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We study Qux-correcting and spline algorithms methods for solving relativistic hydrodynamic
equations. DifFerences in the methods are contrasted, and comparisons are given for the ultra-
relativistic collision of two nuclei within the framework of a one-Quid model. Both methods give

surprisingly similar results, although difFerences in detail are apparent ~
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I. INTRODUCTION

Presently ultrarelativistic heavy-ion collisions exhibit
many of the properties of colliding Buids [1]. I,abora-
tory energies of 200 GeV per nucleon are presently avail-

able, corresponding to relativistic Lorentz gamma factors
10 in the center-of-mass kame of the colliding nu-

clei, while future experiments in the TeV energy regime
are planned. For laboratory energies below 20 GeV per
nucleon (p, 3) the experimental results are fairly
well reproduced using a relativistic hydrodynamic model

[1]. However, the numerical procedures used in these cal-
culations yield difficulties if applied to relativistic colli-
sions with p, & 10. Typical problems are related to the
violation of causality, and arise as inconsistencies in the
laboratory kame mass density, R, momentum density,
M, and energy density, E. In the dynamical evolution,
the relativistic conditions, E ) R and E ) iMi, fail, and
the calculated Quid velocities exceed the speed of light. It
has been argued [2] that a fully implicit treatment of the
relativistic hydrodynamic equations is required to obtain
a consistent solution for large gamma factors; however,

presently only explicit schemes are in use [3,4]. Never-

theless, fully implicit methods for solving these equations
has also been developed [5—7]. Since analytic solutions
for the hydrodynamic equations are known for only a
few special cases, a comparison of difFerent numerical al-

gorithms used in a realistic calculation is worthwhile.
In this paper, we discuss two methods for solving the

three-dimensional relativistic hydrodynamic equations of
motion. One is based on the sharp and smooth trans-
port algorithm (SHASTA), a version of the flux-corrected
transport (FCT) algorithm [8—ll]. The second algorithm
employs a basis-spline collocation method, a high-order
interpolation algorithm [12].

The two numerical algorithms have been applied to
one-dimensional test cases [3,6]. In each test calculation,

II. THE HYDRODYNAMIC EQUATIONS

In general, the relativistic energy-momentum tensor in
the ideal hydrodynamic limit [13] is

T" = (s+P)u"u —g""P, (2.1)

where s(z) is the energy density, P(z) the pressure in
the local rest frame, u"(z) = (p, pv) the local four

velocity, normalized such that u"u„= 1, and g"
diag(+, —,—,—) the metric. The quantity z = (t, x) rep-
resents the space-time coordinates. The hydrodynamic
equations are given by

(2.2)

where S is a source term. If the particle number is
conserved, one has in addition to consider the continuity
equation

(2.3)

a reasonable agreement in comparison with the analytical
solution was obtained. Both algorithms have been found
to give satisfactory results for spherically expanding mat-
ter distributions. However, simulations of heavy-ion colli-
sions exhibit a more complex behavior with the formation
and propagation of multiple shocks. Thus it is of greater
interest and importance to study three-dimensional test
cases for which no analytical or semianalytical solutions
exist. The principal aim of the current work is to carry
out such a comparison for typical nucleus-nucleus colli-
sions. The format of this paper is as follows. In Sec.
II the hydrodynamic equations are de6ned. In Sec. III
we introduce the two numerical methods. A discussion
of the comparison is given in Sec. IV. In Sec. V we

summarize our results.
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with conserved particle current j"= nu" and rest frame
mass density n. In practice j" is evolved by using the
four-velocity calculated from Eq. (2.2).

We de6ne

4 =T =E =p (s+P) —P,
O' = T ' = M' = p (s + P)v' (i = 1, 2, 3),

j'=R =pn,

(2.4)

(2.5)
(2.6)

84"
t

= —V F"[4] + 8", (2.7)

where F"[I] is a functional tensor of 4". F" is defined

where E, M, and R denote the quantities for energy,
momentum, and mass densities in any fixed frame. In
terms of the four-vector 4" = (4o, 4), the equations of
motion (2.2) become

and (2) solve the resulting lattice equations using itera-
tive techniques. Step (1) is an interpolation problem for
which we take advantage of spline function tec»piques
[12,15,16]. The use of the spline-collocation method leads
to a matrix-vector representation on the collocation lat-
tice with a metric describing the transformation proper-
ties of the lattice, as described below. Thus modern com-
putational techniques for solving linear algebraic systems
are directly applicable.

