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Predicting physical variables in time-delay embedding
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In time-delay reconstruction of chaotic attractors we can accurately predict the short-term future
behavior of the observed variable x (t)=x (n) =x (to+7.,n) without prior knowledge of the equations of
motion by building local or global models in the state space. In many cases we also want to predict vari-
ables other than the one which is observed and require methods for determining models to predict these
variables in the same space. We present a method which takes measurements of two variables x (n } and
z(n) and builds models for the determination of z(n) in the phase-space made out of the x(n) and its
time lags. Similarly we show that one may produce models for x (n) in the z(n) space, except where spe-
cial symmetries prevent this, such as in the familiar Lorenz model. Our algorithm involves building lo-
cal polynomial models in the reconstructed phase space of the observed variable of low order (linear or
quadratic) which approximate the function z(n) =E(x(n)) where x(n) is a vector constructed from a se-
quence of values of observed variables in a time delay fashion. We train the models on a partial data set
of measured values of both x (n) and z(n) and then predict the z(n) in a recovery set of observations of
x (n) alone. In a11 of our analyses we assume that the observed data alone are available to us and that we
possess no knowledge of the dynamical equations. We test this method on the numerically generated
data set from the Lorenz model and also on a number of experimental data sets from electronic circuits.

PACS number(s): 05.45.+b, 84.40.—x

I. INTRODUCTION

The analysis of data from chaotic systems rests on the
use of the embedding theorem which allows the recon-
struction of the system phase space (or state space) from
scalar observations. In this method [1—5] a scalar mea-
surement x(n)=x(to+nr, ) and its time delays
x(n +kT); k =1,2, . . . , d —1 are used to make d
dimensional vectors

y(n)= x(n), x(n+T), . . . , x(n+(d —1)T)

whose components provide a coordinate system in which
one can identify the attractor structure associated with
the observations. The delay Tv, is an integer multiple of
the sampling time ~, . We choose the integer T by con-
siderations of average mutual information [6].

It is now quite a routine effort to make models of the
future behavior of the variable x(n) by working within
the d-dimensional embedding space of the vectors y(n)
These models are either global in phase space or consist
of local neighborhood-to-neighborhood maps in the space
R". If one knows that the global space is larger than the
dynamical space of the local dynamics dL, then the maps

'Also at Institute for Nonlinear Science, University of Califor-
nia, San Diego, La Jolla, CA 92093-0402.

are locally dL dimensional [7]. The reason for tnaking
models with di degrees of freedom, but in a dE~dL-
dimensional space, is so that the trajectory is unfolded
from its projection on the observation axis x (n }, and we

can unambiguously identify points on the orbit which are
dynamical neighbors. These models are of the form

y(n +1)=F(y(n) }with F( ) a map from R to itself.
In physical settings one is almost always interested in

additional information beyond the measured variable
x (n), though the ability to measure other variables along
with the measurements of x(n) may often be quite cir-
cumscribed. An example which comes readily to mind is
the measurement of the atmospheric pressure at some lo-
cation from which one would like to be able to infer the
horizontal wind velocity at that location or perhaps at
another location. Other examples are easy to construct.

If one has measured only the x (n), then absent any
knowledge of the connection between this variable and
the others there seems no clear way to estimate the
behavior of another dynamical variable, call it z(n), of
the system. In typical experimental situations the equa-
tions of motion are either not available or not reliable.
Even if given, they usually have a form of some set of
differential equations, ordinary or partial, which de-
scribes the evolution in a space which is often much
larger than that required to embed the observed data, and
therefore is difficult to deal with.

In this paper we explore the idea that if one were to
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measure another dynamical variable or dynamical vari-

ables, call them z(n), in addition to the single scalar
x (n), then one could make a model of the connection be-

tween z(n) and the time-lagged vector y(n), which are
the data as seen in the global reconstructed embedding

space. This possibility follows from the natural connec-
tion among all the variables in a nonlinear system, and
the embedding theorem [2—4] then suggests that if we

have used the proper number of time delays to establish
coordinates for the attractor, then other variables should
be dependent on the y(n) in that coordinate system. Thus
we are led to consider a connection

z(n)=g(y(n)), (2)

which we can deduce from the data by working in the d-
dimensional space of the y(n). Since we typically do not
have the differential equations of the system or, more to
the point, we may be trying to learn de'erential equations
from the data, we have no other path to the connection
between one physical variable, the z(n), and measure-
ments of the y(n).

To establish the connection z(n)=g(y(n)) we must
have some measurements of z(n) along with x(n). So
our scheme will be based on the scenario where we initial-
ly have some measurements of both x (n) and z(n) From.
these measurements we establish the phase space using
the x (n), and in that space we determine the function
g(y(n)) which gives z(n). With this construction we may
predict from future measurements of the x(n) alone the

I

evolution of z(n } .This is just it would be if we knew the
underlying difFerential equations or map.

