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Mutually destructive Buctuations in globally coupled arrays
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The phenomenon of mutually destructive fluctuations is observed in numerical simulations of a
Josephson-junction array. As an instability is approached, each array element exhibits increasingly wild

voltage fluctuations but the total voltage remains relatively steady. Such behavior is expected in any glo-

bally coupled oscillator array near the onset of a symmetry-breaking bifurcation; the same phenomenon
is demonstrated for systems of coupled iterative maps.

PACS number(s): 05.45.+b, 05.40.+j, 74.40.+k

Populations of coupled nonlinear oscillators are an in-
creasingly studied class of many degree-of-freedom
dynamical systems. Particularly good progress has been
made for arrays with global coupling, i.e., where each os-
cillator is coupled to all others with equal strength. Glo-
bal coupling arises, for example, in the study of mul-
timode lasers [1—4], solid-state laser arrays [5], and elec-
trical circuits [6—8] such as one-dimensional series
[9-15]and parallel [16,17] Josephson-junction arrays.

In addition to problems where the dynamics is
governed by differential equations, a great deal of atten-
tion has been devoted to discrete-time globally coupled-
map lattices [18]. While the connection between
discrete-time arrays and continuous-time systems is not
always clear, coupled-map lattices serve as an interesting
paradigm for investigating complex nonlinear dynamical
systems [19].

Past work on globally coupled arrays has uncovered a
number of interesting phenomena, including chaotic
itineracy [20-22], attractor crowding [23,24), selective
targeting of splay phase states [4], and nongeneric neutral
stability [5,12—15,25 —27]. In these studies, two themes
are recurrent. First, globally coupled arrays tend to ex-
hibit subtle and persistent correlations between the vari-
ous degrees of freedom, even when operated in the chaot-
ic regime [28-31]. Second, it is often the case that the
dynamics is sensitive to even small amounts of external
noise, due to either peculiarly weak (or even neutral) dy-
namics, or the presence of a very large number of coexist-
ing attractors.

It was recently suggested that any globally coupled ar-
ray might, under the right circumstances, demonstrate a
curious kin of robustness to random noise [32,33].
Specifically, as a bifurcation point is approached with
fixed input noise, each element in the array exhibits in-
creasingly wild fluctuations, but the total output across
the entire array remains relatively steady. This effect was
deduced from an analytic study of linearized differential
equations describing arrays of identical elements. In this
paper we show direct evidence of this effect in simula-
tions of a Josephson-junction array, using the complete
nonlinear equations. Our simulations show that this
phenomenon persists even if the array elements are not
identical. We then consider a model of globally coupled

iterative maps and show that the onset of mutually des-
tructive Auctuations is a generic phenomenon which
occurs near symmetry breakin-g bifurcations of the in-
phase state. The map model allows us to make quantita-
tive predictions for the magnitude of the effect, and
shows that no such effect occurs near symmetry
preseruing bifurcations. This last prediction is also borne
out by our Josephson-junction simulations.

Consider first the Josephson-junction series array de-
picted in the inset of Fig. 1. Assuming the junctions are
identical, the governing dynamical equations can be writ-
ten in dimensionless form as
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FIG. 1. Circuit schematic of the Josephson-junction array
(inset); output fluctuations 5V for the entire array (top) and 5U

for a single junction (bottom). %=10, R =8, I„=2.269,
Ie, =0.25, co=1, and It=10 . P's chosen with a 2% sPread
about a mean of 64.
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Pz+( I/&P)Pz+sinPz+ g PJ /R =I +(&, hz(n+l)=F'hz+G' g h +gz(n),

where the overdot denotes differentiation with respect to
time, P is the McCumber parameter, R is the resistance
of the parallel load, I =I&,+I„coscot is the supplied bias
current, and g& models the Johnson noise in the junction
shunt resistors, taken to be independent white-noise
sources ( gz(t) ) =0; ( g, (t)gz(s) ) =~5(t —s)5,„. (For
simplicity, we have neglected the noise due to the load
resistor. ) In these units, the voltage drop across the kth
junction is v„=P&, while the voltage drop across the en-
tire array is V =QU&. We should mention that in appli-
cations, it is the total voltage V that is of dominant in-
terest, thus the fluctuations in V are of special concern.