1. Time evolution of the consemation eqeatioras

The equations of motion for the fiuid are given in
Eq. (2.7). A small viscous source term 8"(z) is also
added to Eq. (2.7) to increase numerical stability. In a
system where there is no viscosity, conserved quantities
are given by

(Fol ( e
I

F' ) I (4*4)j(40 + P) —g'P )
(2 g) Q"(t) = f d zO" (t) . (3 1)

where i = 1, 2, 3, and g' is a tensor whose components
are given by g'* = —1, g;~~ = 0. In terms of O", the rest
frame energy density is

(2 9)

The set of equations [(2.2) and (2.3)] is closed by speci-
fying the equation of state given in the form P = P(s, n)
For simplicity we use an ideal gas equation of state which
is given by

Effects of the numerical viscosity term in Eq. (2.7) can
be removed from the observables in the following way.
During the course of the calculation, the numerical vis-
cosity term remains small when compared with conserved
quantities. Thus it may be treated as a perturbation on
the system. Assuming that the source term contains only
the numerical viscosity, we may derive a conserved four
current at time t from Eq. (2.7)

(3.2)

P = (I' —1)(e —m), (2.10)
such that

where I' is the adiabatic index. We assume the ultrarel-
ativistic limit such that s » n, so that

P = —,'e (2.11)

is the resulting equation of state. Note that this decou-
ples Eqs. (2.2) and (2.3). Thus we will consider only the
quantities of Eq. (2.2) in our comparisons. A more real-
istic calculation would require a more complex equation
of state [14]; however, for this numerical comparison we
will use this simple choice.

III. METHODS FOR SOLVING THE
RELATIVISTIC HYDRODYNAMIC EQUATIONS

A. Basis-spline collocation method

In this section we will discuss the basis-spline method
for solving boundary-value differential equations, and we
will show how to apply this method to the relativistic
hydrodynamic conservation equations. It is important
to investigate the properties of solutions obtained via
higher-order methods. The lattice solution of differen-
tial equations on a discretized mesh of independent vari-
ables proceeds in two steps: (1) obtain a discrete repre-
sentation of the functions and operators on the lattice,

= —) D F "[C]+S".
a=1

(3.4)

The viscosity term is given by

dQ"
dt

The modification to Q" is the history of the viscous
source term, in the form of an integral over time, from ini-
tial time to. Computationally, these conservation equa-
tions hold to the level of accuracy we require in the cal-
culation.

The set of conservation equations (2.7) may be cast in
the form of matrix equations for the fields C'" represented
by their values 4" = (C") on a lattice of points r
We will employ the basis-spline collocation method on a
Cartesian lattice, as explained below. The index a is now
a shorthand notation for (n, a„,a, ). In the collocation
method, local functions are represented by their values
at the collocation points. For example, F = (F(C) ) is
given by (F(4 )j, thus making it easy to handle complex
nonlinearities. Derivatives with respect to x, y, z are rep-
resented by matrices D where a = 1,2, 3. The discrete
form of Eq. (2.7) is then given by
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3

S"=v) D 4",
a=1

(3.5)
4"= = 4~ . This guess allows the computation of
4"++i using Eq. (3.9) in the form

where v is the numerical viscosity.
The time propagation is achieved through a nonlinear

iteration of Eq. (2.?). We rewrite the conservation equa-
tions in a shorthand notation as

4"+', = l + At%[4" ] . (3.13)

In the second step of our iterative solution, we simply
average the present iterate with the iterate before the
previous one

(3.6)
@en+i,a 2 (@m+1,n + @en+i,a) ' (3.14)

d4= T4 t dt. (3.7)

Consider the integral of Eq. (3.6) over a small, but finite
time step At,

We then compute the integrated residual between 4 +&

and 4"++&, and iterate until the total residual falls be-

low a prescribed threshold, usually 10 for 64-bit pre-
cision, or 10 for 32-bit precision. The total residual is

given by
Time is discretized in the sense that t = mAt+ to, where
m = 0, 1, . . . . We perform the integral in Eq. (3.7) to
obtain

~A'+&
~m+1, cx ~m, +l,o. (3.15)

C (tp + At) = 4(tp) + At&[4 (tp)], (3.8)

where we assume that X[4(to)] is a constant functional
evaluated at the average value of the field 4(to) over the
time step At.

