341
4.4793
5.1385
6.3114
8.1274

10.833
14.823
29.395

688.28
21 955.0
8.0783 X 10'
3.2283 X 10
1.3616X 10'

5.9654X 10'
2.6883 X 10'2

1.2382 X 10'
5.8026X 10"
2.758 X 10'
1.3264 X 10'
6.4424X10"
3.1557X 10

Eq. (59)

4.818
3.6033
3.4728
3.8238
4.5676
5.7626
7.5604

10.214
14.117
28.381

679.02
21 799.0
8.043 X 10
3.2188 X 10
1.3587X 10
5.9558X 10'
2.6849 X 10'
1.2369 X 10'
5.7977X 10'
2.7561 X 10'
l.3256X 10'
6.4391 X 10
3.1543X 10»

Eq. (5)

2.409
2.162
2.3152
2.7313
3.4257
4.482
6.0483
8.357

11.764
24.327

617.29
20 346.0
7.6197X10
3.0789X 10'
1.3084 X 10'
5.7636X10"
2.6082 X 10'
1.2052 X 10'
5.6629 X 10"
2.6975 X 10'7

1.2996X10"
6.322 X 10

3 1009X10»
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an integral, namely,

T
=M(1 —' cr)+3[M( —' —', o)] 'e ~

+N

( —1)"(n + ', )—I (n + —,
'

)

I (n +2)
oo cosh(t /2)

X I3 +3/Q(tr SeCht) dt,
0 cosht

(50)

where

(
—1)"(n +-,')I'(n +-,' )F(8)= ~ +3/3 ( o' sine )

(52)

which, using the change of variable secht =sin8, reduces
to

T
=M(1,—'„o )

N

It is shown in Appendix D that the series Eq. (52) is

~(e)= '
cosh( e)—"'""' ""8'+2

23/2tr sin8 o sine

' 1/2
3e o ~»d 8 1+sin8

M( —,', —,', o ) 0 2sine
(51)

Thus

(53)

3e o y«&de 1+sine 1
( ~»„e+ ~»„e) 3 e "" —e

4M( 3, ,', t—r )—o sine 2 2 o sine
+2 (54)

which is the exact solution rendered in integral form.

VIII. APPLICATION OF THE METHOD OF STEEPEST DESCENTS TO OBTAIN THE ASYMPTOTIC EXPANSION
OF THE EXACT SOLUTION

In order to apply the method of steepest descents [19],we note that the exact solution [Eq. (54)] has no singularity at
8=0 and has a saddle point at e=n. /2. Since the saddle point is at e=m. /2, it will be convenient to replace 8 by
m /2 —8 in Eq. (54), so that 8=0 is now the saddle. Thus

N

T= ~/3 v' o cos8 -0 cosO3e o /&de 1+cose 1 „,e „,e) 3 e —e

4M( —'„—'„o ) 0 cose 2 2 o cos8
(55}

Let us now write

J= dee "' G(8),n/2

0

where

(56)

3/1+ cos8 3

2 cose o cose
(57)

Thus, referring to Appendix D, we have in accordance
with the method of steepest descents,

~/2 g2J— Q o + GII o + 6 IV
O

0 2 24

T a —3/2

2 o 4o.
(60)

when their results are truncated at the term of order e
Equation (59} is compared with the exact solution and

Brown's asymptotic formula [Eq. (46)] in Table II and
Fig. l. It is apparent that Eq. (59}reproduces the asymp-
tote more accurately than Eq. (46} for e K 2. 5 (see Table
II). Brown's formula [Eq. (5)] yields a closer approxirna-
tion to the exact solution for o. in the range 1.5-2.5. If
the 1/o term is included in the asymptotic expansion
one finds after a tedious calculation that

o-02 o-g4
Xexp o — + dO

2 24

&~e
2v'g 2o

whence, on using Eqs. (41) and (58), we obtain

(58)

This formula is in agreement with Brown's calculation
[33] and is shown in Table II. It provides an even closer
approximation to the asymptotic behavior for large o.
Another approximation that has been used to estimate
the relaxation time is the inverse of the effective eigenval-
ue [5,23,24]. The effective relaxation time is found by
evaluating Eq. (7) for n =1 at t =0 and Eq. (20). We
have

T
cr —3/2e o.

