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We compare the quantum and class'ical dynamics of a particle moving in a cosine potential
while subject to a time-dependent force. We concentrate here on the behavior of an initially well-
localized wave packet at times before the classically chaotic motion is fully developed. We find that
the quantum and classical dynamics are indistinguishable well beyond the Ehrenfest time where
the wave packet delocalizes. The quantum and classical descriptions first difFer precisely when the
classical probability density is folded in the vicinity of a hyperbolic fixed point. At this point,
the wave function acquires a nodal structure which we show to be the result of a simple beating
phenomenon between paths in the semiclassical propagator.

PACS number(s): 05.45.+b, 03.65.Sq

I. INTRODUCTION

Although quantum mechanics contains classical me-
chanics as a limiting case, the quantum dynamics of a
classically chaotic system does not show any obvious fea-
tures that reflect the classical chaos [1]. The lack of sen-
sitivity to initial conditions and the absence of mixing
behavior at long times is often attributed to the linear-
ity of Schrodinger equation as compared to the nonlin-
ear Hamiltonian equations of motion. Resolving this ap-
parent paradox is the central problem in understanding
"quantum chaos. "

Most studies of the quantum manifestations of clas-
sical chaos have focused on the energy domain for time-
independent Hamiltonian systems. One quantum feature
these systems exhibit is the non-Poissonian statistics of
the energy-level spacings [2]. Integrable (regular) sys-
tems are characterized by the complete absence of level
correlations and a Poisson distribution of level spacings.
In contrast, nonintegrable (mixed) systems exhibit level
repulsion in varying degrees while the energy levels for
globally chaotic systems are strongly anticorrelated [3).
The other quantuin feature seen in classically chaotic sys-
tems is the localization or "scarring" of eigenstates along
classical periodic orbits [4]. Scars are intimately con-
nected, in the semiclassical sense, to the marginally sta-
ble orbits of the underlying classical motion. Much of
the recent literature is devoted to understanding these
two phenomena.

Time-periodic Hamiltonians, like the one we discuss
in this paper, have also received considerable attention.
This is largely because the periodicity in time allows
one to introduce quasistationary Floquet eigenstates and
study the spectra of the Floquet eigenvalues [5]. This
allows one to draw parallels to the presumably simpler
time-independent systems with regard to phenomena like
level correlations and scarring [6,7]. We do not use the
Floquet formalism in this paper and focus instead on the

behavior in the time domain because we are concerned
with how the phase-space structures of classical chaos
in8uence the quantum dynamics without any particular
regard for symmetries of the Hamiltonian.

Our work is related to studies of the accuracy of semi-
classical propagation in quantum systems at long times.
Because the stationary-phase approximation used to de-
rive the semiclassical propagator from Feynman's path
integral formulation becomes invalid when the stationary
paths coalesce at a caustic, Berry et aL [8] thought that
the proliferation of caustics that characterizes chaotic
dynamics must result in the early demise of semiclas-
sical propagation. They characterized the classical mo-
tion via the deformation of curves in phase space. For
motion dominated by an elliptic fixed point, a straight
line in phase space develops into a "whorl, " while un-
stable hyperbolic fixed points deform a straight line into
"tendrils. " By studying the length of time required to
develop phase-space structure on a scale smaller than h,
they predicted that semiclassical propagation should fail
much sooner for classical motion characterized by "ten-
drils" (ti,s oc lnfi ), than for classical motion charac-
terized by "whorls" (t oc 5 ).

Tomsovic and Heller [9] demonstrated, however, that
semiclassical propagation for classically chaotic conser-
vative systems remains remarkably accurate well beyond
these times. They have shown [10] that the quantum and
semiclassical autocorrelation functions for wave packets
initiated along chaotic trajectories of the stadium bil-
liard are virtually identical well beyond t~ z. O' Connor
and Tomsovic [11]observed similar long time accuracy in
semiclassical propagation of the quantum baker's map.
Sepulveda, Tomsovic, and Heller [12] reconcile these re-
sults with the work of Berry et al. by showing that the
exponential proliferation of caustics in chaotic dynamics
is accompanied by an exponential growth in the length of
the tendrils such that the percentage of the total manifold
which cannot be treated semiclassically grows linearly in-
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stead of exponentially. Their analysis gives a time frame
for the failure of semiclassical dynamics which scales as

instead of ln 5
In this paper we study the quantum, classical, and

semiclassical evolution of a particle in a cosine potential
also subject to a time-dependent force. We focus on the
details of the dynamics at early times before the clas-
sically chaotic motion is fully developed. We pose this
problem in the naive semiclassical limit where we can
construct a well-localized wave packet to describe the
initial state of the particle quantum mechanically and
an equivalent localized classical probability distribution.
Therefore we expect that the the quantum, classical, and
semiclassical description of the dynamics to be very sim-
ilar at short times. We study the differences between
them in order to identify specific ways in which quantum
effects inhibit the development of classical chaos.