We now consider the time-evolution algorithm for our
hybrid space-time lattice, where we may rewrite Eq. (3.8)
as

4 +i ——4 + 6tH[4 ], (3.9)

where the average is:—0 O +i +(1 —0 )C' (3.10)

and

8 = b(m+ n, even) . (3.11)

=0 4" +, +(1 —8 )4 (3.12)

Equation (3.9) describes a forward finite-difFerence ap-
proximation to Eq. (3.6). However, this simple formula
is an implicit equation because of the definition of the
average field C over the time step in Eq. (3.10). Using
the definition Eq. (3.11) in Eq. (3.10) is known as hop-
scotch averaging [17] which divides the lattice into odd
and even spatial points. This averaging 4 is defined,
for example, by combining the odd points &om C +q
with the even points &om 4 . In two or three dimen-
sions, a checkerboard pattern is used. Note that if we set
0 = 1 for all space points, then the evolution scheme
would be forward Euler; 0 = 0 gives backward Euler,
and 8 = 1/2 results in Crank-Nicholson evolution.

We solve the implicit equation [Eq. (3.9)] using a two-
step iterative process. In constructing the first step, we
begin with a guess for the value of the field 4 by

This scheme damps out instabilities in which the odd and
even points propagate independently. Usually less than
ten iterations are needed to obtain convergence in 4".

2. Splines

Given a set of points or knots denoted by the set (z, ),
a spline function of order M, denoted by BM, is con-
structed from continuous piecewise polynomials of order
(M —1). These splines have continuous derivatives up
to order (M —2). We only consider odd-order splines or
even-order polynomials for reasons related to the choice
of the collocation points. The ith spline is nonzero only
in the interval (z;, z,+M). This property is commonly
referred to as limited support. The knots are the points
where polynomials making up the spline join. In the in-

terval containing the tail region, the splines fall rapidly to
zero. The explicit construction of the splines is explained
elsewhere [15]. We can also construct exact derivatives
of splines provided the derivative order does not exceed
(M —1).

A continuous function f(z), defined in the interval

(z;„,z „), can be expanded in terms of spline func-
tions as

(3.16)

where the quantities c' denote the expansion coefficients.
We can solve for the expansion coefficients in terms of a
given, or to be determined, set of function values evalu-
ated at a set of data points, more commonly known as
collocation points. There are a number of ways to choose
collocation points [15,16]; however, for odd-order splines,
a simple choice is to place one collocation point at the
center of each knot interval within the physical bound-

aries

where k is the iteration index which has values A:

0, 1, . . . . The initial condition for the iterate is 4"=+&4, so that the initial value of the average field is also
&cx+M —1 + &ex+I

2
(3.17)
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Here, zM = z;, ziV+M = z, and N is the n»mber
of collocation points. Note that collocation points are
denoted by Greek subscripts. %e can now write a linear
system of equations by evaluating Eq. (3.16) at these
collocation points

(3.iS)

where f =—f(z ) and B; = B; (z ). In order to solve
for the expansion coefficients, the matrix 8 needs to be
inverted; however, as it stands, the matrix B is not a
square matrix, since the total number of splines with a
nonzero extension in the physical region is N + M —l.
In order to perform the inversion, we need to introduce
additional linear equations which represent the boundary
conditions imposed on f (z) at the two boundary points,
zM and zM~N. The essence of the lattice method is to
eliminate the expansion coefficients c' using this inverse
matrix. The details are discussed elsewhere [15]. Follow-

ing the inversion, the coefficients are given by

(3.19)

L(z) =L(z ), z; &z&z;+M. (3.20)

The collocation representation of the operators can be
obtained by considering the action of an operator 0 on
a function f(z)

C7f(z) = ) GBM(z)c* . (3.2i)

If we evaluate the above expression at the collocation
points x, we can write

Of = ) QB;c'. (3.22)

Substituting from Eq. (3.19) for the coefficients c', we
obtain

One can trivially show that all local functions will have a
local representation in the finite-dimensional collocation
space

as V' or V . By a similar construction, it is also possi-
ble to obtain the appropriate integration weights on the
collocation lattice [15].

B. The SHASTA Method

Bf 8+ (fu ) =S(z, t) (3.25)

describing the evolution of a conserved density f
Assume that the values f;, v;, and 8; for the density,

velocity, and source are given at grid point numbers i
at the beginning of the time step. The grid is evenly
spaced with a distance of b,z and the time step is b, t.
Our version of SHASTA in detail proceeds as follows.