2 o
(59) ~~f, (0)+ 1 — f1(0)=——of3(0) .

E.

(61)

in agreement with Storonkin [31,32] and Brown [33] The effective eigenvalue is then [cf. Eq. (20)]
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ef
fi(0) 1 2cr 2cr f3(0)

1 — +f, (0) ~~ 5 5 f, (0)
14--

12"

Thus according to Eq. (15) the effective relaxation time
7 f A f is given by

10--

8--

7 ef

N 2o 2cr 6o r~r~
1 — +

5 5 35 M( —', , —'„o)

(63)
4--

2"

It is apparent from Fig. 2 that the efFective-eigenvalue
method is inadequate when applied to the longitudinal re-
laxation, as noted in [23,24], because r,f cannot reproduce
the behavior of Tl in the large-ir limit since the asymp-
totic behavior of f3 (0)/f, (0) in Eq. (62) and
M (1,5/2, o ) in Eq. (40) difFers by a factor of e . One can
obtain from the data of Table I that the condition (21}
does not hold in the case under consideration.

IX. CONCLUSIONS

We have shown in this paper how one may have exact
solutions [Eqs. (33) and (40)] for the longitudinal suscep-
tibility gl(co) and correlation time Tl for a single-domain
ferromagnetic particle for the simple uniaxial potentia1
K sin 8. The formula for T~~ contains the previous result
of Brown [3] as the limiting case of high potential bar-
riers and for low potential barriers it reduces to that of
perturbation theory in 0. The crucial steps which yield
the solution in closed form are, first, the representation of
the correlation time as the zero-frequency limit of the La-
place transform of the aftereffect functions, and second,
the fact that the aftereffect solution is governed by a
three-term recurrence relation for j2„+,(s). This allows
us to express the f2„+,(0) in terms of Kummer's func-
tions. Thus the method may be extended to the correla-
tion times of the higher-order averages of the aftereffect
solution when these are of interest.

We remark that the above method will apply to any
problem where the solution of the Fokker-Planck equa-
tion may be reduced to a three-term recurrence relation
(see e.g., [16,21,29]). Moreover, our method of finding

the Laplace transform of the aftereffect function, de-
scribed in detail in Appendix A, may be easily extended
when the S„(s) are matrix continued fractions. This is
useful in problems involving difFusion in more complex
potentials [34,35] and in phase space.

The matrix representation of the problem [Eq. (9)] is
inconvenient for the recognition of the existence of a
solution in closed form. However, it is extremely useful
for numerical calculations because it is not subject to the
restriction (as the continued fraction method is) that the
difFerential-difference equations constitute a three-term
recurrence relation. Thus the matrix procedure of Eq. (9)
is far more general than the continued fraction one. For
example, it may be used to calculate the correlation time
for uniaxial anisotropy in the presence of an external field
H. Here it is not obvious that TI~ can be expressed in
terms of hypergeometric functions since the underlying
recurrence relation for arbitrary field strength ~H~ is a
five-term one. We reiterate in connection with the matrix

FIG. 2. Exact solution [Eq. (40)] for the longitudinal correla-
tion time TII/~N (solid line) compared with the solution ren-
dered by the effective eigenvalue [Eq. (63)] (dashed line).

formulation of the problem that the calculation of T~~

from Eq. (27) simply requires one to calculate A '. On
the other hand, the representation of the correlation time
as 2r&A, i

' compels one to solve numerically a high-order
polynomial equation —Eq. (11) in s. The calculation of
A is in general much easier than solving such a poly-
nomial equation.

