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Efficient Green's-function approach to finding the currents in a random resistor network
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Using Green's functions, we reformulate Kirchhoff's laws for a two-component random resistor net-
work in which a fraction p of the resistors has conductance cr and the remainder have conductance 0.+.
In this Green s-function formulation (GFF), the current correlation between any two resistors in the net-
work is explicitly taken into account. The GFF yields a linear system equivalent to Kirchhoff's laws but
with a smaller number of variables. In the dilute case {p«1), the voltages can be calculated directly
with very high speed using the GFF. For genera1 p, a variety of algorithms can be used to solve the GFF
linear system. We present the technical details of solving the GFF linear system using the conjugate gra-
dient method (method A). Our extensive numerical work shows that method A consistently requires
fewer iterations than solving Kirchhoff's laws directly using the conjugate gradient method (method B).
For example, for a 128 X 128 grid with p ~ 0.65 and 0. /cr+ ~ 10, the number of iterations needed to
achieve a precision of 10 ' is more than 100 times smaller in method A than in method B.

PACS number(s): 02.70.—c, 64.60.Ak, 77.22.Jp, 05.70.Ln

I. INTRODUCTION

Kirchhofl"s equations for a random medium must often
be solved in statistical physics and materials science. The
two-component random resistor network [1,2] is one of
the most important problems of this kind, and is of
enduring interest. This is because many materials are
random and inhomogeneous, and this simple model cap-
tures the essential physics of many disordered media. In
a two-component random resistor network, each resistor
has conductance cr with probability p, or conductance
cr+ with probability 1 —p. (We may assume that
o+ &o without loss of generality. ) When o /o+=0,
the system undergoes a phase transition at the percola-
tion threshold p =p, . For example, if 0. =0, the net-
work conductivity is zero for p p„and is nonzero for
p &p, .

In real two-component mixtures, the ratio h:—0. /0. +
is not zero, but it can be very small. For any finite
nonzero h, there is no phase transition, and so this ratio
plays a role similar to the external field in a ferromagnet
[3,4]. A scaling form for the conductivity has been pro-
posed that describes the development of the singularity as
h ~0 [3]. Similar scaling forms have been advanced for
the cumulants of the macroscopic resistance fluctuation
[5—7]. Because much more computing time was needed
to perform simulations for small, «onzero h than for
h=0, numerical tests of these scaling forms were limited
to relatively small lattices.

There is currently much interest in random media that
are changed irreversibly by an applied electric field [8].
These so-called "breakdown problems" are a second ex-
arnple of a class of models in which Kirchhoff's laws for a
random network must be solved. "Burn out" of random
fuse networks [9—12], dielectric breakdown [10, 12—19],
and the onset of superconductivity in granular supercon-
ductors [20—24] have all been studied using breakdown
models. Because of their enormous complexity, these sys-

tems have been studied principally by Monte Carlo simu-
lations. In these simulations, Kirchhoff's laws must be
solved repeatedly, and most of the computing time is
spent in solving these linear equations. The number of
linear equations is proportional to the number of lattice
sites in the system. Therefore, the amount of computing
time needed increases rapidly with the system size, and,
as a result, most simulations have been limited to rela-
tively small systems. More efficient techniques for solv-

ing Kirchhofi's laws are desirable because they would al-
low us to more closely approach the infinite size limit.

To make these considerations more concrete, let us
consider a specific breakdown problem for a moment.
The model we shall consider is a variant of the model of
dielectric breakdown introduced by Takayasu [13].
Every nearest-neighbor pair of sites in a L XL square lat-
tice is connected by a resistor. Initially, each resistor ei-
ther has conductance 0.+ with probability 1 —p, or con-
ductance 0. with probability p. The conductance a+ is
much larger than cr, and 0 is nonzero. Busbars are
connected to the top and bottom of the network. For
p &p, =

—,', the network is initially an insulator with very
low conductivity. A voltage is now applied across the
two busbars, and its magnitude is steadily increased.
When the voltage across a resistor with conductance ~
reaches a specified threshold value, it irreversibly "breaks
down" —it becomes a resistor with conductance 0-+.
The voltage diC'erence across the busbars is increased un-
til they are connected by a path of resistors with conduc-
tance o.+. The network as a whole has then broken
down.

In this model, whenever the conductance of a resistor
changes, the voltage at each site in the network must be
calculated all over again. Typically, a large number of
resistors in the network breaks down before the network
as a whole becomes conducting. Therefore, a tremendous
number of computational steps must be performed in a
single simulation. This is a common feature of Monte
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Carlo simulations of all breakdown processes.
In both the two-component random resistor network

and in our model of dielectric breakdown, it is particular-
ly important to be able to solve Kirchhoff's laws
efficiently for a random resistor network with small
nonzero values of h. Typically, an iterative process is
used to solve Kirchhoff's equations for a random resistor
network. In such an iterative process, we start with some
initial value for the voltage at each site in the network.
The voltages at the (n+1)th iteration are then calculated
from their values at the nth iteration by some specified
means. This process is repeated until the desired pre-
cision is reached. A large number of operations must be
performed at each iteration. For example, for an L XL
square grid, the number of operations that must be per-
formed at each iteration is usually O(L ). The number
of iterations required to reach a certain precision is, ac-
cordingly, an important gauge of the effectiveness of an
iterative technique. The iterative numerical method most
frequently used to solve Kirchhoff's equations is the
conjugate-gradient method [25—28].

The number of operations required to solve Kirchhoff's
equations using the conjugate-gradient method depends
not only on the size of the lattice, but on the value of p as
well. For example, for a two-component random resistor
network with cr =0, the number of iterations required
to reach a given precision grows faster than the number
of sites in the lattice at the percolation threshold p =p,
[29,30]. This is called "critical slowing down. " Critical
slowing down occurs because at p =p, there are long-
range correlations between sites in the resistor network.

The effects of critical slowing down can be reduced
significantly by employing the multigrid method [31].
For example, it only takes 23 iterations on average to cal-
culate the voltages to a precision of 10 ' in a 400X400
square grid at the percolation threshold using the mul-
tigrid method. In contrast, about 1300 iterations are re-
quired to solve Kirchhofi"s equations for a 64X64 square
grid at p =p, to a precision of 10 ' using the
conjugate-gradient method [30].

Fourier acceleration [29,30] is a much simpler ap-
proach than the multigrid method for alleviating the
effects of critical slowing down. In this approach, the
long-range correlations in the resistor network at its criti-
cal point are taken into account through the use of a
preconditioning matrix E [28]. For each pair of sites
(r, r') in the lattice, there is an entry E,; in the precondi-
tioning matrix. In the Fourier acceleration approach of
Batrouni and co-workers [29,30], E, ; is taken to be
~r —r'~ ~, and the value of the exponent P is chosen to
optimize the performance. Numerical tests show that
Fourier acceleration significantly improves performance
for p =p, and cr =0. For example, it only takes about
392 iterations to solve Kirchhoff's equations for 64X64
square grid with p =—,', o.+ =1, and o. =0 to a precision
of 10 ' using the Fourier-accelerated conjugate-gradient
method (FACG} [30]. In contrast, 1287 iterations are re-
quired to solve the same set of Kirchhoff equations using
the conjugate-gradient method without Fourier accelera-
tion [30].