Our analysis reveals three distinct times which define
progressive stages in the development of the early-time
quantum dynamics. The Brst time interval is character-
ized by a well localized wave packet and a compact clas-
sical probability distribution. In this regime the position
and momentum operators in the Heisenberg equations of
motion can be replaced by their mean (classical or quan-
tum) values with no sensible error. This regime ends
at the "Ehrenfest time" tEh where the second regime
appears. Here both the quantum wave packet and the
classical probability distribution spread out over a large
&action of phase space, but the two distributions remain
essentially identical. The semiclassical behavior, how-
ever, has become tainted by caustics. The behavior in
this time interval is controlled by the "whorls" associ-
ated with an elliptic fixed point. The first differences
between the quantum and classical descriptions appear
at the "equivalence time" t,q and are associated with the
development of tendrils in the classical phase-space distri-
bution. These tendrils lead to a standing wave feature in
the quantum distribution resulting from an interference
between paths in the semiclassical propagator. There is
also some additional structure that does not appear to
have any semiclassical analog. On the other hand, if the
classical probability density does not exhibit this fold-

ing, which is the case when the motion is regular, then
the wave function does not acquire this nodal structure,
and the quantum-classical equivalence persists within the
time frame of our analysis.

In Sec. II we introduce the Hamiltonian we study and
review earlier work on its classical behavior. Section III
describes the calculational details of our study of the
quantum, classical, and semiclassical evolution of the ini-
tial wave function. Our results are discussed in Sec. IU
and our conclusions are contained in Sec. U.

II. THE PROBLEM

with Ho the Hamiltonian for a classical pendulum whose
&equency of small oscillations is 0

Hp(p, x) == p'
2m

mO'
cos (kx)

and the external driving force is described by

Vg(x, t) = —ex Slil(dt
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This Hamiltonian is one of the simplest systems with
suScient complexity to exhibit classical chaos, and its
classical behavior is fairly well understood [13]. It is also
a good choice as a model Hamiltonian in describing the
onset of classical chaos for systems which are made non-
integrable by a perturbation. The breakdown of integra-
bility in this Hamiltonian occurs [14] because the per-
turbation produces traveling "resonances" that interfere
with the primary orbit structure. The perturbation con-
trols the amount of interference and thus the &action of
phase space 6lled with chaotic orbits.

For e = 0, the system is integrable and is confined to
constant energy surfaces (orbits) which are the "invari-
ant tori" in the language of Kolmogorov-Arnol'd-Moser
(KAM) theory [15]. The bounded and unbounded mo-
tions are separated by a separatrix at zero energy. There
are hyperbolic (unstable) fixed points on the separatrix
at p = 0, kx = (2n —1)z and elliptic (stable) fixed points
at p = 0, kz = 2nx where n is an integer. The phase-
space structure for the unperturbed motion is shown in
Fig. 1(a). For e ) 0 but sufliciently small, the motion is
still largely governed by a distorted version of the KAM
tori, even though the motion is no longer con6ned to
constant energy surfaces. The KAM structure breaks
down in the immediate vicinity of the separatrix where

We study the Hamiltonian for particle of mass m in a
periodic potential with wave vector A: subject to a sinu-
soidally driven external force. The Hamiltonian is given
by

H(p, x, t) = Ho(p, x) + Vg(x, t)

FIG. l. (a) The unperturbed potential V(x)
—(1/2) cos (7rx) with a schematic depiction of the initial
wave packet centered at xo ——0.067140 with momentum

po = —0.397 000. (b) The initial orbit (dashed) with

~o(po, xo) = —0.331 and the unperturbed separatrix
(solid) at F = 0.500.
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the overlap of the resonances is strong, resulting in a
stochastic layer which grows as e is increased. For such
resonance overlap to produce a large stochastic layer for
small e and lead to chaos, ur should be [13]comparable to
the frequency of the unperturbed motion for orbits near
but not in the stochastic layer. The trajectories that stay
far &om the stochastic layer remain bounded and regu-
lar, while those which get too close, particularly to the
unstable fixed points, exhibit chaotic motion.