It is apparent from the results [Eqs. (59) and (60)] of
the method of steepest descents that the asymptotic
corrections to Brown's formula [Eq. (46)] given in Eqs.
(59) and (60) are necessary in order that the asymptotic
expansion should accurately represent the solution for
large cr In view .of the ease of computation of the exact
solution, which in effect is just

II =g(0),
N

it appears that the previously used formulas are now
redundant.

The exact solution of this problem is of particular im-
portance in the context of the remarks of Klik and Gun-
ther [37] concerning the application of the uniaxial model
to real superparamagnets, in particular the T
behavior of the relaxation rate prefactor 0 ~ ~z' in
Brown's asymptote [Eq. (5}]. The reader is referred to
their paper [37] and that of Bessais, Ben Jaffel, and Dor-
mann [12] for a detailed discussion. A description of the
difficulties accompanying the comparison of theoretical
formulas for Tl with experiment is given in Refs. [12]and
[13].

Our results, with a few changes in notation, govern the
longitudinal relaxation behavior in the theory of dielec-
tric relaxation of nematic liquid crystals given by Martin,
Meier, and Saupe [10]. We note that the present method
yields an analytic expression for the transverse relaxation
time in the theory of Martin, Meier, and Saupe [10]. This
result, however, does not carry over to magnetic relaxa-
tion, unless the gyromagnetic term in cr/a in Brown's
equation (3) can be ignored.

In conclusion, we emphasize that we have confined
ourselves in this paper to the resolution of the purely
mathematica1 question posed by the exact calculation of
the longitudinal relaxation time for the simple uniaxial
anisotropy from Brown's equation (3}. This problem may
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now be considered as completely solved due to the ex-
istence of the series solution [Eq. (40)]. In view of the
idealized nature of the simple uniaxial potential model as
discussed in [37], the method described in the paper
should properly be regarded as a convenient starting
point for the analytical treatment of more realistic poten-
tials which incorporate the azimuthal angle dependence,
e.g., cubic anisotropy.
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APPENDIX A: CALCULATION
OF THE LAPLACE TRANSFORM I, (s)

OF THE AFTEREFFECT FUNCTION

Following Cresser et al. [27] and Coffey [28] we seek a
solution of Eq. (28) in the form

2~~s +l-
n(n+1) (2n —l}(2n+3) " " (2n+1)(2n+3) ' "+ " " " " "+ " n(n+1)

(A2)

We now introduce

q. =Q.f.-2 (A3)

hence

2~~s 20 2o(n +2} — 2&sf. (0)

n(n+1) (2n —1)(2n+3) " (2n+1)(2n+3) " " " n(n+1)
(A4)

Equation (A4) may be solved for q„ to get

2r~f„(0)
n(n+1)

2o (n +2)
(2n —1)(2n +3)

2o' 2o(n +2)
n (n +1) (2n —1)(2n +3) (2n +1)(2n +3)

=a„[(r~lo )f„(0)—b„q„+z]S„(s), (A5)

where
4n —1 n (n +1)(n +2)

n(n~ —1)
' " (2n+1)(2n+3)

{A6}

However, from Eqs. (A3) and (A5} we obtain

f„(s)=[f„()2+s[a( ~/r)fo„(0)—b„q„+z]]S„(s).

In particular, for n =1 we have

f i(s) = [r&f&(0)—-', oq3],G(o, s)

where

G(o, s)=s~z+1 ——', o+ —', oS3(s) .