Although the successes of the FACG method are im-

pressive, the technique has some serious drawbacks. The
optimal value of the exponent P must be determined by
repeated runs for difFerent choices of the exponent.
There are indications that the efficiency of the algorithm
depends sensitively on the choice of P [32], and so this
optimization process could be rather time consuming. In
addition, the best choice for P depends on the values ofp,
L, and h. This means that in most simulations, the op-
timization process must be repeated several times if the
FACG is to be close to optimal efficiency for all parame-
ter values of interest.

The power-law form chosen for E, ; was motivated by
the fact that the correlation function decays as a power
law at the critical point. Ifp —p, is nonzero, the correla-
tion function has an exponential cutoff at large distances
[2]. Presumably, if the FACG is to be efficient away from
the critical point, this would have to be taken into ac-
count. The preconditioning matrix would then depend
on two parameters: P and a cutoff length. In principle,
both of these parameters would have to be adjusted to
give optimal performance, a task that seems daunting
indeed.

All the simulations of random resistor networks and
breakdown problems performed to date are based on
solving Kirchhoff's equations directly. In this paper, we
show that the speed of convergence can be improved
significantly by using an entirely different approach: We
calculate the voltage at each site in the network using a
Green's-function formulation (GFF} of Kirchhoff's laws
instead of solving Kirchhoff's equations directly. The
GFF yields a linear system of equations equivalent to
Kirchhoff's equations; we refer to this system as the GFF
linear system.

This approach has a number of attractive features.
Many algorithms for the solution of systems of linear
equations, e.g., the conjugate-gradient method and the
multigrid method, can be used to solve the GFF linear
system. Moreover, in the GFF, the current correlation
between any two bonds in the network is explicitly taken
into account, and this leads to a substantial increase in
the speed of the convergence. Only one of the two kinds
of resistors appears in the GFF linear equations. As a re-
sult, the dimension of the space in which we must search
for the solution is reduced. Rounding errors drastically
lower the speed of the conjugate-gradient method when Ii

is small, but are not a problein for GFF-based algorithms
in this regime. Finally, the GFF can be used for all
values ofp, L, and h.

To demonstrate the utility of the GFF, we show how it
can be combined with the conjugate-gradient method.
Our extensive numerical tests of this method show that it
is a particularly efficient method for solving two-
component random resistor networks with small nonzero
values of h. As we noted earlier, this limit is of special
importance in the study of two-component random resis-
tor networks and in breakdown problems. Our numerical
tests also show that when p is sufficiently small and
o =0, it is more efficient to use the conjugate-gradient
method to solve the GFF linear system than to employ it
to solve KirchhofPs laws directly.

The paper is organized as follows: In Sec. II, we con-
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struct the required Green's function and derive the GFF
linear system. In Sec. III, we show how the GFF can be
combined with the conjugate-gradient algorithm, and test
the efficiency of this method. Finally, in Sec. IV, we give
our conclusions.

II. GREEN'S-FUNCTION FORMULATION
OF THE RANDOM RESISTOR NET%'ORK

Here r can be any site in the network except a site on the
busbars: in other words, r y cannot be zero or (N —1)a.
Equation (3), together with the boundary conditions (1),
uniquely determines the voltage V(r). The solution to
this system of linear equations is also the minimum of the
function f subject to the constraints given in Eq. (1),
where

Consider a square grid in two dimensions with N sites
in the x direction, and N sites in the y direction. Let the
lattice spacing be a. We place a resistor on each bond in
the lattice. The conductance of a resistor can be either
o+ or o, where 0+ ~0 and 0. ~0 are arbitrary but
fixed. Busbars are placed on the top and the bottom of
the network, and a voltage di6'erence is applied across
these two busbars. We let the voltage on the top busbar
be Vo, and ground the bottom busbar. Periodic boundary
conditions are imposed in the x direction. Let V(r) be
the voltage at the point r in the network. The boundary
conditions are then

and

V(r) = Vo, V(r)
~

=0,r y —(X„—1)a

(lb)

Here x and y are unit vectors in the x and y directions,
respectively.

Throughout the paper, we will call a bond in the y
direction a vertical bond, and a bond in the x direction a
horizontal bond. If a bond connects the point (x,y) to
the point (x +a,y), we refer to this bond as a horizontal
bond located at (x,y). Similarly, if a bond connects (x,y)
and (x,y +a), we refer to this bond as a vertical bond lo-
cated at (x,y). To uniquely specify a bond we must give
both a coordinate and a direction. We will use the vector
s to distinguish the two bonds located at the point (x,y).
This vector can only take on two values: s =s =ay for a
vertical bond, and s=s„—=ax for a horizontal bond. We
label a bond located at r with direction s by (r, s). In or-
der to express several relationships succinctly, we define
the translation operator l, and the operator p, (r) as fol-

lows:

and

l, r=r+s, l,r=r —s, p, (r)= I, —1, —

g [o(r,s)p, (r)+o.(r —s, s)p, (r)]V(r) =0 .

p, (r) =I,—1,
where the parameter r in p, (r) and p, (r) indicates that
the operators l, and l, act on r. If I,(r) is the current
passing through the bond (r, s) in the direction s, then

I,(r) =cr(r, s)[ V(r) —V(l,r)]= —cr(r, s)p, (r) V(r),

where o (r, s) is the conductance of the bond (r, s).
Using the notation just introduced, Kirchhoff's laws

can be written

+cr(r —s, s)[p,(r)V(r)] ]

and the summation g, runs over all the sites in the net-
work. To solve Kirchhofrs laws numerically, we could
start with Eq. (3) and use over-relaxation, for example.
Alternatively, we could begin with Eq. (4) and use the
conjugate-gradient method to find the minimum of the
function f. In both Eqs. (3) and (4), only nearest-
neighbor pairs of sites are directly coupled. This reduces
the speed of convergence in both the over-relaxation
method and the conjugate-gradient method. For exam-

ple, in the over-relaxation method, a change in the value
of V(r) will propagate to the site r' only after
( ~x —x'~+ y —y'~ )/a iterations. To overcome this prob-
lem, we reformulate KirchhoFs laws using Green's func-
tions.

We begin by dividing V(r) into two parts: we set
V(r) = V (r)+ V'(r). We shall take V (r) to be the solu-
tion of the network in which each resistor has conduc-
tance 0+, and which is subject to the boundary condi-
tions (1). Therefore, V (r) = Voy/[(N» —1)a]. The func-

tion V'(r) is subject to the boundary conditions

V'(r)~ = V'(r)~, „~,~,
=0

r y —(X„

and

We will show that V'(r) can be expressed in terms of a set
of Green's functions U(r, ro, so). Our first step in this

process will be to define and construct these Green's
functions.