(1) Compute dimensionless velocities ~; and numerical
difFusion coefficients v; at the midpoints:

At
K~+1/2 = Vi+1(2

LXZ
lgl

i+1/2 =
2 & 4 + &i+1/2) '

(3.26)

(3.27)

(2) Calculate the diffused untransported solution FD,
which does not contain the efFects of the fiow velocity but
only those of the artificial viscosity. It is obtained using
purely difFusive fiuxes f:

SHASTA. is an example of an algorithm that uses a
stable but diffusive differencing scheme. We restrict
ourselves to a brief overview of the principles of the
SHASTA; the details can be found in the original pa-
pers by Boris and Book [8—10]. Since there are different
variants of this algorithm, we describe below the exact
version actually used.

The essential idea of the FCT method is to increase
the stability of an arbitrary difFerencing scheme by in-

troducing a corrective nonlinear diffusion step. This nu-

merical dissipation is of conservative form. In a succeed-
ing antidifFusion step, this diffusion is removed partially
(flux limiter) to avoid spurious oscillations while retain-
ing sharp profiles in cases of discontinuities or steep gra-
dients. This numerical diffusion can either be introduced
externally by means of an artificial viscosity term or can
be inherent in the applied difFerencing scheme.

The basic algorithm is applicable to any one-
dimensional equation in the conservative form

= ) O~fp,
P

(3.23)
0

fi+1/2 + 1i/+(f2'+i —f' ) (3.2s)

where we have de6ned the collocation space-matrix rep-
resentation of the operator 0 by

O~=) GB;(B ) (3.24)

Note that the construction of the collocation space oper-
ators can be performed once and for all at the beginning
of a calculation, using only the given knot sequence and
collocation points. Due to the presence of the inverse in
Eq. (3.24), the matrix 0 is not sparse. In practice, the
operator 0 is chosen to be a &inferential operator such

F; = f*+ (f'+1/2 —f'-1/2) ~ (3.29)

Lt
1 + (v,+1 —u,), (3.30)

Q,+, =1—Q+ (3.3i)

(3) Calculate the transport convection factors Q+ and
Q, which are motivated by a simple geometric picture
of transport and redistribution into space-fixed cells [8].
This also contains diffusion in an implicit way, which can
be approximated by the diffusion coefBcients given above
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(4) Applying these factors leads to the transported dif-
fused solution I";

ggTD FTD gTD
i+1/2 i+ i i (3.33)

=4Q+ f' —4Q f'
+(Q+ + Q, )f; + SAt . (3.32)

We now construct Quxes containing the transport ef-
fects only by subtracting the purely diffusive ones &om
the transport-diffused ones, yielding the intermediate
Huxes bF~~ and f~

T p TD D TD D
4+1/2 fi+1/2 + i+&/2 ( i+1 Fi+1 Fi + Fi )

(3.34)

(5) Finally the antidiffusion step is performed: the dif-

fusive Quxes are removed from the transport-diffused ones
except where this would lead to the onset of instability in
the guise of accentuation of existing extrema or creation
of new ones. This leads to the standard FCT formulas

f;+~/2 ——gn(f;'+x/2) m (o, min[sgn(f, +z/2, ~F —x/2 If '+z/2 I'I"), sgn(f, +z/2)bF, +s/2]),
—(f;+i/2 —f; i/2)

(3.35)

(3.36)

yielding the values f at the end of the time step with the
help of the corrected Huxes f,+~/2.

The one-dimensional algorithm may easily be extended
to three dimensions using operator splitting methods.

The relativistic generalization of the SHASTA differs
from the nonrelativistic method in only two aspects. In
order to calculate the pressure, rest kame energy, and
number densities, we need to solve Eqs. (2.1)—(2.6) for n, ,

c, and the How velocity v in terms of the fields E, R, and
M. The solution is obtained &om a single fixed-point
equation [18]. Simple rearrangements yield

2'U

M2

(E+P),
= f(~')

with

P(c, n) = P(E —M~v, Rgl —v ) (3.37)

leading to the velocity components

Mi

(E+ P) ' (3.38)

e =E —M. v, (3.39)

IV. COMPARISON OF THE TWO METHODS

A. Coxnparisons for a specific collision

For comparative purposes, we have performed collision
calculations with the two methods previously described.

The solution of this problem is a major part of the nu-
merical effort and is a crucial ingredient of the relativistic
SHASTA algorithm.

In addition, it is necessary to avoid the generation of
cells with R ) E or M ) E. This can be done by a
modification of the Aux limiting, e.g. , by not carrying out
the antidifFusion step in the respective ce11s. The simplest
possibility is to readjust E to fulfill the conditions E &
M and E & R. The violation of the conservation laws
introduced by these modifications is found to be of the
order of the numerical accuracy.