III. THE CALCULATIONS

We have chosen to use the same parameters for the
unperturbed Hamiltonian as Lin and Reichl [13], 0 =
k = tr, m = 1/2, and (d = 2.5,

H = p —
2 cos (Irx) —ez sin((d)t). (4)

The precise value of e which effects the transition &om
regular to chaotic motion depends on the initial con-
ditions as well as cu. In this paper we study the dy-
namics for initial conditions in the neighborhood of the
point (pp, zp) = (0.06714, —0.39700) for two values of

0.07 and e = 0.126. For both of these val-

ues, the time dependent term can be considered a small
perturbation on the cosine potential. In the first case,
(e = 0.07), the classical motion is regular as evident from
the fact that the motion is bounded for very long times

(t ) 5000 —1200 cycles). In the second case, the motion
of trajectories starting in this neighborhood is chaotic,
becoming unbounded at t 20. Being particularly un-

stable (by design), the midpoint trajectory, zt(pp, xp), is
the first in the neighborhood to make its exit at t —14.5.
Our choices for the perturbation strength and initial con-
ditions ensure that we are able to study the quantum
evolution all the way up to the exit time without undue
computational effort.

We pose the quantum problem in the semiclassical
limit by setting h = I/200m. For this choice of 5, a typical
quantum wavelength hatt/mA = I/10m, which is small
compared to the scale of variation of the unperturbed
potential. This permits us to start with a well-localized
initial quantum state corresponding classically to a par-
ticle whose position and momentum are well known.

A. The quantum calculation

where T is the kinetic-energy operator. Our initial wave

To study the quantum evolution, we propagate an ini-
tial wave function forward in time using a generaliza-
tion to time-dependent Hamiltonians of the split expo-
nential operator method of Feit, Fleck, and Steiger [16].
For a time-dependent potential, the (At) dependence of
the error in this method is preserved by replacing the
potential-energy operator, V, by its time average

y(t + ~t) iT&t/2h i f, + V(t—') dt'/h iT—h,t/2hy(t)—
(5)

function, depicted schematically in Fig. 1(b), is a Gaus-
sian wave packet centered at (pp, zp)

I/d(x, 0) = (pro ) / exp
(x —*p)' .J p

2' 2 h
+i—(x —xp) .

(6)

The initial width o. is chosen so that the wave packet
initially spreads as slowly as possible for motion in the
unperturbed potential at the initial energy, (H(t = 0)) =
(Hp(pp, xp)) = 0.3288. In doing this we delay the Ehren-
fest time as long as possible. Because the initial energy
is well below the top of the well, the best choice for 0 is
only 3.4% larger than the width of the ground state wave
function at the bottom of the cosine potential.

We include one cosine well on each side of the cen-
tral well (three wells total) to allow for tunneling of the
wave function out of the central well into the two adja-
cent wells. We set up the wave function across the three
wells on a grid of 2048 points. Because the wave func-
tion must be represented on a finite grid, our computer
simulation of the quantum problem breaks down as soon
as the motion becomes unbounded. Thus we must limit
our analysis to the times up to the moment that a large
fraction of the wave function spills over the barrier from
the central well to a neighboring well.

The resulting wave function vP(x, t) and its Fourier
transform Q(p, t) are then used to compute (z), (p), and
their variances ((Ez)2) = ((z —(x)) ) as a function of
time. We also study the wave function directly by pro-
jecting it into the phase space. We will discuss how this
is done in Sec. IIID.

B. The classical calculation

The classical analog of the initial wave packet is a
Gaussian probability distribution p(z, p, t) with the same
widths in position and momentum. The time evolution
of this distribution is given by

(p,pz, t) = ff p' z' d(zd—xd, (p', z'))

x6(p —pt(p', z')) p, i(p', z', 0), (7)

where zt(p, z) and pt(p, x) represent the time-evolved
phase-space coordinates as functions of the initial con-
ditions.

We follow the behavior of the classical distribution by
first generating 10 000 sets of initial conditions (x,p) dis-
tributed according to a two-dimensional Gaussian prob-
ability distribution centered at (xp, pp) and having the
appropriate widths in position and. momentum to match
the initial quantum wave packet. We follow the time evo-
lution of each "particle" in this cloud by integrating its
classical equations of motion forward in time by a stan-
dard fourth order Runge Kutta algorithm.

The classical probability density at a given time may
be depicted as a two-dimensional histogram of the time-
evolved cloud. Using 10 000 points gives us a statistical
error of roughly 10%%uo for the one-dimensional histograms
of Sec. Dtt ass»~ing about 100 bins and a reasonably equi-
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table distribution among the bins. We use this classical
probability density to find (z), (p) and their variances
(b,z)', (Ap)' &om

(f)a = f J &s&*f(s *)~a(s,*,t), (8)

to compare with their quantum analogs, and we also
compare the reduced probability density p, i(z, t)
f dp'p, i(p', z, t) with the wave function lg(z, t)l .