Consider a network in which all the resistors have con-
ductance 0+. We impose periodic boundary conditions
along the x direction, and set the voltage to zero at all

points on the two busbars. For convenience, we connect
each pair of points (n„a,0) and (n„a, (N —1)a) with a
resistor with unit conductance, where
n„=0, 1, . . . , N —1. Obviously, the presence of these
extra resistors will not affect the voltages in the network
once the boundary conditions are specified. We now in-

ject a current o+ into the network at ro=(xo, yo), and
draw the same amount of current out at the point ro+so.
Here ro and so are arbitrary. The Green's function
U(r, ro, so) is defined to be the voltage at the point r due

to this dipole current source. The current is conserved at
all points except ro, ro+so, and the points on the busbars.
Using this fact, we obtain

g [p,(r)+p, (r)]U(r, ro, so)=p, (r)5(r, ro) .
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U(r, r() s())l
& p U(r rp sp)l (& i) =0, (6a)

and

Here r can be any point in the network except a point on
the busbars, where r.y=O or r y.=(N —1)a. The value

of the function U on the busbars is determined by the
boundary conditions

transforms. The solution is

1 —exp( —ik sp}
u (r, rp, sp}=—,

' g sin (k„a/2)+sin (k„a/2)

X exp[ik. (r—rp) ], (12)

U(r, r(), s()) l -„p=U(r, r(), s())l, „ x
(6b)

where k„=2m n„ /N„a, k» =2m'n /N a,
nr =0~1~ ~ ~,N„—1, and n& =0, 1, . . . , N„—1. Using
the definition of g [Eq. (11)]and Eq. (12), we obtain

=6. ..(r~ rp) lr ) =(N - i)~
=0

~

y 0 ry — — a (8a)

It is useful to define a second Green's function,
6 (r, rp). We let 6 (r, rp) be the current passing

0 0

through the bond (r, s) in the direction s due to the
current dipole source located on the bond (rp sp). Clear-

ly, the relation between the Green's functions 6 (r, rp)
0

and U(r, rp, sp) is

6„(r,rp)= —p, (r)U(r, rp, sp) .

G must satisfy the boundary conditions

Gs s, (r, rp)l, .)=(„,)

[1—exp( —ik sp)][1—exp(ik. s)]
g (r, r())= —,

' g sin (k„a/2)+sin (k a/2)

Xexp[ik (r—rp)] . (13)

Equations {12)and (13) give us the Green's functions for
the voltage and current with periodic boundary condi-
tions in both the x and y directions. Both u (r, rp, sp) and

g (r, rp) depend on r —
rp but not on r+rp. This is a re-

sult of the translational symmetry of the network. Later
we will use this feature to reduce the number of opera-
tions needed in the numerical calculations. The Fourier
transform of g (r, rp) is

0

and

6 (r, rp)l, & p=G~ (r, rp)l, „ x

g„(k}—= gg„(r,O)exp( —ik r) .
1

x» r
(8b)

Using Eq. (13),we obtain

The boundary conditions (6a) make the solution of Eq.
(5) somewhat complicated. It is simplest if we first con-
struct the Green's function u (r, rp sp), which is the solu-
tion of

g [p,(r)+p, (r)]u (r, rp sp)=p, (r)5(r, rp) (9)

subject to periodic boundary conditions along both the x
and y directions. Explicitly,

u (r rp sp}l, , p=u (r, rp sp)l
x

(10a)

u (r, r(), s())l, -„p=u (r, r(), s())l, „N, .r.y —N„a
(lob)

g (r, rp)= —p,(r)u(r, rp, sp) .

The boundary condition (10b) can be realized by connect-
ing the points {n„a,O) and (n„a, (N —l)a) by a resistor
with conductance cr+, where n„=0, 1, . . . , N„—1. In
Eq. (9), r can be any point in the network, and u (r, rp, sp)
is the voltage at the point r due to the dipole current
source located at (rp, sp) when periodic boundary condi-
tions apply in both the x and y directions.

As previously, we define the Green's function g~ (r, rp)
0

to be

1 [1—exp( —ik sp)][1—exp(ik s)]g„(k)=—
4 sin (k„a/2)+sin (k„a/2)

(14)

We shall now construct the Green's functions U and 6
using u and g. Notice that the Green's function
u (r, rp, sp) is a solution of Eq. (5), but does not satisfy the
boundary condition (6a). However, any linear combina-
tion of the function u (r, rp, sp) with the functions
u (r, r', s') will be a solution of Eq. (5) if r' y=(N» —1)a.
To obtain U(r, rp, sp), we fortn a linear combination of
the function u(r, rp, sp) and the functions u(r, r', s') in
such a way that Eq. (6a) is satisfied. In other words, we
inject current into and draw current from the sites in the
top and bottom rows of the network in such a way that
the currents passing through the bonds
(n„ax+ (N» —1)ay, s' ) are zero, where
n„=0,1, . . . , N„—1 and s' can take on the values s and
s . The Green's function G (r, rp} also can be obtained

0
from a linear combination of the function g~ (r, rp) and

0

the functions g (r, r' }. This combination has the same
form as for U(r, rp, sp). Explicitly,

U(r, rp sp) =u (r i'p sp)

N —1x

+g g t;, (n ax, rp)
s' n„=Q

The Green's function g (r, rp) is the current passing
0

through the bond (r, s) in the direction s due to the dipole
current source located at the bond (rp, sp).

Equations (9) and (10) are easily solved using Fourier and

Xu(r, n„ax+ (N„—1)ay, s')

(15)



1716 KANG WU AND R. MARK BRADLEY 49

G~ (r, ro) g~ (r, ro)

—
1X

+ g g t;, (n„ax, ro)
s' n„=o

Xg„(r,
n„ax+�(N

—1)ay),

lows:

t (k„,r„)= g t (n ax, ro)exp( i—k„n„a) . (18)= 1
' '

SS0 X & 0

In Fourier space, Eq. (17) becomes

(16)

where the coefficients t;, (n„ax, ro) are determined by
0

Eq. (8a). We substitute Eq. (16) into Eq. (8a) and obtain

T (k„ro)+N„g t„(k„,ro)T~ (k„)=0, (19)

g„(n,ax+(N —1)ay, ro)

—1
X

+ g g t;, (n„'ax, ro)g~ ((n„n„')ax—,O)
S n

—0

=0, (17)

and

T (k„,ro)—:gg (k)exp( —ik ro)exp[ik (N —1)a]
k

To (k„)—:T„(k„(N —1)ay) .

where n„=0, 1, . . . , N„1. W—e define t~ (k„,ro) as fol- The solution of Eq. (19) is

lt„(k„,r )o=—
X

To„,(k„)T (k„ro)—T, , (k„)T, (k„ro)

To, (k„)T, , (k„)—T, , (k„)T, , (k„)
(20)

where

s» when s=s~

s, when s=s„.
Because of the translational symmetry of the network in the x direction, the function t~ (n„ax, ro) can be written

0
t (O, ro —n„ax). We will use this feature of t (n, ax, ro) in the numerical calculations. Using Eqs. (15), (16), and (18),

0 0

we obtain

and

X„—1 2' 2'U(r ro so) u (r, ro, so)+ g g t, , l, ro u(r, n„ax+(N —1)ay, s')exp i n, l
s' n, I =0 x X

X

N„—1
2m'6 (r, ro)=g~ (r, ro)+ g g t„ l, ro g~(r, n„ax+(N —l)ay)exp i n„lx, "

X

(21)

Together, Eqs. (20)—(22) give explicit solutions for the
Green's functions U and G [33].

