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Chaotic dynamics in the rf superconducting quantum-interference-device magnetometer:
A coupled quantum-classical system
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In this paper, we discuss the nonlinear behavior of a model rf superconducting quantum-interference-

device magnetometer consisting of a macroscopic quantum object which is coupled reactively to a linear
classical oscillator. We demonstrate that chaotic solutions can be found in the oscillator for the ground
and first excited states of the quantum object over a wide range of parameters, including those relevant

to experimental systems.

PACS number(s): 05.45.+b, 85.25.Dq

At its most basic level, the radio frequency supercon-
ducting quantum-interference-device (SQUID) magne-
tometer consists of a superconducting weak link ring and
a simple LC oscillator circuit (the tank circuit) which is
driven by an external current source, usually at radio fre-
quencies (cf. Fig. 1) [1]. The current gives rise to a mag-
netic flux in the inductor, which couples via a mutual in-
ductance M to the SQUID ring. This coupled magnetic
flux induces a screening current in the ring which is, in
turn, coupled back to the tank circuit.

The response of the weak link ring to an applied mag-
netic flux is periodic in integer units of the superconduct-
ing magnetic flux quantum C&o=h/2e=2X10 ' Wb,
and it is this periodicity which is used in the operation of
the system as a magnetometer. The periodic nature of
ring manifests itself by inducing the same periodicity in
the oscillator through the mutual coupling. If a static (or
quasistatic compared to radio frequencies} external mag-
netic flux is applied to the ring, the behavior of the oscil-
lator will then depend on the value of the applied flux.
The sma11 value of 40 then allows for very accurate deter-
mination of this external magnetic flux as the signal
sweeps through many periods of 4o [1].

However, this apparently simply system can give rise
to complicated nonlinear behavior, including chaos. Us-
ing a classical model [2—4] for both the weak link ring
and the oscillator, chaotic solutions to the resulting non-
linear differential equations have been found for the ring
alone [5—7] and for the coupled system [8]. The appear-
ance of chaotic behavior has also been reported in experi-
mental rf-SQUID systems [9], and although such
behavior is not particularly desirable in the operations of
the system as a magnetometer, the existence of such ex-
perimental evidence means that it is an important tool in
studying chaotic dynamics in real systems.

This purely classical model has been shown to be valid
for weak link rings in the presence of inherent dissipa-
tion: due to the inclusion of a real resistor shunted across
the weak link [1] or an efFective resistance due to cou-
plings to unprobed environmental degrees of freedom
[10—12) such as those which introduce broadband noise
[13]. However, when such inherent dissipation is not
present, a quantum-mechanical model may be used for
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FIG. 1. Schematic diagram of the rf-SQUID magnetometer.

the ring, where the macroscopic coherence of the super-
conducting condensate allows the ring to be considered as
a single macroscopic quantum degree of freedom [14,15]
with the appropriate commutators [16]. This section ap-
proach to the problem of superconducting circuits has
led to some remarkable experimental [17—25] and
theoretical results [12,26 —29] in the field of macroscopic
quantum phenomena.

In particular, it has been shown that nonlinear [30] and
chaotic behavior [31,32] can be obtained from a model
rf-SQUID magnetometer consisting of a macroscopic
quantum-mechanical weak link ring and a linear classical
oscillator. In this paper we deal with the general
behavior of such a system and consider the behavior of
the classical oscillator in the presence of a ring in the
ground state and the first excited state, and between the
two extreme limits already discussed [30—32].

Our model rf-SQUID magnetometer therefore consists
of a macroscopic quantum object (the weak link ring} and
a linear classical oscillator (the tank circuit). The weak
link ring is characterized by three parameters: the
geometrical inductance of the ring (L, ), the capacitance
of the weak link (C, ), and the (angular) frequency for

Cooper pairs to tunnel across the weak link (v}. The
weak link is then coupled inductively to the tank circuit
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via a mutual inductance (M), where the tank circuit is
taken to consist of a capacitor (C, ), and inductor (L, ),
and a resistor (R, ) which are connected in parallel and
driven by a current source It&(t) (cf. Fig. 1).