The nonlinear functional reconstruction techniques
which can be used for this purpose are essentially the
same as those employed for conventional nonlinear model
building [5,8]. They are roughly divided into local and
global techniques. Local methods represent a nonlinear
function g(y(n)) as a collection of local polynomial (or
other) maps, different for difFerent neighborhoods in the
phase space [9]. The parameters of the individual local
maps are determined by locally fitting the points in a data
set contained within a small region in the phase space.
More precisely, we use the phase-space neighbors of the
orbit points y(n) and make maps from the neighborhood
of y(n) to the neighborhoods of y(n +1).The parameters
in the local map are determined by a least-squares fit to
the evolution of whole neighborhoods of points. There
are now well-developed methods for finding neighbors in
multidimensional phase space [5,10]. In contrast with
these local neighborhood-to-neighborhood maps, global
methods provide a single nonlinear function for the entire
data set [11,12]. Global models are smaller and thus
more convenient to deal with; however, local models are
usually more accurate.

In this paper we use a local polynomial representation
of the function z(n)=g(y(n)). Further, instead of vec-
tors built on time delays solely from the future or the
past, we take advantage of the knowledge we have of
both past and future. For d even, d =2D, we use vectors

y(n) =(x (n DT),x(n —(D —1)T)—, . . . , x (n), . . . , x(N +(D —1)T}},

while for d odd, d =2D + 1, we use

y(n)=(x(n DT),x(n —(D —1)T),—. . . , x (n), . . . , x (n+DT)) . (4)

Although the reconstruction theorem is insensitive to this
choice, in practice time-symmetric einbedding gives more
accurate results as compared to a standard backward
time delay embedding in forecasting models. The reason
for this is that in the time-symmetric embedding, the loss
of correlation between z(n) and the last components of
the vector y(n } is reduced.

Denoting each of these vectors as
y(n)=(yi(n), y2(n), . . . ,yz(n) }, we write the local poly-

nomial relationship as

z(n)= g a;,. yi'(n). . . yz (n), (5)

where g~ ii ~M, and M is the maximum order of the

polynomial. The number of parameters to be found from

the data is -d . There is always a

trade-off

betwee the
order of the polynomials and the state space locality for
the maps. Indeed, the larger is M, the more parameters
must be determined by the local fit; hence with a fixed

number of data points in the training set the larger the
neighborhoods around the orbit points y(n} must be to
accurately establish the coefBcients a;

In fact, for loca/ reconstruction there is no need for
very high-order polynomials, and we will use only linear

or quadratic maps. For a linear map we write the rela-
tion z (n) =g(y(n })in the form

z(n)=ao(n)+a(n) y(n),

emphasizing that the local constants depend on the
phase-space location. For this local linear model we have
d+1 parameters at each local neighborhood in phase
space. We typically would use Ns =2(d + 1) total neigh-

bors to make the determination of the constants ao and a.
Our algorithm works as follows. We present the pro-

gram with two parallel streams of scalar measurements
x(n) and z(n). N pairs of d-dimensional vectors y(n) and
corresponding z(n) are made from the x (n) as just de-
scribed. First Nr of the total pairs [y(n), z(n) j are used

for "training" the local models as we describe in a mo-
ment. A kd tree [10] for these Nz is now made so the
search for nearest neighbors can be done quickly. On the
remaining Nz =N —Nz pairs we wish to check recovery
of the value of the z(j );j =NT+1, NT+2, . . . , N from
the data stream of x(j );j =NT+1,NT+2, . . . , N alone.
To start this recovery for point z(j), we search our kd
tree to find the Nz nearest neighbors
y'"'(j);k =1,2, . . . , N~ of y(j) which come froin the first

WT data. Using these neighbors, a local linear or quadra-
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tic map is constructed by a least-squares fit employing all
N~ required neighbors to find a map of the form
z (- ) =g(y(. ) ) which minimizes residuals over all N~
neighbors from the training data. This means minimize

at each "time" j. Nz is taken to be twice the number of
parameters, so Nz =2(d + 1) for a linear fit, and
Ns=(i+1)(d+2) for a quadratic fit. From this local
map we determine the recovered z„(j) by

Since we also have recorded the true value of z( j) for
each of the Nz values of j, direct comparison of our accu-
racy in recovery is possible. Let us emphasize again that
the coefficients a0 and a constituting the model g are
different for different data vectors y( j).

If we can measure both variables all the time, then it is
sometimes more useful to use time delays of both vari-
ables for the coordinates of the state space [1]. This ap-
proach was tested by Casdagli and Weigend [13], who
used previous values of chest volume and heartbeat rate
to forecast future values of the heart rate. The main
difference in our algorithm is that at the stage of forecast-
ing no use is made of information about the previous dy-
namics of the variable to be predicted. We envision situa-
tions where in a laboratory or other controlled setting
one can measure both x (n) and z(n). However, in some
application in the field or other environment, only one
variable can accurately or efficiently or reliably be mea-
sured. The connection between the variables determined
in the controlled setting then allows us to determine the
other dynamical quantity from the first one in other situ-
ations where we may not be able to observe both quanti-
ties.