Using Eqs. (20) and (22), one can prove that

G (r, ro)=G, ,(ro, r) . (23)

This symmetry will also be used in the numerical calcula-
tions. The value of G, , (r;, rj ) depends on both r; and

t jr. : it does not only depend on r,- —r alone. In this
respect, G, , (r, , r. ) differs from g, , (r, , r ). However,

J t J
there is translational symmetry in the x direction, i.e.,
6, , (r;, r ) does not depend on x, +x . This symmetryj
will be used to reduce the number of operations needed in
the numerical calculations.

So far, we have constructed the Green's function
6 (r, ro) for a network of identical resistors of conduc-

0

tance o.+. We are now ready to deal with the case in

which some bonds have conductance cr and the
remainder have conductance cr+. We 6rst consider the
simplest case, in which all the bonds have conductance
o + except one bond located at (ro, so) with conductance
o- . We apply a voltage Vo across the busbars so that the
boundary conditions are given by Eq. (1). The equation
determining the voltage V(r) in the network is

g [p,(r)+p, (r)]V(r)

=0 '[5(r, ro)p, (r)+6(r, l, ro)p, (r)]V(r),

(24)

where 0—=(1—h) '. We assume that

V(r)=V (r)+eU(r, ro, so),

where the coefficient e is to be determined. Substituting
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V(r) into Eq. (24) and using Eqs. (5) and (7), we obtain

QE+ Gs (rp rp}E= vpsp'y (25)

Similarly, the current leak at rp+sp is EI (e, rp—).
We now turn to the general case, in which there are n

bonds with conductance o . The ith of these bonds will
be labeled (r;,s;), where i =1,2, . . . , n The . rest of the
bonds have conductance o.+. The equation for the poten-
tial function V(r) is

g [p,(r)+p, (r)]V(r)

n

=Q ' g [5(r,r, )p, (r)
i=1

+5(r, i, r, )p, (r)] 'V(r) . (26)

As for the network with a single bond of conductanceo, we assume that V(r) may be written

V(r)= V (r)+ g e, U(r, r, ,s;) .
i=1

(27)

We will show shortly that such a representation of the
potential always exists. Substituting this equation into
Eq. (26), we find that the e s satisfy the linear system

Qe;+ g 6, , (r;,r, )e, = —vps; y,
j=l

(28)

where i =1,2, . . . , n When n= .1, Eq. (28) reduces to Eq.
(25). If we find a set of e s that satisfy Eq. (28), then
V(r) will be the correct solution for the voltage. For an
arbitrary set of e s, the current leak b,I([e;],rj. ) at the
pointr is

EI([e,],r )=(o+ cr ) Qe +—g G, , (r, rk}ek
k=1

+Uos-.y (29)

In numerical calculations, once the values of the e s have
been obtained, the potential at any point in the network
can be calculated using Eq. (27}.

Equation (28} is the GFF linear system that we set out
to derive. To understand its physical import, we begin by

where vp = Vp l(N» —1). This equation yields the value of
the coefficient e. With this choice of e, current is con-
served and the boundary conditions (1) are satisfied.
V(r) is thus the correct solution for the voltage.

Because V( r, rp sp } is a superposition of the functions
V ( r ) and U ( r, rp, sp ), Eq. (24) holds for all r except r =rp
and r=ro+so for arbitrary choices of e. This means that
the current is conserved at all the sites in the network ex-
cept these two sites for any value of e. If the value of e
given in Eq. (25) is not chosen, the current leak at the
point rp is EI(e, rp), where

EI(E,rp) =(0+cT')[QE+6 sN(rp rp)E+ vpsp'y] .

examining Eq. (27). V (r) is the voltage distribution gen-
erated by the applied external voltage when all bonds
have conductance o +. The Green's function U (r, r;, s; )
is the voltage distribution created by injecting a unit
current at r; and drawing the same current out at r;+s;.
This is a Green's function for the uniform network in
which all resistors have conductance o.+, and there is no
applied voltage. Thus, in Eq. (27), the voltage is decom-
posed into a portion coming from the applied external
voltage, and a linear superposition of voltages arising
from unit dipole current sources. The effect of the bonds
with conductance o is mimicked by replacing them by
resistors with conductance 0+ in parallel with dipole
current sources.

Why does a representation of the potential of the form
(27) always exist? For simplicity, consider the case n= 1,
so that there is a single resistor with conductance o
This resistor can be replaced by a resistor with conduc-
tance o+ in parallel with a current source. The current
source causes a fixed current cr+e to flow in the direction
opposite to the current through the resistor. When e is
chosen appropriately, this current compensates for the
increased current that flows through the resistor as a re-
sult of its increased conductance. Thus the conductance
0 can be replaced by a conductance 0+ and a dipole
current source. Clearly this discussion can be generalized
to arbitrary values of n. The GFF linear system (28)
specifies the appropriate strengths for the dipole current
sources in this case.

We have developed the GFF for the simplest case in
which there are only two types of resistors. However,
our treatment is readily generalized to networks with an
arbitrary number of resistor types. Suppose that there
are n bonds with conductances different from o+. The
ith of these bonds has conductance cr,. and will be labeled
(r, , s;), where i =1,2, . . . , n The res.t of the bonds have
conductance o+. The only modification to Eq. (28) that
is necessary is that 0 must be replaced by 0;, where
Q;—:(1—o;/o'+ )

In contrast to Kirchhoff's laws [Eq. (3)], the couplings
between sites are not restricted to nearest-neighbor pairs
in Eq. (28). Instead, e; and ej are coupled through the
Green's function G, , (r, , r ). In an iterative solution of

l J
Eq. (28), the change in e, at the nth iteration will propa-
gate to all the other ej's at the next [(n+1)th] iteration.
The changes in the other e 's due to the change in e; are
determined by the Green's function 6, , (rl, r,. ). Because

J l

of this long-range coupling, we expect the speed of con-
vergence in an iterative calculation of the e s using Eq.
(28) to be much higher than in an iterative calculation of
V(r) using Kirchhoff's laws directly. This expectation is
borne out by the numerical work described in Sec. III.