In the absence of the ring, the behavior of the bare
classical oscillator would be entirely linear. However, in
the presence of the quantum object, a fraction of the
magnetic flux threading the oscillator will be coupled into
the ring, via M. This coupled magnetic flux will induce a
screening current in the ring, which will in turn produce
a magnetic flux which couples back to the oscillator, and
so on. This type of reactive coupling is easily dealt with
between two classical circuits [33],but here we have one
quantum system and one classical system. The main obs-
tacle to addressing this type of problem is that no gen-
erally excepted theory exists (as yet} to encompass both
classical and quantum mechanics. However, approach-
ing the problem from either side, by treating the classical
oscillator as an infinite ensemble of quantum oscillators
[34], or treating the ring as a classical circuit [2—4], it
can be shown (Refs. [28] and [32], respectively) that the
effect of this coupling is to renormalize the efFective in-
ductance of the ring by a factor (1—K ), where
K =M/LL.

%e can then use an analog of the Born-Oppenheimer
approximation [35] from atomic physics to effectively in-

tegrate out the quantum degree of freedom. This approx-
imation is frequently used in atomic physics to solve for
the nucleic degrees of freedom by first solving for the
electronic degrees of freedom, ignoring the dynamics of
the nuclei, and then using the electronic energy states ob-
tained to find the energy states of the nucleic motion [36].
If we assume that the fluctuations in the oscillator occur
at a very much lower frequency than any fluctuations in
the quantum object, we can solve for the quantum motion
of the ring in an energy eigenstate and at a particular
value of applied magnetic flux, and use the energy eigen-
value obtained to put back into the dynamics of the oscil-
lator. This allows the dynamics of the ring to manifest
themselves in the dynamics of the tank circuit while
remaining adiabatically in an energy eigenstate.

The equation for the oscillator is then given by
[29-32]

d4, 1 d4, 4,
R, dt L,

independent Schrodinger equation for E„(4„,) using the
Hamiltonian for the SQUID ring [12,21,25, 28 —32]:

Q,
'

+
2C, 2L,ff

—i' cos
0

(3)

where L,e=L, (1—K ) is the effective (renormalized) in-

ductance of the ring, and Q, and 4, are the electric and

magnetic flux operators which obey the commutator [16]

[Q„4,]= i—R. (4)

(a.iI,(4„,)ia) = —qvsin L„(2nP)e
0

(5)

where q=2e, P=fico+,z/4o, and L„(x)is the Laguerre
polynomial of order ~ [38].

In the other extreme limit fiv&&Aco0, the screening
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Using an appropriate representation for the Q, operator,
it is then possible to solve for the energy eigenvalue and
for the screening current response at a general value of
4f t In two extreme limits it is possible to solve the
problem analytically, but in general numerical methods
must be employed [12,37]. However, from the form of
the Hamiltonian, it is possible to show that each energy
eigenvalue E„(4„,} (and hence the screening current
response) will be periodic with period 4o [28].

In the limit where fiv((%coo [coo=(C L, )
'~ ], pertur-

bation theory may be used to solve for the energy eigen-
value, using the simple harmonic-oscillator states as an
unperturbed basis. This gives the screening current
response a sinusoidal form [28,30], where the expectation
values of the screening current are given by

aE„(e...)
(~II,(~...)l )=-

+tot
(2)

is the expectation value of the screening current in the
ath energy state, with energy eigenvalue E„(4„,), and4„,=4', +@@, is the total applied flux (external to the
ring).

To find the appropriate form for the screening current
response it is then necessary to solve the time-

=It~(t)+p(~iI, (4', +@4,)ia), (1)

where 4, is the magnetic flux threading the oscillator,
4d, is an applied static (or quasistatic) magnetic flux
(external to the coupled system), p=M/L„and
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FIG. 2. Expectation value of screening current for the
ground state and the first excited state, (L,s/4o)(O~I'(4„, ) ~0)
and (L,sl@o)(1~I'(4„,) ~ l), respectively, for %coo

0-043~ No/Leff ~ and &=0 055(4o/Leff ~.
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current response for the ground state approaches a per-
fect sawtooth, with negative linear branches [28,31,32]
corresponding to the quantized Aux states of the thick su-
perconducting ring with no weak link [1];