C. The semiclassical calculation

For the semiclassical calculation we evolve the initial
wave function forward in time using the semiclassical
propagator of Van Vleck [17] and Gutzwiller [18]

quantum length and momentum, respectively. Because
of the rapid divergence of paths having the same initial
position and adjacent momenta, the momentum lattice
spacing should actually be much smaller than the mo-
mentum cell dimension. Our rectangular grid of initial
conditions consists of 31 grid points in x with a spacing
of 0.01114 and 1501 grid points in p with a spacing of
0.00175. The widths of the Gaussians that define the
cell dimensions are 0.01114 and 0.01750 in x and p, re-
spectively. The span of the grid assures that the sums of
Gaussians in z and p are approximately constant (mean-
ing that the sums may be roughly approximated by inte-
grals) and that the contributions of classical trajectories
with initial momenta equal to the endpoint values are
negligible.

D. Quantum phase-space transforms

with

s..(zf ff) f~.'G=„(zqx';tq)s(z, '0),
1/2

BzS(z, z', t)
BzBz'

) 1/2

G.,(z, z';t) = )
cl.paths E )

(.S(x,z', t)x exp i —ZVg—
2 )I

(10)

In order to compare the quantum dynamics to the clas-
sical probability distribution, we must project the wave
function into phase space. The two quantum phase-space
transforms which are most commonly used for this pur-
pose are the Wigner transform [21]

s'9, *) = —f ds0*(* —s) &(*+s)"""'"

and the Husimi transform [22]

where S(z, z', t) = fo [p(t')q(t') —H(p(t'), q(t'))] dt' is
the cumulative classical action along a given classical
trajectory (q(t), p(t)) and vt is the number of caustics
[19] encountered on that trajectory, also known as the
Gutzwiller phase. The sum in the above expression in-
cludes only those classical paths that begin at x' and end
at x. The prefactor is the reciprocal square root of the
determinant of the stability matrix and represents the
Gaussian fluctuations about the classical path.

We evaluate the semiclassical wave function numeri-
cally using the cellular dynamics method of Heller and
Tomsovic [20] by representing the propagator and the ini-

tial wave function as a sum of Gaussians in phase space
and then linearizing the dynamics in the cell centered on
each Gaussian. To implement this method, we must cal-
culate the classical trajectories, the cumulative actions
along those trajectories, and the time evolution of the
stability matrix elements for a grid of initial conditions.
If the width of our initial wave packet were small com-
pared to a quantum wavelength, we would only need to
compute the classical trajectories for a vertical strip of
phase-space coordinates with difFerent momenta at the
location in x = xo of the center of the wave packet. This
not being the case, we must include a grid of initial con-
ditions in x as well as p. Even so, the initial wave packet
is sufEciently localized that the central vertical strip still
makes the primary contribution to the calculation, and
the qualitative features of the semiclassical wave function
may be found directly from the semiclassical propagator
as though the initial wave function were a delta function.

The lattice spacings for the grid of initial conditions
should be no larger than the cell dimensions, which
should in turn be small compared to the characteristic

H(p *) = l(»zl&)l' (12)

where lp, z) is a coherent state. W(p, z) has the desir-
able property that its projection onto the x and p axes
gives the probability amplitudes lg(z)l2 and lg(p)l2, re-
spectively. Not being positive definite, however W(p, z)
cannot be directly interpreted as a probability density.
H(p, z), on the other hand, is positive definite, but un-
like W(p, z), H(p, z) cannot be directly projected onto
the z and p axes to obtain lgl2 and l@l because the
overlap of the coherent states blurs the information.

We have analyzed our results using both H(p, x) and

W(p, z) and prefer the Husimi transform because we have
found it considerably easier both to compute and to inter-
pret. To assure ourselves that the features exhibited by
H(p, z) are not artifacts of the transform, we have com-
pared H(p, z) and W(p, z), focusing on the nodal struc-
ture that develops after the equivalence time. In order
to contour the sometimes negative and wildly oscillating
Wigner transform, we first smoothed it by making a his-
togram of the transform and varied the bin size until the
contouring program could make sense of it. We found
that the nodes were clearly present in both transforms,
giving us confidence that the features we observe using
the Husimi transform are real.