III. SOLUTION
OF THE GFF LINEAR SYSTEM

USING THE CON JUGATE-GRADIENT METHOD

The GFF linear system (28) can be solved using a
variety of numerical methods. In this section, we will use
the conjugate-gradient method to solve Eq. (28) numeri-
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cally. We call this method A. For comparison, we will
also solve Kirchho8's equations directly using the
conjugate-gradient method (method B). In our numerical
calculations, the boundary conditions are given by Eq.
(1), and we apply a voltage difFerence VO=N between
the two busbars. The conductance of each resistor in the
network is either 0. with probability p, or cr+ = 1 with

probability 1 —p. We will first give the details of imple-
menting method A, and then show that it is usually much
faster than method B.

Because the number of variables in Eq. (3) is

N, (N —2), it is impractical to solve Eq. (3) directly by
computing the inverse matrix for all but the smallest of
networks. On the other hand, the number of variables in
Eq. (28) is n, the number of resistors with conductance
(7 . To solve Eq. (28) directly, we must calculate the in-

verse matrix of a n Xn matrix. This calculation requires
O(n ) operations [34]. For small n, this scheme will be
very efficient. When n is close to the total number of the
resistors in the network b, we can still solve Eq. (28)
directly by making the following changes in Eq. (28):
first, we replace the summation over all the resistors with
conductance cr by a summation over all the resistors
with conductance ~+, and then we replace Q by
0'=(1—h ') '. After these replacements, there will be
only b nv—ariables in the new form of Eq. (28). It re-
quires O((b —n) ) operations to calculate the inverse ma-
trix of this (b n) X—(b n) m—atrix, and when n is close
to b, this is practicable.

When both n and b —n are large, it is inefficient to
solve Eq. (28) directly. In this case, other methods should
be used. Using the symmetry property (23) of the
Green's function G, , (r;, r ), it can be shown readily that

J
the solution of Eq. (28) is the minimum of the function F,
where

[26]). At step 0, we choose some initial set of e', 's, and
calculate the derivative q

' of the function F with respect
to e; at this point for i =1,2, . . . , n. The q 's are ob-
tained from the relation

P(m) —y G (r r )g(m)
Jj=1

for i = 1,2, . . . , n and

(31)

I(m) — y Q(m)(I})g(m)+ p(m)
)

X y q(m)q(m) (32}

The point [e( +"] at the (m+1)th iteration, and the
derivatives of F with respect to the e s at this point (the

q +"s) are found using

and

( +1)—( )+ I( )~( )
I

(m + ) ) — (m)+ I(m)(f1~(m)+p(m) )I I

(33)

(34)

Finally, the Q
+"s are computed using the relation

~( +1) (-+1)+,( )~( )
~r I ~i

where

(3&)

q,
-' '=Be'; '+ g G, , (r, , rj-)e~ '+vos; y .

t Jj=l
We also put Q '=q ' for i =1,2, . . . , n N. ow consider
the situation at the mth step. The e'; 's, q 's, and

Q,
' 's have been computed at this stage. We now calcu-

late

F= —,
' g Qe, + —,

' g g G, , (r, , r, )e, e,
i=1 i=1 j=l

t(m) — ~ (m) (m)~q, q,
i=1

(m+1) (m +1)
I

i=1
(36)

+vogs, ye, . (30)

We shall employ the conjugate-gradient method to find
the minimum of the function F.

To calculate the function F directly for a given set of
e, 's, we must perform O(n ) operations. As long as the
number of iterations needed to reach the minimum of the
function F is less than O(n), using Eq. (30} to ealeulate
the e, 's will be more efficient than inverting Eq. (28)
directly. However, the number of operations will still be
large for very large N. Actually, as we shall see, we can
calculate the function F in Fourier space using fast
Fourier transforms (FFT's). This allows us to compute F
with O(N„N log2(N„N )) operations [35] for a given set
of e,-'s. Typically, n is on the order of pX+Xyp and so this
will be more efficient than computing Fdirectly. Accord-
ingly, for large n, we shall calculate the function F in
Fourier space instead of real space.

We begin by explaining how the conjugate-gradient
method is used to solve the GFF linear system (for a gen-
eral discussion of the conjugate-gradient method, see Ref.

We repeat this procedure until
1/2

n
(m) )2

where b is the desired precision. Using Eqs. (29) and
(30), we see that this condition can be written

' 1/2
n

g [AI([e, ],r, )] ~b, .
n(o+ —o )

(37)

Therefore, the stopping criterion (37) limits the root-
mean-square current leak in the network.

Performing the summations in Eqs. (32)—(37) only re-

quires O(n) operations for each iteration. The most
time-consuming part of each iteration is to calculate the

P,' 's defined in Eq. (31). This requires O(n ) operations
if the sums are carried out directly. Provided n is not too
large, the P,' 's can be calculated using Eq. (31), but for
large n a different approach is needed.

In order to reduce the number of operations needed to
evaluate the P 's using Eq. (31), we carry out the calcu-



49 EFFICIENT GREEN'S-FUNCTION APPROACH TO FINDING. . . 1719

lation in Fourier space. We divide the resistors with con-
ductance e into two groups. The first group contains
all the horizontal resistors, and we use the variable h, to
specify the location of the ith horizontal resistor. The
other group consists of the vertical resistors, and the vari-
able v; will be used to specify the location of the ith resis-

tor in this set. We let nI, and n, be the number of hor-
izontal resistors and vertical resistors with conductance0, respectively. The total number of the resistors with
conductance o is n), +n„=n W. e use Q,' '(h;) and

Z

P,' '(h;) to represent the values of Q
' and P ' for a

horizontal resistor located at the position h;. Similarly,

Q,' '(v, ) and P,' '(v, ) are the values of Q
' and P,' ' for

a vertical resistor located at v;. We define
+i g Q,' '(v )5(r,vj) .

j=1
s (43a)

we use Eqs. (38)—(41) to calculate the P,' '(r, )'s, we must
l

perform FFT's of Q', '(h, ), Q', '(v, ), P',m'(k}, and

P,' '(k) separately. Four FFT's must therefore be done

for each iteration if we use these equations.
Actually, the number of FFT's needed for each itera-

tion can be reduced to two using the fact that Q', '(r), ),

Q~™(r„),and P', '(r; ) are real. To see how this is done,s v
t

let

nI

and

n&

Q,' '(k)=— g Q( )(h;)exp( —ik h, ),
x p i=1

U

Q,' '(k)—= g Q,' '(v, )exp( —ik v, ),
N, N»,

(38) and

(39)

nI

+i+P,' '(v )5(r, v ) .
j=1

(43b)

N —1 N —1
Z y

t~(k)= g g t m(n„ax, n ay)
n =0 n =0z y

Here r is an arbitrary point in the network. 5(x, y) is one
if x=y and is zero otherwise. Note that

Xexp[ —ik (n„ax+n ay)] . P( )(h;)=R [P(")(h;)] (44)

(40) and

Using the fact that t (n„ax, ro) can be written

t (O, ro n„ax—) and Eqs. (13), (14), (18},and (22), we ob-

tain

P,' '(r, )=N„N g gP( '(k)exp(ik. r;),
k s'

where

(41)

P (m)(k) (k)[g (m)(k)+e»» J(m)(k }]

and

s" k
(42)

Note that J,' ' depends on k„alone and that it involves a
single sum over k». This leads to a tremendous reduction
in the number of operations required at each iteration
and makes method A practical. This reduction is a direct
consequence of the translational symmetry in the x direc-
tion. If it were not for this symmetry, it would take
O(N„N» ) operations to evaluate P ~™(k),instead of just
O(N„N ) operations.