(A7)

(A8)

(A9)



49 EXACT ANALYTIC FORMULA FOR THE CORRELATION TIME. . . 1879

Substituting for q3 in Eq. (A8) from Eq. (A5) for n =3 we have

f, (s)= jr&f, (0)—o a&b, [(rz/o }f3(0)—b,q, ]S,(s)],
G(o, s)

so that

+N n+1f (s)= f, (0)+ g ( —1)" f „,(0}g a „b„,S „,(s)
G(o', s} n=o k=1

(Alo)

(A 1 1)

Equation (Al 1) may be further simplified if we write out
the product aJk+3bzk+ i explicitly. On using

(4k +7)(2k +1)
k —0

+ +
k —0 2(k +2)(4k +3)

On comparing Eq. (Cl) with the continued fraction ([38],
p. 347}

M(a+ 1,b+ 1,z)
M(a, b,z)

we can reduce Eq. (All) to Eq. (31).

I'(n + —,
'

)
1

z(b —a)
b(b+1)

z(a+1) M(a+2, b+3,z)
(b+l)(b+2) M(a+1, b+2, z)

(C2)

APPENDIX B: EVALUATION
OF THE INITIAL CONDITIONS AS A RATIO

OF TWO KUMMER FUNCTIONS

The purpose of this appendix is to demonstrate how
the initial conditions [Eq. (13)] may be written as a ratio
of two Kummer functions. In order to evaluate the in-

tegral in the numerator of Eq. (13) we first expand the ex-
ponential in powers of o and next expand x "+' as a
finite series of the Legendre polynomials P2„+,(x) using

Eq. (12.4.6b) of Arfken [26], namely,

we obtain a =n /2 and b =n —1/2 so that

M(1+n/2, n+ —,', —o')
S„(0)=1-

M (n /2, n —
—,', —o )

M((n —1)/2, n +—,', cr )
1 ~ (C3)

M((n —1)/2, n —
—,', u)

Here we have used Eq. (48). Further on, using the re-
currence relation ([18],Eq. 13.4.4)

M(a, b —l,z) —M(a, b,z)= M(a+ l, b+ 1,z),

n=0

2 "+'(4n +3)(2r +1)!(r+n + 1)!
(2r +2n +3)!(r n)!— I'z. +i(&) .

(C4)

(Bl)
Thus, on using the orthogonality properties of the Legen-
dre polynomials and equation ([36],p. 580)

f 1
exp( crx }dx =M( —,', —'„o ),

0

we have

2 "+' " o" (2r +1)!(r+n +1)!f "+ M( ~, '„o)„~„r!—(2r+2n+3)!(r —n)!(0)=g

(B3)
We now eliminate the summation in Eq. (B3) by writ-

ing r =n +N and using the recurrence relations (39) and
the definition of the Kummer function [Eq. (14)]. The
desired result is Eq. (15).

APPENDIX C: REPRESENTATION OF S2k+ g (0)
AS A RATIO OF T%0 KUMMER FUNCTIONS

We require Sz„+,(0) as a ratio of two Kummer func-
tions. This is accomplished by noting that Eq (30) can b. e
rearranged to yield after simple algebra

1 —S„(0)= 1

2cr(n —1)
(2n —1)(2n + 1)

(2n +1){2n+3)

we have from Eq. (C3)

1)~ M((n +1)/2, n+ —,',o )
S„(0)=

(4n —I) M((n —1)/2, n —
—,', o )

(C5)

Equation (C5) reduces to Eq. (36) at n =2k +1. Also on
using Eq. (C3) and the properties of Kummer's functions
[18]

M(0, b, z) =1, (C6)

=M(l, —,', o ) . (C8)

APPENDIX D: DERIVATION OF A CLOSED-FORM
EXPRESSION FOR THE SERIES F(8)

In our derivation of the integral form of the exact solu-

tion [Eq. (55)] from the series solution Eq. (40) we re-

quire proof that Eq. (52) may be expressed in the closed
form of Eq. (53). In order to accomplish this we recall
that [[18]Eq. (11.1.1}]

bM(a, b, z) bM(a —l, b,—z) zM(a, b + l,z—)=0, (C7)

we can express the leading term of Eq. (34) as follows:

1

2~ M(1,—'„o)
1—

5 M(1, —5, a)
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tJ t t=
0

v+P, + 1z"I
2

r v —@+1
2

' X
k=0

(v+2k +1}I +k
2

v+P+3
2

J~+2k + 1(z) (D 1)

where J (t) is the Bessel function of the first kind of order v and Re(v+@+1))l. Equation (Dl) holds for complex z.
Let us replace z by iz in Eq. (Dl) and suppose that k =n —1, whence Eq. (Dl) becomes

f
thm'I„(t)dt

=zr
0

v+@+1
2 00

1}n
—1

v+P+ 1 n =1

2

(v+2n —l)I +n
2

, v+P+ 1

2

(D2)

where we have used Eq. (9.6.3) of Ref. [18],namely,

J,(iz)=e' ' I„(z) .

Hence referring to Eq. (52) we have

1.(2) ( —1)"(n +-,')I'(n +-,')t' I5i2(t)dt = —2 o sing, g Ip +3/2(cr sing),
0 I —,'„1 I n+2

so that
3

F(g)= —— f t I», (t)dt .
O' Sill 8

2 3/crsingl'(2)

This may be further simplified using the properties of the spherical Bessel functions [18]. We have

(D3)

(D4)

(D5)

I5y2 t t = 2 7T
0 0

3 1 . 3 sinhx—+—sinht — cosht —t dt =3/2/n coshx —3 +2
t 2 x

(D6)

so that finally

F(8)=
3

cosh(o sing) — . +21 3 sinh(cr sing)

2 o sing a sin8
(D7)

which is the desired closed-form expression for the series F(8).
We now briefiy sketch the calculation of the derivatives of the function 6 (8) from Eq. (59) used in the evaluation of

the integral Eq. (58} by the method of steepest descents since it is tedious for the reader to reproduce the calculation.
We arrange G(8) as

hence

1 cos(8/2) 3 cos(8/2)
cosg oV 2 cos g

(D8)

1 36(0)= ~—
Further,

(D9)

6'(8) = 1

v'2

so that
6'(0) =0 .

Now

sin(8/2) sing cos(8/2)
2cos0 cos 0

sin(8/2) 2 sing cos(8/2)
2cos 0 cos 0

(D 10)

(D 1 1)

Thus

6"(8)= 1

v'2

3

o 3/2

3 cos(g/2) sing sin(8/2) Zsin Hcos(8/2)
4cos0 cos 0 cos 0

7cos(8/2) 2singsin(8/2) 6 sin Hcos(8/2)
4cos 0 cos 0 cos 0

(D12)
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6"(0)= 3v 2 21~2
8 80.

Further,
11 sin(H/2) 17 sinH cos(H/2)

8cos8 4cos 8
3 sin H cos(H/2) + 6 sin Hcos(H/2)

cos 8 cos 8

(D13)

3

~~2
23 sin(H/2) 29 sinH cos(H/2) 9 sin H sin(H/2) 24 sin H cos(H/2)

8cos 8 2cos 8 cos 0 cos 8
(D14)

TABLE III. Table of values Tii /r„ from the exact solution [Eq. (40)].

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9
2.0
2.1

2.2
2.3
2.4
2.5
2.6
2.7
2.8
2.9
3.0
3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9
4.0
4.1

4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9
5.0

T((«N

1.041
1.0843
1.1299
1.1779
1.2286
1.282
1.3385
1.3982
1.4613
1.528
1.5986
1.6733
1.7525
1.8364
1.9254
2.0199
2.1202
2.2267
2.3399
2.4603
2.5884
2.7248
2.8701
3.0249
3.1899
3.366
3.5539
3.7546
3.969
4.1982
4.4434
4.7056
4.9863
5.287
5.6091
5.9544
6.3247
6.7219
7.1483
7.6061
8.0979
8.6263
9.1945
9.8054