IV. DISCUSSION OF RESULTS

As we mentioned in the Introduction, we observe three
times which define stages in the development of the early
time quantum dynamics for this system. These stages are
characterized as localized classical behavior for t ( tEg,
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delocalized classical behavior for tmh & t & t,q, bounded
nonclassical behavior for t,q & t & t,„, and unbounded
nonclassical behavior for t & t,„. The Ehrenfest tixne

occurs when the expectation values of the position and
momentum, (z) and (p), first difFer kom the classically-
evolved coordinates of the center of the wave packet,
zg(pp, zp) axxd pg(pp, zp), because of wave packet spread-
ing. The equivalence time occurs when quantum observ-
ables like (z), (z ), and!g! diverge from their classi-
cal counterparts because of quantum interference effects.
Lastly, the exit time occurs when the dynamics become
unbounded. The classical dynamics become unbounded
when a non-negligible number of the 10 000 particles have
left the central well. The quantum dynamics become un-

bounded when the probability axnplitude spills over the
barrier &om the central well into a neighboring well. As
tunneling is negligible under our conditions, the quantum
exit time and classical exit time are the same. While we

only present results for the behavior of the position and
its variance, the behavior in momentum space is similar.

First, we consider the classically regular xnotion (e =
0.07). There is no exit time because this motion remains
bounded, and for the time kame of our analysis (t & 30),
there is no appreciable difference between the quantum
and classical motion. Thus we observe only two stages
in the early-time dynamics given by t & tEh and t & tEh
with tEh = 13.

To show the delocalization of the wave packet that oc-
curs at tE~ we plot (z), (z),x, and zg(pp, zp) as functions
of time in Fig. 2(a). Note the divergence of zq(pp, zp)
&om (z) and (z),x at tEg. To further illustrate the spread-
ing of the wave packet we plot in Fig. 2(b) the quantum
and classical rms deviations, Az = g((z —(z))s), nor-
malized to the halfwidth of the initial orbit. Note that

0.12-
0.10 .—

0.08 .—
~ W

0.06—

0.04—

0.02—
0.00

-1.0 -0.5 0.0
X

0.5 1.0

FIG. 3. A plot of the quantum (solid) and classical
(dashed) probability densities as functions of z for e = 0.07
at t =25.

this quantity is of order unity when the midpoint and
mean trajectories diverge at tEh.

Figure 2(a) also shows that despite the spreading of
the classical and quantum probability distributions, the
quantum expectation values (z) and 6z are virtually in-
distinguishable &om their classical counterparts. In fact
we find that the classical and quantum distributions are
essentially the same even after the distributions spread.
To show this, we compare in Fig. 3 the quantum and
classical probability densities at t = 25. To be fair in
making this comparison we smooth the quantum data
to match the resolution of the classical data by making
a histogram of!g! using the classical bin size. There
is no discernible difFerence in the distributions save for
statistical error in the classical distribution.

We now turn to the classically chaotic motion (e =
0.126). We already established in Sec. III that this mo-
tion becomes unbounded at t,„14.5. In Fig. 4 we show

1.0

0.5-

0.0
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4h &q 4

time
FIG. 2. (a) The quantum (solid) and classical (dashed)

mean positions as functions of time compared to the clas-
sical evolution of the center of the wave packet (dotted) for
e = 0.07. (b) The corresponding quantum (solid) and classi-
cal (dashed) rms deviations as functions of time normalized
by the halfwidth of the initial orbit. The motion becomes
delocalized at tEh 13.

FIG. 4. (a) The quantum (solid) and classical (dashed)
mean positions as functions of time compared to the clas-
sical evolution of the center of the wave packet (dotted) for
e = 0.126. (b) The corresponding quantum (solid) and clas-
sical (dashed) rms deviations as functions of time normalized
to the halfwidth of the initial orbit. The motion becomes
delocalized at tFh 9 and unbounded at t „14.5.



1836 B. S. HELMKAMP AND D. A. BROWNE

the delocalization of the wave packet in the same man-
ner as for e = 0.07. Note the departure of the central
trajectory from the mean and the accompanying growth
of the rms deviation(s), as before. We see that the wave

packet spreads more rapidly than for the classically reg-
ular motion with tEh = 9.

Unlike the classically regular motion, we observe a sub-
tle but appreciable difference in the dynamics beginning
at t,q

—12 that is not apparent &om the expectation
values in Fig. 4. To illustrate this, we compare the quan-
tum and classical probability densities before and after
t,q. These comparisons are shown in Figs. 5(a) for t = 11
and 5(b) for t = 13. As before, we smooth the quan-
tum data to match the classical resolution. Note the
difference in the fine structure of the two distributions
for 0 & z ( 0.5.

While the phenomenon of wave-packet spreading is

typically thought of as a manifestation of quantum dy-

namics, for our problem its origin is really classical. The
fact that tEh occurs sooner for e = 0.126 (tEh = 9) than
for e = 0.07 (tEh = 13) reflects the greater sensitivity
of the classical dynamics to the initial conditions for the
former. At these very early times, the divergence of the
classical trajectories is directly reflected in the spread-

ing of the quantum wave packet. Moiseyev and Peres

[23] also observed greater rates of spreading for quantum
wave packets launched in the chaotic regions compared
to the regular regions of the Henon-Heiles potential.