To calculate the P', '(r, )'s using Eq. (41},we first must
l

calculate Q,' '(k) and Q,' '(k} from Eqs. (38) and (39)

using FFT's. Next, we calculate the J'; '(k„)'s using Eq.
(42). This takes 0{N„N„) operations. Finally, the
P,' '(r;)'s are calculated from Eq. (41) using another

FFT. Each FFT requires O(N„N»log2(N„N» )) opera-
tions. Therefore, the number of operations required to
calculate the P', '{r;)'s is of order N„N»log2(N„N»). If

t

P', '(v;)=Im[P' '(v, )], (45)

where Re(z} is the real part of the variable z and Im(z)is
its imaginary part. Similar relations apply to Q,' '(h, )

and Q,' '(v, ).

We are now ready to explain how the computation is
performed. Let Q' '(k) and P' '(k) be the Fourier
transforms of Q(™(r)and P' '(r), respectively. Once we
obtain Q

' '(k) from Q' '(r) using a FFT, we calculate

Q,' '(k) and Q,' '(k) using the following formulas:

Re[Q,' '(k)]= —,'Re[Q' '(k)+Q' '( —k)], (46)

1m[/ (m)(k}] ) Im[g (m){k} g (m)( k)]

Re[g (m)(k)] ) Re[g (m)(k) g (m)( 1 )]

(47)

+i g {g, , (k)[Q,' '(k)+J,' '(k„)]] .
S

(50)

P(™(r)is obtained by performing a FFT onp ( '(k). Fi-
nally, PJ

' is computed using the definition of P' '(r).
Thus two FFT's must be performed for each iteration,

and

Im[Q', '(k)]= —,'Im[Q' '(k)+Q' '( —k)] . (49)

After J,'. '(k„) is calculated using Eq. (42), we calculate

P ' '(k) using

P' '(k)= g {g, , (k)[Q', '(k)+J', '(k„)]]
S
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one to obtain the function Q
' '(k) and the other to find

P(m)(r)
Let us summarize the steps in our algorithm. Both

g .(k ) and r ~ {k ) are calculated before the simulation be-
gins using Eqs. (14), (20), and (40). The main task in the
conjugate-gradient method is to calculate the P,' 's
defined in Eq. (31). In order to reduce the number of
operations in the calculation of the P,-' 's, we use the fol-
lowing procedure: After we obtain Q

' using Eqs.
(34)—(36), we calculate the function Q' '(r) using Eq.
(43a). The functions Q

' '(k) is obtained by performing a
FFT on Q' '(r). Next, Q,' '(k) is calculated from

Q
' '( k ) using Eqs. (46)—(49). We then calculate

J,' '(k, ) and P ' '(k) using Eqs. (42) and (50), and per-
form a FFT on the function P ' '(k) to obtain P' '(r).
Finally, we use Eqs. (44) and (45) to calculate the Pl 's.
All of these steps require 0 (N„N ) operations except the
two FFT's, which require O(N, N~log2(N, N~)) opera-
tions. In contrast, if Eq. (31) is used to compute the
P,™'sdirectly, 0 (p N„N ) operations are needed.

In order to sensibly compare methods A and B, we
must adopt the same stopping criterion in both methods.
The criterion we use limits the current leak on each site
in the network. Let AI,- be the current leak at the site i.
The stopping criterion is

where the sum runs over all the sites in the network, and
5 is the desired precision. This criterion is essentially the
same as Eq. (37). We required a precision of 5=10 ' in
all of our calculations. This precision is much higher
than that typically used in simulations. Since the
behavior of the convergence is different for 0. =0 and
0. & 0, we will discuss these two cases separately.

I.et Nz(N, p, cr ) and Nz(Np, cr ) be the average
number of iterations required to reach the desired pre-
cision using methods A and B, respectively, for a given
set of values of the lattice size N:—N&Ny p, and 0 . In
the numerical calculations, we computed N„(N, p, cr )

and Ns(Np, cr ) for the lattice sizes 16X16, 32X32,
64X64, and 128X128, and averaged over 200, 100, 50,
and 10 configurations, respectively. For each lattice size
and value of cr, we calculated N„(N,p, o ) and

N~(N, p, cr ) for the values of p ranging from 0.05 to 0.95
in steps of 0.05. In order to compare the overall perfor-
mance of methods A and B, we define M (N, o' ) to be

Nii(N, cr )
M(N, a. )=

N~(N, o. )

where

80

7.0 :
6.0 :
5.0 :

I

O
4.0 :
2.0 :
1.0

cr =0. Nz(N, o ) is the number of iterations required
to reach the desired precision using method A averaged
over the interval pE(O, po), and Nz(N, o ) is defined
similarly.

First consider the case 0. =0. Figures 1 and 2 show

N~ and Nz vs p for several different lattice sizes. Both
N~ and N~ grow larger as p increases, and reach a max-
imum at p=0.5. This increase as the critical point is ap-
proached is a result of critical slowing down.

Critical slowing down occurs because as p approaches
p„ the geometry of the conducting clusters becomes in-

creasingly more complex. Method A does not contain in-
formation about the fractal geometry of the conducting
clusters, and so it suffers from critical slowing down. If
we combined the multigrid method [31] with the GFF,
critical slowing down would presumably be all but elim-
inated. Alternatively, for p close to p„ the number of
iterations could be reduced by deleting isolated clusters
of conducting bonds.

Figure 3 shows the ratio NIi/N„ for several different
lattices sizes. For all the values of p and N we studied,
Ns/N„was greater than 1. Thus method A requires
fewer iterations than method B to reach the specified pre-
cision. Furthermore, even though method A does suffer
from critical slowing down, its effect is less dramatic than
in method B. For example, for N=128X128 and p =

—,',
method B requires about five times more iterations than
method A.