For example, we can suggest a setting where in a labo-
ratory we are able to measure the pressure at the wall of a
turbulent boundary layer How and the horizontal velocity
magnitude at some interesting point just above the wall.
If we measure both and establish the dynamical connec-
tion between them on the attractor, then in future obser-
vations where only the wall pressure may be available, we
can deduce the How velocity without further measure-
ment and with some confidence [14].

This paper deals with the implementation of these
ideas on the Lorenz attractor taken as a standard model
of low-dimensional dynamics, and on data from several
nonlinear circuits built and run in our laboratories.
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will show how one can recover the behavior of the vari-
able z(t) from a model constructed in a state space
spanned by vectors with components made from values of
x (t).

We proceed by taking measured values of both x (n)
and z(n), with the sampling time being the time step in-

troduced in the integration of the Lorenz system of mag-
nitude r, =0.02 (see Fig. 1). Using average mutual infor-
mation we easily establish that T=5 is appropriate.
With this value of the time lag, we learn from a global
false nearest-neighbor calculation that a global embed-
ding dimension of dE=3 will unfold the attractor with
time-lagged values of x (n ) as coordinates in the space.

Now taking simultaneous data from x (n) and z (n), we
make a quadratic local neighborhood to neighborhood
map in dE=5. Of course, dE=3 would do, but it is
known that taking an embedding dimension larger than
the minimum suggested by false nearest neighbors can
often improve the prediction, especially if noise is present
[16]. This is also true in our case of predicting one physi-
cal variable from another (see text below and Fig. 3). So
the map z(n) =g {y(n) } has five-dimensional vectors
y(n) ={x(n 2T),x (n——T),x (n), x (n + T),x (n +2T) }
as its argument. For test purposes we split our data set of
N =10000 (x,z) pairs into a training set of NT=9000
and a recovery set of Nz =1000 pairs. First we build a
kd tree in the five-dimensional space. For each x (j) from
the recovery set we construct a vector y(j) and find the

N~ nearest neighbors [y'"'(j),k = 1, . . . , Ns I among the
training set. Using the yI"'(j) and their images z'"'(n),
we fit the coefficients of the local map (5). Finally we sub-

stitute our test vector y(n) into (5) and obtain the
recovered value z„(j) of the variable z (j).

We varied the time delay T, always keeping dE =5, and

determined how well our reconstructed values z„(j)
match the known values of z (j). T = 1 is used in Fig. 2(a),
where we have the values of the direct error z(n) —z„(n)
over the recovery set of 1000 points. Note the change in

scale as compared to Fig. 1. Figure 2(b) shows the
recovery error for T=2; note the substantial improve-

II. LORENZ MODEL

The Lorenz model [15]

x =o (y —x),
y = —xz+rx —y,
z =xy —bz,

50.0 (-
b
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with parameter values o.=16, b =4, and r =45.92 serves
as a paradigm for low-dimensional chaotic systems. We

FIG. 1. Time series for two variables from the Lorenz system
(9); ~, =0.02 s: (a) x(t), and (b) z(t).
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ment in recovery with a larger T. Big glitches in the pre-
diction error of Fig. 2(a) are clearly correlated with the
points where the local derivative Bz/Bx becomes large.
This effect is especially significant near x =0. In these
points small variations of x are accompanied by large
variations of z, which is known to cause a noise
amplification phenomenon [16]. As one can see from Fig.
2, the best way to diminish this efFect is to choose the op-
timal (nonsmall) value of tiine delay. At T =5, as shown
in Fig. 2(c), we have still better predictability —note the
change in scale. In Figs. 2(d) and 2(e), the values of T are
T=7 and 12, respectively, and we see the quality of the
local map predicting z (n) degrade slowly. In a sense this
is another method for determining a time delay for the
reconstructions of the state space. It rests on a quite
different aspect of the data from mutual information, and
while good predictability sounds attractive, it seems to us
to have little fundamental meaning in terms of the prop-
erties of dynamical systems.

In Fig. 3 the root-mean-squared error cr averaged over
all data points

((z —z„) ) —((z —„))
0 2

(z') —(z)'
is shown for a fixed time delay, T=5—the one which
worked best —as a function of the embedding dimension.
We show this result both for the local quadratic map just
discussed and for a local linear map. For each there is a

010 ))
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+
+ local linear fit

i local quadratic fit

10

10

10

sharp decrease in 0 as we pass through dE =3, as is con-
sistent with the false nearest-neighbor determination of
dE. For the local quadratic map the error continues to
decrease with dE, until we run out of data points in
higher dimensions with which to determine a good map
y(n) ~z (n). Figure 4 looks at the method from the point
of view of variation in time delay for fixed dz. A
minimum in 0 is seen with both linear and quadratic lo-
cal models. The rms error in each is quite small, and the
message is that while quadratic models provide a substan-
tial improvement in predictability, for many purposes
they may not be required if prediction at the 1% level is
sufBcient.