Given the work of Berry et at. [8] and of Sepulveda et
at. [12] discussed in the Introduction, one would expect
the accuracy of semiclassical dynamics to persist longer
for e = 0.07 than for e = 0.126 because the regular classi-

cal behavior of the former is governed by an elliptic fixed

point of the unperturbed motion while the chaotic clas-
sical behavior of the latter is governed by the hyperbolic
fixed points. While we do not directly address this ques-
tion, we do observe that the equivalence of the quantum
and classical dynamics persists much longer for ~ = 0.07
(t,q ) 30) than for e = 0.126 (t,q = 12). The chaotic
motion feels the effects of the quantum mechanics sooner
than the nonchaotic motion. Thus we would expect that
chaotic motion would feel the higher order nonsemiclas-
sical effects of quantum mechanics sooner as well.

Having established the stages of the dynamics for
E = 0.126 given by tEh ( t,q ( t,„, we focus on the
times surrounding t,q 12 in order to discuss the role
of the underlying classical phase-space structures in the
onset of the nonclassical behavior. In Figs. 6, 7, and 8
we show the classical, quantum, and semiclassical phase-
space portraits before, during, and after the breakdown
of the quantum-classical equivalence at t = 11, t = 12,
and t = 13, respectively. The classical phase-space distri-
butions are depicted as dot plots in Figs. 6(a), 7(a), and

8(a) where each dot represents the time-evolved coordi-
nates of one of the 10 000 particles. The quantum and
semiclassical Husimi transforms are depicted as contour
plots in Figs. 6, 7, and 8. The contour plot level spacings
are on a log scale with gray being low and black being
high.

The folded structure which appears in the classical dis-
tribution after t = 12 [see Fig. 7(a) and Fig. 8(a)] is a
manifestation of the chaotic dynamics. These folds are
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FIG. 5. A comparison of the quantum (solid) and classical
(dashed) probability densities as functions of x for e = 0.126
at (a) t = 11 and (b) t = 13. In the latter, the quantum
distribution has acquired oscillations (see 0.5 & x & 1.0) that
are absent from the classical distribution.

FIG. 6. A comparison of the classical, quantum, and semi-

classical phase-space portraits for e = 0.126 at t = 11. (a) The
10 000 time-evolved phase-space coordinates of the classical
distribution. (b) The Husimi transform of the wave function.

(c) The Husimi transform of the semiclassical approximation
to the wave function. The level spacings for the contour plots
in (b) and (c) are on a Iog~o scale. The classical phase-space
structure which characterizes this motion is a whorl.
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essentially equivalent to the tendrils of Berry et al. which
characterize the development of chaos around unstable
fixed points in conservative systems. For our particular
choice of initial conditions, there are two folding events

FIG. 7. A comparison of the classical, quantum, and semi-
classical phase-space portraits for e = 0.126 at t = 12, similar
to that of Fig. 6. The classical distribution is on the verge
of being folded by the hyperbolic 6xed point to produce a
tendril.

prior to the exit time at t —12 and t = 13.5, and a third
folding event coincident with the exit time at t = 14.5.
Leading up to the first folding event, the classical prob-
ability density becomes concentrated along the remnant
of the e = 0 separatrix. The folds in the distribution sub-
sequently emerge after approaching the hyperbolic Gxed
point. While neither the separatrix nor the hyperbolic
6xed points are clearly de6ned, even in a KAM sense, it
appears that the remnants of these structures still gov-
ern the motion. In the subsequent discussion we use these
terms for lack of any better.

The primary result of our analysis concerns the nodes
which appear in the quantum phase-space distribution
when the classical probability density exhibits the fold-

ing associated with the classical chaos. Because the nodes
are clearly present in both the quantum and semiclassical
pictures [cf. Fig. 8(b) and Fig. 8(c)j, their origin must be
semiclassical. To discuss the origin of the nodes in greater
detail, we magnify the folded/nodal structure of Fig. 8.
We plot in Figs. 9(a) and 9(b) the quantum and semiclas-
sical phase-space transforms on top of the classical dots
in order to show the locations of the nodes in relation to
the classical phase-space structure.