10.463
11.17
11.932
12.752
13.636
14.589

5.1
5.2
5.3
5.4
5.5
5.6
5.7
5.8
5.9
6.0
6.1

6.2
6.3
6.4
6.5
6.6
6.7
6.8
6.9
7.0
7.1

7.2
7.3
7.4
7.5
7.6
7.7
7.8
7.9
8.0
8.1
8.2
8.3
8.4
8.5
8.6
8.7
8.8
8.9
9.0
9.1

9.2
9.3
9.4
9.5
9.6
9.7
9.8
9.9

10.0

I( N

15.616
16.724
17.919
19.208
20.601
22.104
23.728
25.483
27.38
29.43
31.647
34.046
36.641
39.45
42.49
45.783
49.349
53.212
57.398
61.935
66.853
72.186
77.971
84.245
91.053
98.442

106.46
115.17
124.62
134.89
146.05
158.17
)71.34
185.65
201.21
218.13
236.52
256.53
278.29
301.97
327.73
355.77
386.29
419.51
455.68
495.06
537.96
584.68
635.57
691.02

10.1
10.2
10.3
10.4
10.5
10.6
10.7
10.8
10.9
11.0
11.1
11.2
11.3
11.4
11.5
11.6
11.7
11.8
11.9
12.0
12.1
12.2
12.3
12.4
12.5
12.6
12.7
12.8
12.9
13.0
13.1
13.2
13.3
13.4
13.5
13.6
13.7
13.8
13.9
14.0
14.1
14.2
14.3
14.4
14.5
14.6
14.7
14.8
14.9
15.0

751.43
817.27
889.03
967.26

1 052.5
1 145.5
1 246.9
1 357.5
1478.1
1 609.6
1 753.1
1 909.7
2080.5
2266.9
2470.4
2 692.5
2 934.9
3 199.6
3 488.5
3 804.0
4 148.6
4 524.9
4935.9
5 384.8
5 875.2
6411.0
6 996.5
7 636.1

8 335.2
9099.1
9 934.1

10847.0
11 845.0
12 935.0
14 128.0
15432.0
16 857.0
18 416.0
20 122.0
21 986.0
24026.0
26 258.0
28 698.0
31 369.0
34291.0
37 487.0
40 985.0
44 813.0
49002.0
53 587.0

15.1
15.2
15.3
15.4
15.5
15.6
15.7
15.8
15.9
16.0
16.1
16.2
16.3
16.4
16.5
16.6
16.7
16.8
16.9
17.0
17.1
17.2
17.3
17.4
17.5
17.6
17.7
17.8
17.9
18.0
18.1
18.2
18.3
18.4
18.5
18.6
18.7
18.8
18.9
19.0
19.1
19.2
19.3
19.4
19.5
19.6
19.7
19.8
19.9
20.0

T(( /xN

58 605.0
64098.0
70 111.0
76 693.0
83 899.0
91 788.0

1.0043 X 10'
1.0988 X 10'
1.2024 X 10
1.3158X 10'
1.44X 10'
1.5761X 10'
1.7251 X 10
1.8883 X 10
2.067X 10'
2.2629 X 10
2.4774X 10'
2.7124X 10
2.9699X 10'
3.2521X 10'
3.5612X 10
3.8999X 10
4.2711X10'
4.6779X 10'
5.1237X 10'
5.6123X 10
6.1479X 10'
6.7348 X 10'
7.3782 X 10
8.0835 X 10
8.8566X 10'
9.7041X 10'
1.0633X 10'
1.1652X 10
1.2769X 10'
1.3994X 10
1.5336X 10'
1.6809X 10'
1.8424X 10'
2.0194X 10'
2.2136X 10
2.4266X 10'
2.6602 X 10'
2.9164X 10
3.1974X 10
3.5056 X 10'
3.8437 X 10'
4.2146X 10
4.6215 X 10'
5.0679 X 10'

20.1

20.2
20.3
20.4
20.5
20.6
20.7
20.8
20.9
21.0
21.1
21.2
21,3
21.4
21.5
21.6
21.7
21.8
21.9
22.0
22. 1