It is noteworthy that the inverse problem, namely
reconstructions of z(n) from x(n), is impossible for
Lorenz system because of its symmetry x ~—x,

10

E

FIG. 3. Root-mean-square (rms) error from modeling z(n)
on x (n) using data from the Lorenz system as a function of the
embedding dimension dE=5. In each analysis T =5. Results
are shown for both local linear and local quadratic maps.
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FIG. 2. Recovery error for modeling the z variable of the
Lorenz system in a phase space composed of vectors built from
time delays of the x variable. Each analysis used dE =5 and a lo-
cal quadratic fit. The time delay used in the phase-space vectors
was varied in these calculations: (a) T=1; (b) T =2; (c) T=5;
(d) T=7; and (e) T = 12.
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FIG. 4. rms error from modeling z(n) on x(n) using data
from the Lorenz system as a function of the time delay T. In
each analysis dE =5. Results are shown for both local linear and
local quadratic maps.
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y ~—v, z~z. In~endeed, each z can correspond to two
different values x and —x so th, so ere is no way to deter-
mine the sign of x from the knowledge of z. However, we

believe that this sort of s mm
d' symmetry is rather exceptional

an in most cases th
' '

i e ins the reconstruction is possible in b h
directions.

i e in ot

4000.0 I I

3000.0

) 2000.0

0.0
0

I

200 400
I

600
I

800 1000
III. HYSTERETIC CIRCUIT

A. Description of the circuit

The hysteretic circuit used for our first t f
mental d

rs set o experi-
data has been described earlier [17] and

in essence of an un

'er ~ an consists
an unstable second degree oscillator which

operates in the range of several h d d H
a h

a un re z connected to
a ysteretic element. Diagrams f thor e circuit can be
found in the earlier a er.p p . The circuit is similar to some

~ ~ ~ ~ ~

described by Newcomb and co-workers [18].
The hysteretic circuit can be modeled b th

nary difFerential equations:
y ree ordi-

dx, (t)
=x2(t)+yxi(t)+cx&(t),

dx2(t)
=tox, (t)—5~x~(t),

dxi(t)
e „[1—x, (t)' ][Sx, (t)—D+x, (t)] 5,x,—(t),

(10)

with y=0. 2, c =2.2, 52=0.001, 5 =0.
co= . , =1667.0, and D =0.0. The constants in
equation for x &t',

e constants in the
or x3&t', are set to give a square hysteretic loo .

We present these equations for illustration purposes l
~ ~

e ic oop.

the data we will
esony;

will be using was not generated from the

cuit. Two volta es
equations, but taken directly from them e experimental cir-
cui. wo voltages were observed in the experiment

The voltage V„(t) corresponds to the
7

variable x ~t& abo,(!above, and V~(t) is described by x2(t).
Both voltages are in the order of 0—10 V
tized at ~ =0. 1 ms.

, and were digi-
a ~, = . ms. Samples of digitized and rescaled

an . s always involtages are shown in Figs. 5(a) and 5(b). A
an experiment, there is some noise present in the data. n

order of a few mV; that is, about 0.1% noise.
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FI g & and Vz taken at the same time. S. Two volta es V an
rom the hysteretic circuit described in the text. H

oth d t t bo th
tain a better re

e s ot voltages were offset and normal' d b-ize to o-
resolution upon digitizing with a 12-bit ana

(for our redi
, so the relative scales are not preserved

or our predicting algorithm is does not matter). The sma er. e sampling

8.0

data set. The VVs(n) data are certainly embeddable in

dz =3, while V„(n) data appear to require dE =5.
This result in itself is quite illuminating. We h

usin

differ

e
eseet at

g
'

ent coordinates can result in rather d'ff
choices for global embedding dimension. Th'

ra er i erent

sistent
is is coIl-

rn, w ic gives only awith the embedding theorem h' h
sufficient condition for the glob l b dd'a em e ing dimension

E in terms of the fractal (box counting) dimension d„;
namely the integer dz must be d )2d . In

we wi argue below that the fractal dimension (to b
precise the L ay punov dimension) of this system is about
2.4, so an inte er
twice this, namely dE =5, is sufficient. The false nearest-

B. Analysis of the data:
two observed scalars

6.0—
0 Voltage A
~ Voltage B

the voltages from the hysteretic circuit [5], and repeat
part of that for completeness. Th F
for thor these data are not displayed here both because they
appear elsewhere and little is learned from them exce t

een ca e V„(n) and Vs(n); each was 64000
points in len th. In Fi
in th

g . g. 6 we show the results of corn t-

g e average mutual information in each d
mpu-

ime ag; the physical units of the sarnplin
time are ~ =0. 1 mss. We see that each data set has its

p ing

first minimum at T =6, and we use that value throughout
our anal sis of thes
of the lo a

y
'

ese data. In Fig. 7 we present th le resu t
g obal false nearest-neighbor computation for each

40
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FIG. 6. Avera ge mutual information as a function of time de-

lay for si nals V anigna s „and V& from the hysteretic circuit. 64000
data points were used. The units of the time lags are 0.1 ms.
Each signal has its 6rst minimum at T =6.
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FIG. 7. Percentage of global false nearest neighbors as a
function of the embedding dimension for the signals V& and V&

from the hysteretic circuit, T =6, 47000 points. V& requires di-
mension dE=5 to unfold the attractor, while V& only requires
dE =3.