While the reproduction of the nodal structure by the
semiclassical calculation shown in Fig. 9(b) is clearly
imperfect, the qualitative agreement is apparent. It is
difficult to get better agreement for this fine structure
because the grid of initial conditions gets drastically
stretched by the dynamics, especially after the folding
process begins, resulting in intervals along the classical
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FIG. 8. A comparison of the classical, quantum, and semi-
classical phase-space portraits for e = 0.126 at t = 13, similar
to that of Fig. 6 and Fig. 7. The quantum transform has
acquired a nodal structure for which the underlying classical
structure is a tendril.

FIG. 9. (a) An enlargement of the nodes in Fig. 8(b) plot-
ted with the classical distribution to show the locations of
the nodes in relation to the classical structure. The coor-
dinates (x,p) of the two nodes shown are (0.39, —0.80) and
(0.42, —0.69). (b) The same plot for the semiclassical approx-
imation of Fig. 8(c). In (a) the levels are —3.5, —4, —5, —6,
—7, and —8 while in (b) the levels are —3.5, —4, —4.5, and
—5. In both cases the spacings are on a log~o scale with solid
being high and dotted being low. The letters (A—E) in (a) are
for reference in the discussion.
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distribution where the paths become too sparsely rep-
resented to get the nodes in precisely the right places.
The agreement does improve by increasing the density
of the grid of initial conditions, particularly the verti-
cal (momentum) grid density; however, the computation
time also increases linearly with the total number of grid
points, thereby preventing any substantial improvement
over the results we present given our computational con-
straints. The spurious peaks associated with caustics also
impede agreement between the quantum and semiclassi-
cal pictures. As these peaks appear because there really
are poles at the caustics in the semiclassical propaga-
tor, they cannot be eliminated. In particular, the false
amplitude associated with these poles reduces the ampli-
tude associated with the real features in the wave func-
tion. Given these problems and the subtle nature of the
nonclassical features in the quantum transform, it is not
surprising that the semiclassical calculation can only re-
produce the two most prominent nodes.

The snapshots in time of the classically evolved cloud
in Figs. 6(a), 7(a), and 8(a) may be interpreted as a flow

field that is stretched and compressed in accordance with
the underlying KAM orbit structure. Note that the gen-
eral sense of the flow is clockwise. This is reflected by the
sense of the change in the cumulative action which in-
creases in the direction of flow for p dr & 0 and decreases
in the direction of flow for pdz ( 0. Also note that
the classical amplitude piles up at the "turning points"
where the distribution is locally vertical in (z, p). Strictly
speaking, this interpretation is only valid locally, i.e. , for
flow times which are short compared to the period of the
perturbation. Thus one may interpret short segments of
the flow which have the same initial and final positions as
classical paths that should interfere in the semiclassical
sense. In particular, we find that the flow segments CA
and BD of Fig. 9(a) are interfering with one another to
produce the observed nodal structure.

As previously explained in Sec. IIIC, the qualita-
tive features of the semiclassical wave function may
be inferred directly &om the semiclassical propagator
G„(z,zo, t). The latter being simply a sum of complex
terms, each having an amplitude and a phase, we ap-
proximate the wave function at x = xg and t = tg as
'I'P (zf tf) P A„exp (iP„) where the phase associated
with a given path is P„(zr, zo) = S(pp, zo, t)/5 —@ger/2

and the amplitude, which is essentially a measure of the
path density, is A„~Bzr/Bpo~ ~2. In order for there to
be discernible interference among the terms in the prop-
agator, their relative phases must not vary too rapidly
(or else the interference term vanishes under the integral
which we are suppressing), and their amplitudes must not
be too dissimilar. Assuming these conditions are satis-
fied, the locations of the nodes in the wave function can
be inferred given the number of terms involved, their rel-
ative phases, and their relative magnitudes.

If we examine the relative phases for the paths AB, CA,
and BD of Fig. 9(a), we find that the phases of paths BD
and CA difFer by vr at the locations (in z) of the nodes.
We also find that this phase difference varies at a rate
which correctly accounts for the spacing of the nodes. In
particular, the rate of variation of the phase difference for

paths BD and CA is about seven cycles per unit length
in contrast to the 50-fold greater rates of variation for
paths BD and AB and for paths AB and CA.

The positions of the nodes can be deduced from the
semiclassical amplitudes for the two interfering paths.
The relative amplitudes of the two interfering paths are
indicated by the classical dot densities of Fig. 9. If the
dot densities for the interfering paths were equal, then
we would expect the nodes to be centered (in p) between
them. In Fig. 9 we see that the dot density for path BD
is at least 10 times greater than the dot density for path
CA. As a result, the node centers (where the destructive
interference is complete) are pulled off center toward the
path of lower amplitude.