(O~I, (4„,) ~0) = g sin . (6)
No "

(
—1)~ 2m.4„,

Lffm ) n 40

Unfortunately, between these two limits there is no ana-
lytic solution for the ground state or any of the excited
states, and numerical methods must be used [28,37].
There numerical solutions give very distinctive features
for the ground and first excited states (cf. Fig. 2). The
ground-state screening current has the form of a clipped
sawtooth, with the amount of clipping dependent on the
relative values of coo and v, while the first excited state
has a very distinctive wiggle for almost all values of the
parameters, and all the values considered in this paper.
Of course, the fact that the screening currents shown in
Fig. 2 do not have a simple analytic expression does not
mean that we cannot solve Eq. (1). In fact, we will use
two different approximations which yield remarkably
similar solutions.

If we represent the screening current functions by

(7)

we can write (1) in terms of dimension-
less quantities, where we define P =4, /4o,
=4q, / 4o, Q =R, (C, /L )' i;„(t)=[QM(1—K )' (1
+ (22)

—1/2]I (t)/@ tr ~2Q(1 It 2)—1/2
y L /L

and 2~~=co, t, and co„is the pseudoresonant frequency
for the nonlinear oscillator for very small oscillations
about pd, =0 [25]. This pseudoresonant frequency is

found by linearizing around 1I}d,=0, and is given by

o1„=g[C,L,(l IC )]—', where

1/2
dS„(x)

dx
(8)

The dimensionless equation for the oscillator then be-

comes

g= 1 —K 1—
x=0

The system is then driven at this pseudoresonant frequen-

cy by a sinusoidal driving term, which is consistent with
experiment [25,28].

2
2 1/2

1 g2 1/2

i;„cos(2n.r+5),

where 5 is the initial phase for the driving term. This
equation can then be solved numerically for any choice of
screening current response, the five independent parame-
ters (E, y, Q, i;„,and Pd, ), and the three initial conditions
for P, d Pldr, and 5.

Although it is possible to calculate S,(x) very accu-
rately by matrix diagonalization [37], the accurate nu-

merical integration of (9) would require vast computing
resources if the function were to be calculated for each
step of the numerical solution. This is clearly impracti-
cal. We therefore resort to the use of two different ap-
proximations.

The first approximation is to generate a loop-up table
for values of S,(x) for different values of x. The periodi-

city of the screening current means that we need specify
only the value of S, for arguments between zero and one.
Points which fall between the values set in the look-up
table can then be approximated by linear interpolation.
Of course, the more points which are used to create this
table, the more accurate the solution will be. In practice,
very good results can be obtained by using several
thousand points.

This method clearly introduces errors due to the inter-
polation, in addition to the ones inherent in the numeri-

A

So(x)= —so2x + g [ tanh[so, (n + —,
' +x ) ]

2 0

+ tanh[so1(n —
—,
' —x ) ] )

—so, sin(2@x ) (10)

and the first excited state screening current by

(9)

I

cal solution. Periodic solutions tend to be less sensitive to
such errors than are any chaotic solutions. The fractal
nature of the basin of attraction of a chaotic solution
means that such errors are often large enough to allow

the system to escape the basin. Nevertheless, it is possi-
ble to follow chaotic trajectories for sufficiently long

periods to estimate the Liapunov exponents, calculate the

power spectra, and record their Poincare sections.
The other approach used is to approximate the func-

tion S„(x)by an analytic function which is constructed
from a finite series of hyberbolic functions. The states of
greatest interest are the ground and first excited states,
which both have characteristic features for large ranges
of parameters. Using this alternative approximation, the
ground-state screening current So is given by

2V

S,(x)= —s,2x+ g [tanh[s»(n+ —,'+x )]+tanh[s»(n —
—,
' —x )]]

2 0
N

+s,3 g [tanh[s, 4(n+ —,'+x )]—tanh[s, s(n+ —,'+x )]