22.2
22.3
22.4
22.5
22.6
22.7
22.8
22.9
23.0
23.1

23.2
23.3
23.4
23.5
23.6
23.7
23.8
23.9
24.0
24. 1

24.2
24.3
24.4
24.5
24.6
24.7
24.8
24.9
25.0

T((/sN

5.5576X 10'
6.0949X 10'
6.6843 X 10'
7.3311X10'
8.0407X 10'
8.8194X 10
9.6739X 10'
1.0612X 10
1.1641 X 10'
1.277 X 10
1.4009X 10'
1.5369X 10'
1.6862 X 10
1.85 X 10
2.0299 X 10
2.2273 X 10
2.4439 X 10'
2.6818X 10
2.9428 X 10
3.2294X 10'
3.5441X 10'
3.8895 X 10'
4.2687 X 10
4.6851X 10'
5.1422 X 10
5.6441X 10'
6.1952X 10'
6.8003 X 10'
7.4648 X 10'
8.1944X 10'
8.9956X 10'
9.8754X 10'
1.0842 X 10
1 1903X10
1.3068 X 10'
1.4348 X 10'
1.5754 X 10'
1.7297 X 10
1.8993X 10'
2.0856X 10'
2.2901X 10'
2.5148X 10'
2.76&7 X 10
3.0328 X 10'
3.3307X 10'
3.6579 X 10'
4.0173X 10'
4.4122 X 10
4.8461 X 10
5.3227 X 108

25.1

25.2
25.3
25.4
25.5
25.6
25.7
25.8
25.9
26.0
26.1

26.2
26.3
26.4
26.5
26.6
26.7
26.8
26.9
27.0
27.1

27.2
27.3
27.4
27.5
27.6
27.7
27.8
27.9
28.0
28.1

28.2
28.3
28.4
28.5
28.6
28.7
28.8
28.9
29.0
29.1

29.2
29.3
29.4
29.5
29.6
29.7
29.8
29.9
30.0

T((/wN

5.8463 X 10'
6.4217 X 10
7.0538 X 10'
7.7484X 10'
8.5115X 10'
9.35X 10'
1.0271X 10'
1.1284X 10
1.2396 X 10
1.3619X10'
1.4963 X 10'
1.6439X 10'
1.8062 X 10
1.9845 X 10
2.1804X 10
2.3958X 10
2.6325 X 10
2.8927 X 10
3.1786X 10'
3.4929X 10'
3.8383 X 10'
4.218X 10'
4.6353 X 10'
5.0941 X 10'
5.5984X 10
6.1527X 10
6.762X 10
7.4318X 10'
8.1682X 10
8.9777X 10
9.8676 X 10
1.0846X 10"
1.1922X 10'
1.3104X 10"
1.4404X 10"
1.5834X 10'
1.7405 X 10"
1.9133X 10'
2.1033X 10'
2.3122X 10'
2.5419X 10'
2.7944 X 10'
3.0721 X 10'
3.3775 X 10'
3.7133X 10"
4.0826 X 10'
4.4886X 10"
4.9351X 10'
5.4262 X 10"
5.9662 X 10'
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so that

6"'(0)=0 . (D15)

APPENDIX E: TABLE OF THE EXACT SOLUTION

In order to facilitate comparison with the results of Brown s asymptotic formula [Eq. (46}]and with experimental ob-
servations it is useful to present the exact solution [Eq. (40)] in tabular form. This function is tabulated in Table III for
values of o from 0.1 to 30.

A11 numerical calculations were performed on a Macintosh II SI with Motorolla 68882 coprocessor running
MATHEMATIcA 1.2. In the calculation of Eq. (40},it was necessary to take the fist 16 terms from the infinite summation
to ensure convergence to five significant digits for values of 0. up to 60. The MATHEMATICA computer program for the
computation of Eq. (40) is available from the authors [39].
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