A log-log plot of the ratio M (N, O) vs the size of the lat-
tice N (Fig. 4) shows that M(N, O} is an increasing func-
tion of the lattice size N, and that M(N, O) reaches the
value 7.12 when N = 128 X 128. From Fig. 4, we see that
log, oM(N, O) is approximately linear in logioN and hence
M(N, O) =cN" for large N. This allows us to use the ex-
ponent x to compare the performance of methods A and
8 for large N. A linear least-squares fit to the data in Fig.
4 yields x =0.253+0.003 and c =0.61+0.01. Since x is

Pp
N„(N, cr }

—= I N„(N,p, cr )dp
po

0.0
0 0.1 0.2 0.3 0.4 0.5

and

Po
Ns{N, cr ) —= I Ns(N, p, cr )dp .

pp p

Here pp takes on the value 1 for o. )0, and is —,
' for

FIG. 1. The number of iterations required to reach the pre-
cision 6=10 ' in method A (X„) is plotted vs p for several
different lattice sizes. In each case cr =0. The dashed lines are
merely guides to the eye. The lattice sizes are 16X16 (+),
32X32 (~), 64X64 ( X ), and 128X128 (0 ).
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FIG. 2. The number of iterations required to reach the pre-
cision 5=10 ' in method B (N&) is plotted vs p for several
difrerent lattice sizes. In each case 0 =0. N& was calculated
for the same set of the configurations as used in Fig. 1. The lat-
tice sizes are 16X16 (+), 32X32 (~), 64X64 (X), 128X128
(o).

greater than zero, the bigger the lattice size is, the more
we gain using method A.

We now turn to the case o. & 0. Our numerical results
show that as cr approaches zero, the value of Nz in-

creases rapidly. When o is small but nonzero, the num-

ber of iterations needed to attain the desired precision is
much larger than when o. =0. This can be seen in Fig.
5, which shows N~ for a lattice of size 128 X 128, and for
several values of o . This figure is to be compared with
the data for the 128X128 lattice with e =0 shown in

Fig. 2.
Let us contrast this with the efficiency of method A for

small nonzero o . The value of 0 in Eq. (30) tends to 1

as o approaches zero. Therefore, as o approaches
zero, N„converges to its value for o =0. Figure 6
shows N~ vs p for several different values of o for the
lattice size 128X128. The curves for o =10, 10

25

20

FIG. 4. A log-log plot of M(N, O) vs the lattice size N. The
solid line is a linear least-squares fit to the data.

f=
—,'v Av, (51)

70

6.0 : 0

5.0
p

and 10 are successively closer to the curve for o =0.
Thus method A requires far fewer iterations than method
B to reach the desired precision when o is small but
nonzero. Figure 7 shows N~/N„vs p for several values
of o for the 128 X128 lattice. In the region 0.5 ~p & 1,
the number of iterations needed is dramatically reduced
by using method A. For example, for N=128X128,
cr =10,and p=0.8, the value of Nz /N„exceeds 200.

Figure 8 is a log-log plot of M(N, o ) vs the lattice
size N for several different values of o. . Again,
log, oM(N, cr ) is approximately linear in log&ON, and so
M(N, o ) =cN" for su—fficiently large N. Figure 9 shows
the values of x for several different values of o . The ex-
ponent x appears to have a minimum value of x;„—=0.4;
certainly all values of x exceed 0.34. We have seen that
method B becomes increasingly ineScient as o ap-
proaches zero. To see why this is so, we begin by writing
Eq. (4) in matrix form:

g 15

10

~ ~
+

X
X

~ ~
+

8
I

O

4.0

3.0

2.0

1.0

„-..;.n. a.s::I

I

0 ~
, X

.v. ~ +

'0
~ ~

X .
I 0

~ 'Q,
.+- -+- ~+.

. 0
o- «&-

0 rl-0- 0-a (j (:I
4 i -i-4

I &» & I » & & I 0 0.2 0.4 0.6 0.8

0.1 0.2 0.3 0.4 0.5

FIG. 3. The ratio N&/N& as a function of p for the lattice
sizes 16X16 (+), 32X32 (~), 64X64 (X), and 128X128 (0).
In each case, cr =0.

FIG. 5. A plot ofN& vsp for cr =10 ' (4), 10 (0), 10 '
(Q'), 10 (+), 10 '(~ ), 10 (X), and 10 (0). In each case,
the lattice size is 128X 128. The dashed lines are guides to the
eye.
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FIG. 6. A plot of X& vsp for o. =10 ' (8, ), 10 (0), 10 '
10), 10 (+), and 0 (o). In each case, the lattice size is
128 X ).28. The dashed lines are guides to the eye.

where v—= ( V(r, ), V(rz), . . . , V(rh, )) . The N XN matrix
3 has components 3 (r, r') given by

—
—,
' g a(r, r"), if r=r'

A (r, r')—:'
—,'cr(r, r'), if r' is a nearest neighbor of r

0, otherwise .

FIG. 8. A log-log plot of M(X,o } vs the lattice size W for
rr =10 ' 16), 10 ( ), 10 ( I)), 10 (~), 10 ' (+), 10
( X ), and 10 ' (0 ). The solid lines are linear least-squares fits
to the data.

tion is based the following fact: Let v' ' be the value of v
obtained at the kth iteration, and let d' ' be the derivative
of f at that point. v'"' is the minimum of the function f
in the subspace

[viv=v' '+cod' '+c, Ad' '+ +c&A "d' '],

300— r—i i

(
-r~

Here 0 (r, r') is defined to be the conductance of the resis-
tor connecting sites r and r', and the r" are the nearest
neighbors of site r.

There are two factors that affect the efficiency of
method B when cr is small. Let R be the ratio of the
largest eigenva. 'ue to the smallest eigenvalue of the matrix
A. If R is large, then the convergence to the solution in
method B is slow, while if R is close to 1, the convergence
is rapid [28]. When h is small, R will be large. As a re-
sult, method B converges slowly in this regime.

The second factor that limits the efficiency of method
8 is rounding errors. In the absence of rounding errors,
method 8 takes at most X iterations to reach the
minimum of the function f [27]. The proof of this asser-

where co,c„.. . , cI, are arbitrary real constants. For
k =S, the subspace becomes the entire space. Thus the
number of iterations required to find the solution is less
than or equal to 1V. In a real computation, rounding er-
rors are always present, and method B takes many more
than N iterations to reach the minimum of f. This shows
that method B is very sensitive to the effect of rounding
errors. The efficiency of method B depends a great deal
on how precisely the vectors d' ', A d' ', . . . , 3 d' ' are
calculated. When h is small, the relative precision
achieved in calculating these vectors is low. Moreover,
the value of v" is used in computing v'+". As a result,
rounding errors are compounded during the course of the
computation.

So far, we have seen that method A saves a significant
number of iterations in solving for the current Aow in a
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10 10 10 t0 10FIG. 7. N~/N„ is plotted vs p for rr =10 10), 10 (+),
10 ' (), 10 ( X ), and 10 (0 ). In each case, the lattice size
is 1V = 128 X 128. The dashed lines are guides to the eye. FIG. 9. A semilog plot of the exponent x vs o.
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If the value of ri(N, p, o ) is greater than 1, then method
A is more efficient than method B.

We first consider the case cr =0. In Fig. 10, g is plot-
ted vs p for several different lattice sizes. This figure
shows that method A is not always more efficient than
method B. However, for a given value of N, method A is
always more efficient when p is sufficiently small. More-
over, for a given p, method A is the more efficient of the
two methods for sufficiently large lattice sizes. The
greater efficiency of method A for small p stems from the
fact that the GFF linear system is typically quite small in

35
03—

2.5

0-

1.5
+

0.5

0
-x- .