In the absence of noise, we can identify the in-phase
state in which all of the junctions oscillate identically,
t)tg (r ) =Pp( r ) for all k. As the parameters are varied, an
in-phase attractor can lose stability in a variety of ways.
One finds in this particular array that the in-phase attrac-
tor can suffer a period-doubling bifurcation as I„ is in-
creased past some critical value, all other parameters be-
ing held fixed. Near the bifurcation point we expect even
small amounts of noise will generate large output fluctua-
tions. The bottom of Fig. 1 shows the output fluctuations
5u =v, —

(U& ) of one of the junctions. (For clarity only
the envelope of the time series is plotted, strobing the
voltage once every two drive periods. ) Naively, we would
expect that the total voltage output would have fluctua-
tions larger by a factor of &N, but in fact the fluctua-
tions 5 V= V —( V ) are smaller, as seen at the top of Fig.
1. This effect grows more pronounced as the system is
tuned closer to the bifurcation point: v

&
fluctuates ever

more wildly, while V remains relatively steady.
We emphasize that this effect persists even if the array

elements are not identical: in fact, in generating Fig. 1

we introduced a spread in the junction parameter p of
2%.

What we see in Fig. 1 is not simply a case of uncorre-
lated fluctuations. Though the input fluctuations are un-

correlated, the global coupling generates mutually des-
tructive correlations which result in large-scale cancella-
tions in the total output. This can be seen quite clearly in
the simplest "array" case with just two Josephson junc-
tions; however, for larger arrays the cancellations cannot
be discerned simply by looking at the time series.

To understand the origin of this effect, consider the
system of globally coupled one-dimensional iterative
maps:

x„(n+ 1)=F(x„(n))+G(X)+g„(n), k =1, . . . , N,

where F and G are any function of their arguments x&

and X=gx, respectively, and the gz's are indepen-
dent white-noise sources (g„(n))=0, (g, (m}(„(n))
=~6-~6 „. Supposing that the noise-free system has an
in-phase period-one attractor, x„(n)=x" for all k, we
can examine the effect of small perturbations by setting
x& =x*+6& and linearize the maps about x*, with the
result

N,(H') =
1 (F'+—NG')

(2)

On the other hand, the stability of the fixed point x * is
determined by the N eigenvalues p, z of the noise-free
map Eq. (1), namely p, =F'+ NG', and JM &

=p3
=p~ =F'. Thus x* can go unstable in two funda-

mentally different ways, depending on whether p, or JM2

exits the unit interval. These two cases are directly tied to
the symmetry type of the instability: The former case cor-
responds to a symmetry-preserving bifurcation, while the
latter case corresponds to a symmetry-breaking bifurca-
tion. From Eq. (2},we see that the system may undergo a
symmetry-breaking bifurcation while the bulk fluctua-
tions remain relatively small.

In fact, Eq. (1) can also be solved to give the rms fluc-
tuations for a single element. One finds

N —1 ~ x

N 1 —
p2 N(1 —p )

(3)

This shows clearly that the fluctuations of a single ele-
ment grow dramatically regardless of the bifurcation
type.

This analysis suggests how to obtain an extremely pro-
nounced effect, namely by choosing parameter values that
make p& as small as possible when p2 is close to —1 (for a
period-doubling bifurcation}. Figure 2 shows the results
of simulations of linearly coupled logistic maps:
F(x)=ax(1—x), G =Pox /N, with N =100, P=1, and

~= 10 as the system approaches the symmetry-
breaking period-doubling bifurcation at a =1. Shown are
the rms fluctuations in x, and X, as we11 as the analytic
results Eqs. (2) and (3). Far from the bifurcation point
(a=0.7, not shown), the bulk fluctuations are about ten
times larger than the single-element fluctuations, which is
what one expects for the sum of 100 uncorrelated random
variables. As the bifurcation point is approached, the
fluctuations in x, grow while those in X remain about the
same. For a )0.995 the fluctuations in x

&
are larger than

those in X. Very close to the bifurcation point the linear-
ized analysis is no longer adequate: the observed bulk
fluctuations are larger than predicted by Eq. (2), while the
single-element fluctuations are smaller than predicted by
Eq. (3), though still larger than those in X. The largest
value of a in our simulations was 1 —a= l.OX10, for
which the rms fluctuation.