+tanh[s, 4(n —
—,
' —x )]—t nah[ »s(

—n —,
' —x )]]—s,6 sin(21' ),
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V;„= d7. Cos(277%+ 5) .p 1/2

n(1+a2)'" (12)

Figure 3 shows examples of these voltage characteristics
for the ground and Srst excited states for two different
values of the external dc magnetic fiux Pd, =0 and —,', cor-
responding to the two extremes of the periodic response.
The general features of these voltage characteristics are
very similar for a wide range of v and cop, including those
which are appropriate for the physical systems. We con-
sider typical experimental weak link niobium rings with
capacitances and inductances of the order of 1X10 ' F
and 0.3 nH, respectively, and tunnel currents of the order
of 2ev=2)uA [25]; giving happ-h v=0.05(@p/L, s). We
will also set Q =50 and y =400 for simplicity, and to be
in line with approximate experimental values [25].

1.2

1
dC

1.0

0.8

"in
0.6

dc=o

0.4

0.2

0.0

l
C

0.0

0.4

C=O

0.2

0.0

0.2

0.0
0.0 0.4 0.8 2.0

2in

FIG 3. The in-phase voltage characteristics for the ground
(a=O) and first excited (~=1) states for pd, =0 and Pd, = 2,
with K =0.03 and the screening current responses shown in
Fig. 2.

where the s Parameters (sp„sp2 sp3 $», etc.) can be least
squares fitted to a corresponding screening current
response which is calculated by matrix diagonalization,
and N is a large integer (in practice, Xneed only be of the
order of 10, provided the excursions in x are sufficiently
small).

The usual way in which to represent the dynamics of
this system is to plot the voltage response of the tank cir-
cuit against the amplitude of the forcing current, Il&
[1,28]. Here we give the component of the (dimension-
less) voltage v;„which is in phase with the forcing current
versus the dimensionless current amplitude i;„,where,

As the coupling between the two systems is increased,
the effect of the nonlinearity becomes more pronounced.
Chaotic and multiperiodic solutions have been found for
the ground-state screening current response with a
discontinuous sawtooth [31,32] for couplings K &0.2.
Obviously, we would expect similar solutions to be
present where the ground-state response was a very sharp
continuous sawtooth; but where the sawtooth is some-
what rounded, as in Fig. 2, there need not be any chaotic
or multiperiodic behavior for moderate values of the cou-
pling, E =0.2-0.3. Indeed, for the screening current
responses shown in Fig. 2 there are no chaotic solutions
for K (0.3 and Pd, =0 for either the ground or first ex-

cited states. However, by changing the value of the
external dc magnetic Aux, it is possible to 6nd chaotic
solutions for couplings as low as E =0 04 wi. th Pd, =—,',
which is well within the range of values accessible in ex-
periments [25]. Figures 4(a) and 4(b) show Poincare sec-
tions through two of these chaotic solutions for different
values of the forcing current. We have chosen a coupling
of K =0.15 where there is no competition from other at-
tractors allowing an accurate determination of the
Liapunov exponents k=(+,0, —) [also shown in Figs.
4(a) and 4(b)] and their power spectra [shown in Figs. 4(c)
and 4(d)]. It is worth noting that while the solutions
shown in Fig. 4 were generated using the hyperbolic ap-
proximation (9), a look-up table with 1000 points will

give results which are indistinguishable to the naked eye.
These chaotic solutions appear for a wide range of cou-
plings E &0.04 and are not too sensitive to the precise
value of the dc Aux, they appear stable for
0.41 & tt)d, &0.59. The two power spectra, shown in Figs.
4(c) and 4(d), give. the dimensionless quantities ln[u (o))]
versus 9 and are related to the actual mean-squared volt-
age V (ro) (in real voltage units) and angular frequency cp

by

r0=2n+1 —K (ro/cpR ),

U (Q)=4m (1—E )[V (co)/4()a)R],

where roR =QC, L, is the resonant frequency of the bare
tank circuit. These spectra have two main features.
Each spectrum has a single-frequency component corre-
sponding to the frequency of the forcing term (along with
some minor contribution from higher harmonics) and a
continuous background spectrum which is associated
with chaotic behavior. The continuous background spec-
trum has a rough peak to the low-frequency side of the
main resonance. This peak is characteristic of all the
chaotic solutions found for the ground state, and is very
much broader than the width of the resonant peak, which
is given by the Q value for linear oscillators. These spec-
tra are shown since they are possible candidates for ex-
perirnental investigation [39].