- . ~ -x-

+--- +. . +

0
x --x++

0

0.1

I » i i I

0.2 0.3
p

0.4 0.5

FIG. 10. The relative efBciency g as a function of p for the
lattice sizes 16X16(+), 32X32 (~), 64X64 ( X ), and 128X128
(o ). In each case, o. =0. The dashed lines are guides to the
eye.

resistor network. However, each iteration in method A
requires more operations than in method B, i.e., the over-
head is greater in method A. To fully evaluate the
efficiency of the two methods, we must consider both the
number of iterations and the number of operations at
each iteration.

Let us first consider the overhead in method A. Since
multiplications are much more time consuming than ad-
ditions on most processors, we shall only take multiplica-
tions into account in determining the overhead. To cal-
culate the P 's, two FFT's must be carried out. Each of
these take 2N log2N multiplications [35]. Considering the
symmetries of P ' '(k) and J,' '(k„), we find that 12N
multiplications must be performed to calculate the
P ' '(k)'s using Eq. (50). Thus, if we compute the P 's
using FFT' s, the total number of multiplications needed
is 4N log2N +12N. This is the largest source of overhead
in method A. On average, the remaining number of mu1-

tiplications needed is 10pN The a. verage number of mul-

tiplications needed per iteration in method A is 4N
log2N + 10pN + 12N.

The number of multiplications needed for each itera-
tion in method B is 10N Let ri(. N, p, o ) be the ratio of
the average CPU time needed to calculate the currents in
the network using method B to the corresponding time in
method A. We have

10 Na(Np, o )
rt(N, p, o ) =

41og2N+10p+12 Nz(N, p, o' )
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FIG. 11. g is plotted vs p for o =10 ' (Q), 10 4 (+), 10 '
(4), 10 ( X ), and 10 ' (0 ). In each case, the lattice size is
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IV. CONCLUSIONS

In this paper, Green's functions were used to reformu-
late Kirchhoff's equations for random resistor networks
with two types of resistors. In this Green's function for-
mulation (GFF), the current correlation between any pair
of resistors in the network is explicitly taken into ac-
count. The GFF yields a linear system equivalent to
Kirchhoff's laws, but with a smaller number of variables.

A variety of algorithms can be used to solve the GFF
linear system, including iterative methods like the
conjugate-gradient method. Since the conjugate-gradient
method is frequently employed in simulations of random
resistor networks, we used this method to solve the GFF
linear system. We call this algorithm method A. Our ex-
tensive numerical work showed that in two important re-
gimes, method A is considerably more efficient than solv-
ing Kirchhoff's laws directly using the conjugate-gradient
method (method B).

We compared the efficiency of methods A and B by
solving for the voltages in a two-component random
resistor network in which a fraction p of the resistors has

this regime. For p close to 0.5 and for small lattices, the
greater overhead in method A makes it less efficient than
method B.

Now let us turn to the case in which 0 & 0. Figure 11
shows g as a function of p for several different values of
cr The la.ttice size N is 128 X 128. For p less than 0.4,
the relative efficiency g is greater than, 1 although in all
cases it is less than 6. In this regime, method A is the
more efficient of the two algorithms, although not
overwhelmingly so. As p is increased beyond 0.5, howev-
er, method A becomes vastly more efficient than method
B. For example, for N = 128X 128, cr =10, and
p=0.7, method B requires more than 30 times more CPU
time than method A. This is of particular interest, since
in many simulations of breakdown processes, Kirchhoff's
laws must be repeatedly solved for random resistor net-
works in which the majority of the bonds have a small
nonzero conductance cr
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conductance o. , and the remainder has conductance
ca+=1. In all cases, the computation was terminated
once a precision of 10 ' had been achieved. For a
128X128 grid with 0. =0, the number of iterations
needed in method B was 5 —22 times greater than in
method A (the relative efficiency of the two methods de-

pends on the value ofp). This reduction in the number of
iterations is to some degree offset by the greater overhead
in method A. We found that method A is more efFicient
than method B when p is suSciently small or N is
sufficiently large. Method A is more efficient than
method B when 0 is small but nonzero for all values of
p and lattice sizes X we studied. Method A is particular-
ly eScient when 0&o «o+ and p )p, . For example,
for a 128 X 128 square grid with p =0.8 and
crclo+ =10, method B required roughly 250 times
more iterations than method A to reach the desired pre-
cision. Even when overhead is taken into account,
method A is more than 30 times more eScient than
method B. Method A therefore provides an effective
means of testing scaling forms for the resistance Auctua-
tions in a two-component random resistor network with
0&cr /o+ «1.

The high ef6ciency of method A stems in part from the
fact that a change in the voltage at one site propagates to
all other sites in the network in a single iteration. This is
also true of the Fourier-accelerated conjugate-gradient
(FACG) method. However, our GFF approach is funda-
mentally different than the FACG method. In the
FACG technique, long-range couplings are introduced
through the use of a preconditioning matrix E with en-
tries E(r, r') that are proportional to ~r

—r'~ ~. The ex-
ponent P is chosen to optimize the performance. This op-
timization is accomplished through repeated numerical
tests of the efficiency achieved for different choices of P.
There are indications that the efficiency depends sensi-
tively on the value of P [32].

Method A has no adjustable parameters, and so no op-
timization is needed. In addition, we have shown that
our technique delivers exceptional performance for small
o. , particularly when p is greater than p, . Although the
FACG method has not been tested in this regime, we ex-

pect it to suffer from much the same problems as the
conjugate-gradient method when o is small.

Critical showing down occurs in method A as the per-
colation threshold is approached. However, the mul-

tigrid method has been shown to substantially reduce the
effects of critical slowing down. If the multigrid method
[31] were used to solve the GFF linear system, critical
slowing down would presumably be all but eliminated.

Although we tested method A on random resistor net-
works with uncorrelated disorder, our technique can
equally well be applied to nets with correlated disorder.
In particular, it can be used to study breakdown in ran-
dom resistor networks. As we noted in Sec. I, random
resistor networks in which a majority of the bonds have a
small nonzero conductance o arise frequently in simula-

tions of breakdown models. We have shown that method
A is a vastly more eScient method of solving this type of
problem than the traditional method of solution (method
B). Since method A is more efficient than method B and

yet is not diScult to implement, we hope that method A
will eventually supplant method B in future work on
breakdown in resistor networks.

Our tests of method A were confined to two-
component random resistor networks in two dimensions.
However, method A is readily generalized to networks
with many different types of resistors, and applies in any
space dimension.

In the present paper, we considered random resistor
networks exclusively. However, a GFF can be developed
for random networks of Hookean springs, following al-
most the same procedure as for random resistor networks
[36]. We expect that simulations of random elastic net-
works based on the solution of the resultant GFF linear
system will be very efficient. This subject will be dealt
with in detail in our future work.
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