We can draw one other conclusion from this analysis,

where the derivatives F' and G' are evaluated on the
period-one attractor. The sum of these N equations give
the "bulk" response analogous to the total voltage fluc-
tuations in the Josephson-junction array example:

N

H(n+1)=(F'+NG')H(n)+ g g&(n) .
k=1

This is a linear equation involving the single variable 8,
so it is a straightforward matter to calculate the rms fluc-
tuations, with the result



49 MUTUALLY DESTRUCTIVE FLUCTUATIONS IN GLOBALLY. . . 1867

0. 1, 0.01

0.005

0
a3

O

0.01:

I—
!

0.00 1:
—0.005

—0.01 ! !
I

! ! !
I

! ! !
I

! ! !
I

! ! !

0.0001
0.9

! ! ! ! I !

0.005—

FIG. 2. rms Quctuations vs control parameter for a single ele-
ment (squares), and the sum of all elements (circles) for the cou-
pled logistic maps. Solid lines represents the predictions of Eqs.
(2) and (3).

namely that the single-element fluctuations should have a
significantly longer correlation time r, than the bulk fiuc-
tuations. In particular, one can show
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FIG. 3. Same as Fig. 1, but near a symmetry-preserving
period-doubling bifurcation; N = 10, R =—80, sc= 10
I„=1.1754, Id, =0.25, and co= 1. P's chosen with a 2% spread
about a mean of 2.56.

This effect is clearly evident in the Josephson-junction
simulations shown in Fig. l.

Returning to the Josephson-junction array equations,
we expect that the mutual destructive interference of fiuc-
tuations will not occur near a symmetry-preserving bifur-
cation. However, we Snd that this particular array does
not undergo a symmetry-preserving bifurcation for any
positive value of load resistance R. One way to obtain
the desired instability is to allow R &0, physically; one
imagines using a negative impedance converter in place
of the conventional resistor [34]. Figure 3 shows the
same information as Fig. 1, except that now the system is
poised near the onset of a symmetry-preserving period-
doubling bifurcation. The fluctuations are now mutually
constructive, so that the total voltage fiuctuations are
substantially larger than those of an individual junction.

In summary, we expect mutually destructive Auctua-
tions to be a generic phenomenon in globally coupled ar-
rays. The essential ingredients are the existence of an in-
phase attractor which can suffer a symmetry-breaking bi-
furcation, and independent noise sources acting on each
element. (Typically, one expects an in-phase attractor to
suffer both symmetry-preserving and symmetry-breaking
bifurcations depending on the parameter regime. ) The
global-coupling dynamics introduces correlations which
greatly suppress the total output fluctuations. Besides
the Josephson-junction array, a good candidate to ob-
serve this effect is the Nd:YAG (yttrium aluminum gar-
net) multimode laser with intracavity doubling crystal

[2]. The dynamics of this system is globally coupled, ex-
hibiting an in-phase attractor for sufficiently low pump
levels which is known to undergo a symmetry-breaking
bifurcation [35,36]. Other electrical circuits [6-8) with
globally coupled dynamics are also natural candidates
where mutually destructive fluctuations might be ob-
served.

Finally, one is led naturally to the question of whether
there is a deterministic counterpart to the phenomenon
studied here. That is, are there situations where (in the
absence of noise) each element evolves chaotically while
the bulk output remains relatively steady? If so, this
would have to involve phase-space considerations of a
global nature, not just in the vicinity of a simple in-phase
orbit. Consequently, if such behavior exists at all it is
probably less typical than noisy destructive Suctuations.
Nevertheless, an effect like this may be behind recent ex-
perimental observations in multimode laser experiments
[37—39] wherein the chaotic fiuctuations of the individual
mode intensities display decidedly difFerent statistics than
do the total intensity.
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