The calculations were performed for the one Huid system
that models the initial state in the Si+ U nuclear sys-
tem, each with a relativistic p = 10 in the equal velocity
kame. Rest kame initial conditions in both calculations
were taken to be that of a Woods-Saxon density distri-
bution

s(r) = E'p

1 + exp [(r —rp)/Gp]
(4.1)

where ap = 0.5 fm is the nuclear skin thickness, rp is
the average nuclear radius calculated &om the number
of nucleons N as

r p
——1.128N i —0.89N (4.2)

and so ——0.156 GeV/fm is the initial rest-frame nu-

clear energy density. Initially all 4 fields and currents
are known. We stress that this is a schematic collision,
as we are only using a one-Quid model with a particularly
simple equation of state, and we have not included any
current source terms. A more realistic calculation would
include a realistic nuclear equation of state and, eventu-
ally, a color current term (in the form of a source), and
possibly the concept of interpenetrating fluids [19,20].

In each calculation, the nuclei were positioned in the
z, z collision plane with z being the collision axis. The
rest kame energy density profile of each nucleus was
boosted to the equal velocity kame with a Lorentz

10. The centers of the nuclei were positioned at
z = +1 fm initially. We performed two studies, one with
impact parameter 6 = 0 fm, and a second with impact
parameter 6 = 3 fm. We compare the zero impact param-
eter collisions here, as results are similar in both cases.
Surface plots of the laboratory density 4 can be seen in
Fig. 1, where the basis-spline calculations are shown in
the left hand column, and SHASTA results are given in
the right column at times t = 0 (top), t = 1.6 (middle),
and t = 3.2 fm/c (bottom). The basis-spline method
used a 32 mesh with dx = dy = 1.0 fm, dz = 0.2 fm,
while the SHASTA method used a n = n„= 128 (trans-
verse), n, = 64 (longitudinal) mesh, with dx = dy =
dz = 0.2 fm. Although the results are very similar, a
more detailed analysis indicates some differences at the
level of ten percent. We show in Fig. 2 a cut along the
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FIG. 1. We compare the time evolution of
the scalar component 4 for the two differ-

ent numerical methods. The basis-spline cal-
culation is shown in the left column, while

SHASTA is given in the right column. 4
is shown in the equal velocity frame at
times t = 0.0 (top), t = 1.6 (middle), and
t = 3.2 fm/c (bottom) for the zero impact
parameter collision of Si+U at p = 10 in the
equal velocity frame.

-2

25 —B-spl ines

20 ..-.-- ~ Shgsf g
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10-

50 '-

a 40:-

+ 30'-

t=1.6

10 '-

15-

~ ~ . I

t= 3.2

10-

5-

z axis in the z = y 0.0 plane at t = 0.0 (top), t = 1.6
(middle), and t = 3.2 fm/c (bottom). Differences seen in
the initial conditions are due to small differences in the
initial lattice setups. At t = 1.6 fm/c differences of a few
percent are noticeable. Although similar behavior is seen
in the final time step, one observes that the two meth-

ods have slightly different solutions at this stage of the
calculation. We have also plotted in Fig. 3 a transverse
cut, at t = 3.2 fm/c, at the local maximum of the target
(residual U) distribution (left), and the projectile distri-
bution (right). Differences in these distributions can be
explained by the use of higher resolution in the SHASTA
calculations.

We show in Fig. 4 the maximum rest frame energy
density (right), and the maximnm lab energy (left) as
a function of the time. The maximum value attained
shows a 7% difference. This maximum occurs at roughly
1.0 fm/c in both variables plotted. We have checked that
these differences do not arise as a result of the initial
conditions of the calculation.

In Fig. 5, we plot the longitudinal rapidity dis-
tributions of the laboratory energy density, d@o/dy
as a function of the rapidity variable, y
0.51n (C' + 4') / (Co —C") for various times during the
collision. It is obvious that in both cases the rapidity
peak of the spectator fiuid decreases as a function of time,
but at differing rates. One also observes from Fig. 4
that in the final stages of the evolution the maximum
laboratory energy density decreases more rapidly in the
basis-spline method as compared to SHASTA. It should
be noted that after t = 2.0 fm/c in Fig. 4 the maxi-
mum laboratory density resides in the residual nucleus
peaks in both calculations. The SHASTA calculations
use a higher resolution in the transverse direction than
the basis-spline method. Thus the smearing of transverse
shockwaves is larger for the latter method. This favors
a rapid depletion of the target rapidity region as seen in
Fig. 5 [20].