The only places where our flow-field interpretation is
wrong is at the turning points associated with the folded
structure [points A, B, and C in Fig. 9(a)]. By track-
ing the caustic counts for the particles which comprise
the flow, we found that the caustic count decreases by
one rather than increasing by one at the nose of the fold
(point A). Because the caustic count can only increase
with time, the flow must be discontinuous at points 8
and C as well as at point A making all three of these
points spurious caustics in the flow field. As a result, the
Gutzwiller phases for the two interfering paths (CA and
BD) are the same because the caustic that is lost at point
A is "subsequently" found at point B.

Because the How-field interpretation of the classical
probability density is locally valid (except at the three
spurious caustics) and because the Gutzwiller phases for
the two interfering paths are the same, the phase-space
area enclosed by the interfering paths between successive
nodes should be = 2~. The 2' phase difFerence between
beats is given by

[pi(z) - p2(*)]/~ d*+ b (»)

where z„and x„+q are the positions of the successive
nodes and b = f [Vq(z2, t) —Vi(zi, t)] dt/5 is the phase
change due to the time varying piece of the Hamiltonian.
If b were zero the phase-space area given by the first term
should be equal to 2'. The measured area enclosed by
paths BD and CA of Fig. 9(a) between the two dominant
nodes is = 6.2. As an order of magnitude estimate, we
find that ~b~ e(4p)T/fur where Ap is the momentum
difference between the paths and T is the time difference
between beats. For Ap 0.08 and T 0.06 we find that
b 0.15, so the phase difference between the nodes is

roughly consistent with 2'.
Besides the nodal structure, we observe a slight pinch

in the quantum phase-space distribution at the leading
edge of the nose of the fold, located at point E in in
Fig. 9(a). Like the nodes, the pinch forms when the clas-
sical probability distribution acquires the tendrils associ-
ated with motion near a hyperbolic fixed point. Unlike
the nodes, however, the pinch cannot be explained as an
interference phenomenon as there are no underlying clas-
sical paths at the pinch to interfere. This absence of un-

derlying classical structure suggests that the pinch does
not have a semiclassical origin, but rather arises from
quantum fIuctuations around the classical paths. Un-
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fortunately, our semiclassical calculation does not have
sufficient resolution to verify this supposition.

V. CONCLUSIONS

We find that the quantum and classical pictures are
equivalent (within the limitations of our statistics) well

beyond the Ehrenfest time. Thus we see that being in the
classical limit does not necessarily mean that the dynam-
ics must be localized. We also find that this quantum-
classical equivalence persists much longer in the absence
of classical chaos. We conclude that for the wave packet
to remain localized beyond the equivalence time, which
is when the phase-space structures of the classical chaos
first appear, 5 must be much smaller than our choice of
I/2007r. This would mean a quantum length scale which
is negligibly small compared to the scale of variation of
the potential.

We know that the repeated folding of the classical
probability density that results &om the How interact-
ing with the hyperbolic fixed points is the mechanism
which eventually spreads the classical amplitude uni-

formly throughout phase space, bringing about the mix-
ing behavior that characterizes chaos. We find that
this same mechanism also results in the breakdown of
the quantum-classical equivalence that characterizes the
early-time dynamics of our system in the absence of clas-
sical chaos. Specifically, we find that the quantum phase-
space transform exhibits a nodal structure on top of the
tendrils that result &om the classical folding process.
We have shown that the contributions to the semiclas-
sical propagator by those tendrils which have the same
Gutzwiller phases differ in phase by x at the locations
(in z) of the quantum nodes. We have also shown that

the variations of the phase difference between the tendrils
correctly accounts for the spacing between the nodes and
that the relative amplitudes of the tendrils correctly ac-
counts for their locations (in p).

The development of these nodes as a result of tendrils
beating against one another is a concrete example of how
quantum interference, by punching holes in the classical
probability density, inhibits classical mixing. Because of
the essential role played by tendrils (and the underlying
hyperbolic fixed points) in the onset of classical chaos, we

would expect these nodes to be a generic feature in quan-
tum chaotic dynamics which contributes to the quantum
suppression of mixing. We would also expect interference
of this nature —between classical paths having nearby ori-
gins in phase space —to be the dominant effect while the
motion remains bounded; but other quantum interference
effects—involving classical paths with distant origins or
nonclassical paths, for examples —may become important
as the classical chaos becomes more fully developed.

In addition to the nodal structure, we find that the
quantum phase-space distribution acquires a slight pinch
at the leading edge of the nose of the fold. The absence of
classically folded structure underlying the pinch suggests
that its origin is probably not semiclassical. Regardless
of its origin, the pinch, like the nodes, contributes to
the inhibition of classical mixing by redistributing the
classical probability amplitude.
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