FIG. 9. Local false nearest-neighbor test for Vz from the
hysteretic circuit, the same parameter values as in Fig. 8. dL =3
is identified here as in Fig. 8.

neighbor method determines for a given data set what the
necessary embedding dimension must be for time-delay
reconstruction of the attractor using a given set of time-
delayed measurements. It need not be the same necessary
embedding dimension for all choices of reconstruction
coordinates, since one set is some unknown nonlinear
transformation from another, and this can twist the at-
tractor in such a fashion as to require a higher dimension
to unfold it via time-delay coordinates. The embedding
theorem tells us with certainty when we can stop unfold-
ing, as additional dimensions could not possibly achieve
any further unfolding of the attractor.

In Figs. 8 and 9 we show the result of evaluating local

o.44o»

O.42O'

0.400

0.380

0.360

0.340
L

0.320

0.300

0.280
(

0.260

0.240

0.220

4 5
Local Dimension; d,

Ne=10
ON8=25
QN =50

Ne=75

I I

7

FIG. 8. Local false nearest-neighbor test for V& from the
hysteretic circuit. Here I'~ is the percentage of bad predictions,
and N& is the number of neighbors used for local predictions.
We used 60000 data points, time delay T=6 and P=0.3, where
P is the fraction of the attractor size two neighboring points
must separate in defining a bad prediction (Ref. [7]}. It is im-
portant that dL =3 is identified here as in Fig. 9.

false nearest neighbors [7] for these two data sets. The lo-
cal dimension must be the same for each data set regard-
less of which global embedding dimension is chosen.
This local dimension is the (integer) number of degrees of
freedom active in the orbits making up the attractor.
Whatever the global twisting of the attractor in one coor-
dinate system or another, we must have the same local
dynamical dimension. This number also determines what
dimension model will be required locally as well as the
number of Lyapunov exponents are to be considered true
and not artifacts of the choice of global embedding. We
see in these two figures that both V„(n) and V~(n} indi-
cate that dL =3 for this system. Using data from the
V~(n) data set, we have evaluated the average local
Lyapunov exponents [19,20] in global dimensions dE =4,
5, and 6, with dr =3 in each case. The analyses are con-
sistent regardless of dz. It is from this that we are able to
deduce that the Lyapunov dimension is DL =2.4. One of
the local exponents goes rapidly to zero, with the number
of time steps along the attractor indicating that ordinary
differential equations are the appropriate model for the
dynamics producing these observations. This, of course,
is totally in accord with earlier studies of the hysteretic
circuit.

C. Modeling A on Band Bon A

Now we turn to the discussion of how we11 we can pre-
dict the evolution of one of the data sets from making lo-
cal polynomial models for the variable we wish to predict
based on a phase space reconstructed using the other
variable. First let us see how well we can do using Vz(n)
to create the state space. We reconstructed the phase
space with time lags of V„(n}and then made local linear
models of Vz ( n }=g (y z ( n ) ) using various values of the
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FIG. 12. Average mutual information as a function of time

delay for signals V& and V& from circuit 1. 64000 data points
were used. The units of the time lags are 50 LMs. V& has its first

minimum of I(1) at T=8, while V& has its first minimum at
T=7.

FIG. 14. Local false nearest neighbors for V„ from circuit 1,
T =8, P=0.4, and N =60000. It is important that dL =4 is
identified here as for Vz.

uated the global false nearest-neighbor percentage as a
function of embedding dimension, and found in Fig. 13
that dE=4 is clearly suggested for V„(t), and possibly
for Vz(t) as well, although in the latter case dz =3 may
do. To further examine this we look at the local false
nearest neighbors which are displayed for V„(t) in Fig.
14 for the data read forward in time, and in Fig. 15 for
the data read backward in time. Each clearly distin-
guishes dL =4, consistent with the known circuit equa-
tions.

For the data from V~(t), looking at the local false
neighbors results in Figs. 16 and 17, where dL =4 is
selected, in accord with the analysis of the voltage V„(t)
just given.

Now working in dE =5 and using T =8 for the
time delay, we first constructed a phase space based on
voltage V„(t) and then created a local linear map
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FIG. 16. Local false nearest neighbors for V& from circuit 1,
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Vs(n) =g( V„(n —2T), V„(n —T), V„(n), V„(n+ T),
V„(n+2T}) which allows us to predict the values of
voltage B when we observe only voltage A. Similarly we
then used voltage B to create a phase space of dimension
dz =5, and made a local predictor for voltage A in that
space. In Fig. 18 we see the results of making these pred-
ictors a local linear map. In Tables I and II we present a
summary of all our studies of circuit 1 associated with
recovery of voltage 3 from voltage B and B from A with
different time delays and embedding dimensions. The last
column of both tables shows the rms error of recovery
calculated by (9).