0 -4 -3 -2 -1 0 1 2 3 4
z (fm)

FIG. 2. We compare the time evolution of the scalar com-
ponent 4 along the collision axis (z axis) with a = y = 0.
The different times are indicated in the Sgure.

B. Computational comparisons

Calculations using the two methods described above
have been performed on diferent computational plat-
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FIG. 3. We show a two dimensional cut
for the 4 distribution at the final time
t = 3.2 fm/c. On the left is a transverse cut
at the maximum of the residual U nucleus.
On the right is a transverse cut through the
residual of the Si nucleus.
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FIG. 4. Maximum rest frame energy density (right) and
laboratory energy density (left) are shown as a function of
time. Basis-spline results are given by the solid line, while
SHASTA results are indicated by the dashed line.

forms. We brieQy discuss the calculational timings and
differences in this section.

The basis-spline calculations were performed on an In-
tel/i860 hypercube at Oak Ridge National Laboratory.
The principal points concerning implementation of our
hydrodynamic evolution code are as follows [7]. We per-
form all of our calculations on a lattice with N~, N»
and N, collocation points in the z, y, and z direc-
tions, respectively. For the parallel implementation of
the hydrodynamics code, it is necessary to partition the
problem among the various processors. Suppose there
are P processors. Our implementation requires that
the z dimension is evenly distributed among the pro-
cessors. Thus the vectors of each node are dimensioned
M = N /P, N„, N, . In the hydrodynamics calculation
approximately 40% of all operations are local to each
processor. The remaining 60% of the computational ef-

fort we need to address are vector-matrix-multiply prob-
lems. One of the difficulties of present day parallel com-

puting is the problem of node-to-node communication.
The current Intel machines have central processors that
are capable of 70 Mffops (maximum) for single preci-
sion operations, while the typical communications speed
is roughly 1 Mbyte (iPSC/i860) of information passed
per second. Thus efBcient use of the parallelism is lim-
ited and depends on the frequency of message passing
between nodes, and the length of messages passed. The
basis-spline method includes the use of nonsparse deriva-
tive matrices, which requires that the entire local vector
C be passed around the ring in a single calculation of
the derivative. The inner loops of the V' F calculation
described above perform at 16 MF on each node. Quan-

tities that measure the overall code performance are the
parallel speedup, S(p), and the parallel efficiency, e(p),
defined as

(4.3)

where T(p) is the CPU time required to run the code on

p nodes. For the 32-node calculation described in this
work, the code speedup was S(32) = 7.6, and the code
efficiency was s(32) = 0.24. The total calculational time
for the N = N„= N, = 32 run was 3.5 hours on a
32-node cube.

The SHASTA calculations were performed on an
IBM 3090-600J VF at the Gesellschaft fiir Schwerionen-
forschung (GSI) in Darmstadt. One simulation Si+ U
with a grid size given above needs 120 minutes. For these
calculations we used 120 Mbyte main storage.

V. CONCLUSIONS

In this paper we discussed and compared the basis-
spline algorithm and the SHASTA finite difference tech-
nique for solving the relativistic hydrodynamic conser-
vation equations. We performed a "nuclear" collision at
zero impact parameter in the one Quid model. Consid-
ering that the two numerical techniques are based on
totally different methods, and that we are examining an
extreme hydrodynamic situation, we find the resulting
agreement surprisingly good. The remaining differences
are of the order of up to ten percent. For applications in
heavy-ion collisions this is certainly sufficient in view of
other uncertainties in the physical situation. Differences
in the comparison may arise from the apparent differ-
ences in numerical dissipation in the two calculations.

We have used the very simple equation of state P =
r/3 in this one-fiuid model. More complicated equa-
tions of state could be used to model the transition from
hadronic matter to quark matter, and would include a
mixed phase state. Calculations using these far more
complicated (and more realistic) equations of state may
lead to more pronounced differences when compared to
each other. Investigations are currently under way to
determine the effects of real viscosity during relativistic
heavy-ion collisions. It has been suggested that the en-

tropy can be measured as a signal of the equation of state.
These calculations indicate that entropy production from
numerical dissipation must be well understood before hy-
drodynamic codes can be used to investigate signals for
phase transitions. In future work we will investigate the
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numerical and physical dissipation of using more realistic
equations of state.
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