Figure 5 shows the Poincare section of another chaotic
attractor, this time for a slightly sharper sawtooth
response with %v=0.075(@p/L, fr) and %cop

=0.043(@p/L,s ). By blowing up a small window (shown
in the inset), we can see some of its fractal structure, and
this fine detail also allows the calculation of the fractal,
information, and correlation dimensions of the attractor.
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FIG. 4. Poincare sections and

frequency spectra of chaotic
solutions found for the ground-

state screening current response
shown in Fig. 2, K'=0. 15,

pd, =0.5, and for i;„=01[F. igs.
4(a) and 4(c)] or i;„=0.15 [Figs.
4(b) and 4(d)].
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For the solution shown in Fig. 5 these are

Df =0.180+0.01, D; =0.182+0.01, and D, =0.181
+0.01, respectively.

In the first excited state chaotic and multiperiodic solu-
tions still occur, but they are not as common at low cou-
plings as those found for the ground state. Such solutions
also require a screening current response which is much
sharper than that shown in Fig. 2. An example of one of
these chaotic solutions (or at least its Poincare section) is
shown in Fig. 6. This particular solution was generated
using a screening current corresponding to
Iiv=0. 085(@o/L,tr). This is higher than that used to
generate the chaotic solutions found for the ground state,

but it is still comparable with the typical experimental
value which we quoted above [25]. Whereas the chaotic
solutions for the ground state response are found when
the dc fiux is biased at around Pd, =0.5, the first excited
state tends to give chaotic solutions when Pd, -—0.4 corre-
sponding to oscillations around the wiggle in the screen-
ing current response (cf. Fig. 2).

In this paper, we have shown that it is possible to
obtain chaotic behavior in our model rf-SQUID magnet-
ometer, consisting of a linear classical oscillator coupled
to a macrosopic quantum object. Chaotic solutions have
been shown to exist for both the ground and first excited
states and for a wide range of parameter values.

90 Q~aA". .= ~~&~
70

dP
= O'I

Pd

—40
—16

0, —().7())

10
—60

—20

{+0.4, 0.0, —().g)

FICJ. 5. Poincare section of a chaotic solution found for the
ground state with A'v=0. 075(+o/Leff )~ %coo 0 043(40/Leff),
pd, =0.5, IC =0.15, and i;„=0.2 T5he inset shows some of the
fractal structure of the Poincare section in more detail.

FIG. 6. Poincare section of a chaotic solution found for
the first excited state with fiv =0.085(@o/L,ff ), Acoo

=0.043(NO/I. ,s. ), pd, =0.4, IC =0 3, andi;„= 10. 8.
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Of course, it is not entirely surprising that a nonlinear
oscillator equation such as (9) will give rise to chaotic
solutions for some range of parameter values. What is
important is that the range of parameters for which such
solutions exist is in a physically accessible region of the
whole parameter space. Indeed, we have found that there
are many chaotic solutions within the range of typical ex-
perimental systems.

Also, the nature of the nonlinearity in this case is quite
unique. Our system is part classical and part quantum
mechanical, and it is the effect of the macroscopic quan-
tum object on the classical oscillator which leads to the
appearance of nonlinear behavior in the otherwise linear
oscillator. The quantum-mechanical origin of the non-
linearity can then lead to other interesting possibilities.
It has been suggested that the dependence of the non-
linearity, and hence the nonlinear dynamics of the oscilla-

tor, on the energy state of the quantum object could be
used to identify transitions between otherwise indistin-
guishable energy states by varying one of the control pa-
rameters quasistatically and looking at the change in the
dynamical response [30]. Here, where the voltage
characteristics of the ground and first excited states are
distinguishable (cf. Fig. 3), it might be possible to identify
transitions between states without the need to generate
the entire voltage characteristic, possibly by looking at
changes in the power spectrum.
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