B. Single wellduiBngcircuit: Circuit4

A single well Duffing equation circuit was used to gen-
erate the data for voltages V„(t) and V~(t) in this exam-

FIG. 18. Data from circuit 1. Recovery errors for modeling
V& using V„(a), and V& using Va (b). We used 50000 points in
the training set and employed local linear fits. In each case
dE=5, T =8.

'" =100000 ( )
dt

dy (t) 3

dt
=100000[8cos(cot) 0 25—6y (.t) x(t) ], —

(12)

where the driving frequency f (co=2rrf) was 769 Hz, and
the driving amplitude was B =6.0 V. Part of the dynam-
ics in this circuit comes from the fact that the cubic func-
tion, which is executed by analog multiplier chips, satu-

pie. This Duffing circuit used analog multiplier chips for
the cubic part of the Duffing equations. The output sig-
nals for x and y are contained in files Vz(t} and Vtt(t),
each digitized at r, =20 p, s (see Fig. 19). The equations
describing this circuit are

TABLE I. A summary of the various local models made to recover V& from V& using data from cir-
cuit 1. It is clear that the method is rather robust under changes of the embedding dimension dE and
time delay T, in the vicinity of the values selected by global false nearest neighbors and average mutual
information, respectively.

Time delay

1

3
5

7
9

11
13
9
9
9
9
9

rms errors
Circuit 1

Recovering voltage B from voltage A

Embedding Order of local
dimension maps

Linear
Linear
Linear
Linear
Linear
Linear
Linear
Linear
Linear
Linear
Linear
Quadratic

rms error
B„-B

0.504
0.105
0.0528
0.0545
0.0477
0.0830
0.111
1.11
0.163
0.0324
0.0294
0.0499
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TABLE II. A summary of the various local models made to recover V„ from V& using data from

circuit 1. It is clear that the method is rather robust under changes of the embedding dimension dE and

time delay T, in the vicinity of the values selected by global false nearest neighbors and average mutual

information, respectively.

Time delay

rms errors
Circuit 1

Recovering voltage A from voltage B
Embedding Order of local
dimension maps

rms error
A, -A

1

3
5
7
9

11
13
9
9
9
9
9

5

5

5

5

5

5

5

1

3
7

11
5

Linear
Linear
Linear
Linear
Linear
Linear
Linear
Linear
Linear
Linear
Linear
Quadratic

0.0515
0.0498
0.0527
0.0533
0.0544
0.0477
0.0566
1.114
0.0643
0.0473
0.0456
0.0526

when the fractal dimension of the attractor is close to an
integer, and was seen in the original analysis of the
Lorenz model [7]. The reason is clearly numerical, as an
attractor with fractal dimension close to an integer may
appear to have that integer as its local dimension when
real, and thus inaccurate or noisy data, are used to estab-
lish dL.

Turning to the main subject of this paper, we now ex-
amine how well we can do using local linear maps to
determine one measured voltage in terms of the other.
First we question our ability to model the behavior of
voltage Vtt(n) in a state space constructed from time lags
of voltage A. Using a six-dimensional embedding space,
we constructed a function

rates at the power supply voltage of 15 V, producing a
clipping effect.

The first step is to establish the properties of each data
set, and in Fig. 20 we present the average mutual infor-
mation for voltages V„(t) and V~(t) for circuit 4. Each
has its first minimum at T =5 or 100ps. Figure 21 shows
that each data set can be embedded in dE =4, while the
local false nearest-neighbor plot in Fig. 22 clearly estab-
lishes that the local dimension of the dynamics is dL =3,
totally consistent with the circuit equations suggested for
the data. Data from Vtt read forward and backward in
time are consistent with this. It is important to examine
the data both forward and backward in time to confirm
the value for dL. This seems to be a general property

I

V (n) g(y(n}}y(n)=( V (n —3T) V&(n —2T), Vz(n —T), V„(n), V„(n + T), V„(n +2T}}
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FIG. 19. Two voltages V„and V& taken at the same time
from circuit 4 as described in the text. They were digitized with
12-bit resolution. v; =20 p,s.

FIG. 20. Average mutual information as a function of time
delay for signals V& and V& from circuit 4. 64000 data points
were used. The units of the time lags are 20 ps. Each signal has
its first minimum at T=5.
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FIG. 21. Percentage of global false nearest neighbors as a
function of embedding dimension for the signals V& and V&

from circuit 4, T=5. Both require dimension dE=5 to unfold
the attractor.

with T =5. Using 50000 of the total of 64000 measured
data points as the training set, we predicted the values of
Vtt(n } for 1000 points in the recovery set. In Fig. 23(a} we
show the result of this operation, using a local linear fit
for the local maps. Errors in the recovery of the voltage
Vtl(n) of order 0.5%%uo are seen. Turning the problem
around —to recover V„(n) from measurements of
Vil(n) —in Fig. 23(b) we see a similar substantial success
of the local mapping method. The errors rise to about
0.7% in this case but are still quite acceptable. Note that
the noise level in the recovered series is a few times
greater than in the measured signal (0.1%), which can
easily be understood. Indeed, we use time-delayed values
of one signal to recover another, and since the noise is
amplified due to the largest positive and negative
Lyapunov exponents, small errors in the last components
V„(t+dsT/2)) of the embedded vector produce an
amplified effect on the predicted value V~(t), and vice
versa.

0.360

FIG. 23. Data from circuit 4. Recovery errors for modeling
V& using V& (a), and V& using V& (b). We used 50000 points in
the training set and employed local linear fits. In each case
dE=6 T=S.

C. Square-loop hysteretic circuit: circuit 5

A different type of hyseteretic circuit generated the
data in this example [22]. This circuit is very similar to
the first hysteretic circuit, except that the hysteresis loop
is much sharper. This simple circuit is actually not sim-
ple to model, so for illustrative purposes we provide a set
of equations that reproduces the approximate behavior of
this circuit. Most of the parameters are the same as in
the circuit, but the damping factors have been increased
to produce chaotic behavior. The values of x and y in the
equations exceed those in the circuit by factors of 3 or 4.
The discrepancy between the actual circuit and the equa-
tions that describe it may be caused by capacitor leakage
or inductance in the resistors used to provide damping in
the integrator portions of the circuit. The equations that
have been used for modeling the circuit are

dx (t)
dt

= —1000[0.67x (t) —l. 77y (t)

0.310

0.260

ON =10
DN =25
QN =50

Ne =75

—3.9g (y„,y„,) —0.77x(t)],
(13)

dy (t)
dt

= —100[x(t)+0.675y (t)],

0.210

0.160

0.110

0.060

0.010
1 3 4

Local Dimension; d,

FIG. 22. Local false nearest neighbors for V& from circuit 4,
T =5, P=0.25, and N =60000. dI =3 is identified here as for
V~.

where g(y„,y„,) = —2.0sgn(y„) if abs(y„) ~2.0; other-
wise it is equal to 2.0 if y„& 0.0, and —2.0 if
y„ l (0.0. The function g(y„,y„ l} is used to approxi-
mate a square hysteresis loop produced by a multivibra-
tor in the circuit. The real circuit is a How, but the nu-
merical integration routines are maps, so the notation y„
and y„, refers to time steps in the numerical integration
routine, and is used to provide a history for the hysteresis
loop. The hysteresis loop provides the third degree of
freedom necessary for chaos in a flow. The x (t) variable
corresponds to V~(t), while y(t) corresponds to Vtl(t).
The measured voltages seen in Fig. 24 were digitized at a
rate of v, =20 ps.

The average mutual information for the two measured
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FIG. 26. Percentage of global false nearest neighbors as a
function of the embedding dimension for signals V& and V&

from circuit 5. Both require dimension dE =3 to unfold the at-
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FIG. 24. Two voltages V& and Vz taken at the same time
from circuit 5 as described in the text. They were digitized with
12-bit resolution. ~, =20ps.

0.014

voltages is displayed in Fig. 25, where close inspection re-
veals that the first minimum is achieved for T=21 (or
420)Lts) for voltage V„(n), and at T=22 for V~(n). Glo-
bal false nearest neighbors shown in Fig. 26 demonstrates
that each time series can be embedded by time delays in
dE=3. This is amply confirmed by the local false
nearest-neighbor calculations shown in Figs. 27-29. For
oversampled data sets like this one, one should be careful
implementing a global false neighbor search, because
nearest neighbors which are also close in time must be
discarded. This requirement is similar in spirit to the ob-
servations of Theiler [23] in a related context, and form a
standard part of our algorithms.

Working now in dE=5 with y(n)
=[V(n —2T), V(n —T), V(n), V(n + T), V(n +2T)]
and using T =22, we make models of one voltage deter-
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FIG. 27. Local false nearest neighbors for V& from circuit 5,

T =21, P=0.4, and N =60000. dl. =3 is identified here as for
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FIG. 25. Average mutual information as a function of time
delay for signals V& and V~ from circuit 5. 64000 data points
were used. The units of the time lags are 50 ps. V& has its first
minimum of I(T) at T =21, while V~ has its first minimum at
T =22.

FIG. 28. Local false nearest neighbors for V& from circuit 5,
the same parameters are used as in Fig. 27. dL =3 is identified
here as for V~.
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FIG. 29. The same as in Fig. 28, but with the data read back-

ward in time. Here we see the local dimension is dL =3.

mined by time delays of the other. In Fig. 30(a) we have
an error for Vs(n) modeled on voltage A with local
linear fits. As usual the training set is 50000 points, and
the recovery set is taken to be 1000 points. The errors in
this representation of Vs(n) are about 0.5%. In Fig.
30(b) we use local linear models to predict the other way
around: Vz (n } within a time delay space of Vs (n ). The
results are comparable to those just shown. In Fig. 30(c)
we increase the order of the local model to quadratic,
thus requiring more neighbors and larger neighborhoods
for the local models, but we see no substantial increase in
our ability to predict. Local linear models seem to work
with great accuracy in these examples.
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FIG. 30. Data from circuit 5, recovering errors. We used
50000 points in the training set and employed local linear fits.
(a) Recovering Vz and V&. (b) Recovering V& using V&, d&=5,
T =22, and local linear fit. (c) The same as (b), using a local
quadratic fit.

In this paper we have extended the usual nonlinear
modeling of the evolution of a measured scalar variable
x (n) through a function in d-dimensional space-
y(n) =(x (n), x (n + T), . . . , x{n +(d —1)T))~F(y{n))
=y(n+1}—to the representation of a second physical
variable observed in the same dynamical system within
that reconstructed state space. We have demonstrated
this recovery of one physical variable from the measure-
ment of another in the Lorenz model and four examples
of nonlinear electronic circuits in our laboratories.

In the process of constructing our examples, we started
from the scalar observations and carefully examined the
phase space to be reconstructed before carrying out the
local mappings required. In each case we considered,
computer generated data from the Lorenz model or ex-
perimental data from real circuits, we were able without
knowledge of the equations of motion to verify the num-
ber of dynamical variables requires and to accurately
model the evolution of one variable on another.

In a sense all we have accomplished is a demonstration
that the embedding theorem is correct: once one has
properly captured the state space, then all variables of a
nonlinear system coupled to the variable from which the
coordinates of the state space are built can be recovered
in that space. The importance of the construction ex-
tends beyond some kind of indirect verification of the
embedding theorem. Indeed, the motivation for this
work was to discover how we can work with experimen-
tal data on a strange attractor and recover the equivalent
of the differential equations we usually depend upon to
tell us how one dynamical variable is linked to another.
Consider the familiar case of an incompressible fluid,
where knowledge of the fluid velocity allows the recovery
of the pressure by the solution of the Poisson equation.
Our procedure is the direct analog of that construction,
but carried out without foreknowledge of the equations of
motion, and done directly on the attractor.

We anticipate that the method we have described and
demonstrated will be of use in the analysis of chaotic ob-
servations when one variable is relatively easy to measure
but it is the detailed behavior of another variable which is
of direct physical interest. One would proceed in that
case to carry out experiments under a situation in which
both variables could be measured, and deduce the
dynamical rules —of the form z(n) =g(y(n)) as done
here —which allow the evaluation of the second variable
in another setting where only the variable x (n) is accessi-
ble.

There are some difhculties and unsolved problems in
using this recovery method in practical applications.
First of all, as we saw in the example of the Lorenz at-
tractor, there are cases when due to some specific proper-
ties of the system at hand (symmetries, etc.}, the recovery
of one variable from another is impossible in principle. It
is not clear at the moment how common these counter-
examples are. Nevertheless, all the experimental data
series we dealt with allowed the reconstruction in both
directions, therefore suggesting that generically recovery
is possible. Another interesting question is about the na-
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ture of prediction errors we observed. The time series of
differences between the original signal and its recovered
counterpart reveal some well-separated sharp peaks. The
occurrence of these peaks is certainly related to some
dynamical properties of the system under investigation,
and can possibly be explained by the noise amplification
phenomenon [16]. One more problem which deserves
systematic study is the inhuence of the dynamic or mea-
surement noise on one s ability to recover physical vari-
ables via time-delay embedding.

Note that since we are making local models of the dy-
namics in phase space, we need not worry excessively
about whether we are using polynomial basis functions,
radial basis functions, or other richer sets of functions.
Local linear and local quadratic models work exceedingly
well for the goals we set. Of course, one can be more am-
bitious and seek global models for the same purpose of
representing one observable scalar variable in terms of
another, but this would take us far afield of the frame-
work in this study, and its success would rest heavily on
our ability to choose a set of basis functions properly
tuned to the global dynamics of the system being ob-
served. Local polynomial dynamics is more accurate
since it is less clever: it is universal as long as the vector
field governing the evolution is differentiable, namely in
essentially every physical setting. Indeed, it works even

when the proposed equations of motion are not formally
differentiable, as in several of the examples we presented
here.

The unattractive feature of local models is that they
are numerical "look up" or interpolation devices which
embody the evolution in local regions of phase space.
They are not global by construction and may not allow
generalization of how differential equations in high-
dimensional spaces collapse down to much smaller di-
mensional attractors. Recognizing their limitations in
this way, they certainly provide a powerful tool for the
analysis and prediction of actual physical experiments, as
we have demonstrated.
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