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Spectral properties of stochastic electromagnetic fields with spherical symmetry
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We discuss the general solution of equations of the second-order correlation theory in the space-
frequency domain for classical, statistically stationary vector electromagnetic 6elds. The spectral
properties of radiation are studied in detail for Belds which are spherically symmetric in the statistical
sense. The formalism of cross-spectral tensors and mode decomposition are used. It is shown that
the frequency dependence of the spectrum of radiation may differ in different points of space.
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I. INTRODUCTION

In the past few years there has been a good deal of
research regarding the spectral correlation properties of
partially coherent radiation. In particular, studies of
changes in spectra of radiation induced by coherence
properties of sources have become of considerable inter-
est following a theoretical prediction that, in general, the
normalized spectrum of light is not invariant on propa-
gation, even in &ee space [1]. This prediction has been
subsequently veri6ed experimentally by several groups
[2—4]. Numerous publications both theoretical [5—8] and
experimental [9—11] dealing with this phenomenon have
appeared since then. The changes in the spectrum which
are dependent on the state of coherence of the source
have been studied for planar quasihomogeneous sources
in detail [1,6,12]. It has also been shown that the changes
in the spectrum of radiation on propagation occur even
when the stochastic scalar field is spherically symmetric
[13—15].

The results demonstrate that this effect, often called
the Wolf eH'ect, is more than just a spatial redistribution
of particular frequency components of the radiation. The
eEect stems rather &om changes and an increase in the
degree of coherence of radiation during propagation. It
is worth mentioning that it was demonstrated in [14,15]
that there is no violation of the law of conservation of
energy in such situations.

Most investigations carried out so far have been per-
formed on the basis of stochastic scalar wave theory. But
there are situations where the vector nature of light can-
not be neglected, for example, situations involving polar-
ization properties of light, problems with a certain degree
of symmetry, etc. Generalization from scalar to vector
theory (or tensor theory —using correlation tensors) is
not straightforward.

Although the basic equations of the second-order cor-
relation theory of the electromagnetic 6elds have been
formulated a long time ago, both in the classical [16] and
in the quantum') domain [17], and also within the frame-
work of the space-time [16] and the space-frequency for-
mulation [18],little is known about the solutions of these
equations, except for blackbody radiation [19,20].

In the present paper we discuss the general solution of

these equations in the space-frequency domain for clas-
sical 6elds which are spherically symmetric in the sta-
tistical sense (of course Maxwell's equations for a deter-
ministic field do not have a spherically syminetric solu-
tion). More specifically, we study correlation properties
of stationary stochastic radiative electromagnetic fields
of spherical symmetry, employing the cross-spectral ten-
sors of the second order and their expansions in terms of
vector spherical harmonics.

II. STOCHASTIC ELECTROMAGNETIC FIELD
AND CROSS-SPECTRAL TENSOR

We begin with a deterministic complex electric field
E(r, t) in free space [21] whose components Es(r, t), j =
1, 2, 3, are the complex analytic signals of the components
of the real electric strength vector and which satisfies
(outside the sources) the homogeneous wave equation,
the condition of transversity

divE(r, t) = 0,

and the radiation condition

BEs(r, t) 1 BEs(r, t)+ — ' ' =o(1/r) for r = ~r~ ~ oo. (2)Br c Bt

We will also suppose the field decreases as 1/r for large
r. Here r denotes a position vector of a point in space, t
is an arbitrary instant of time, and c is the speed of light
in vacuo. The symbol o(x) denotes a quantity of higher
order of smallness than z for x -+ 0.

For stochastic, statistically stationary (at least in the
wide sense) field, the (electric) correlation tensor can be
defined by the expression

Here () denotes the ensemble average and the asterisk
denotes the complex conjugate. The cross-spectral tensor
is given as the Fourier transform of correlation tensor:
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where u is the frequency.
Prom the de6nition of cross-spectral tensor

W;~ (r{ ), r{ ), tu) and Rom the properties of complex elec-
tric strength E(r, t) the equations for the cross-spectral
tensor can be easily derived. They are

g(A) g(A) W (
{1) (2)

) + k2W (
{1) {2)

) 0

outside the sources, (5)

and k = ~/c with c being a speed of light in vacuo.
Repetition of the same index (denoting a component of
vector or tensor) implies summation.

Equation (5) is a straightforward consequence of the
wave equation. Equations (6) are analogous to Eq. (1)
and Eqs. (7) are analogous to Eq. (2). Property (9) fol-
lows directly from the definition [see Eqs. (3) and (4)].
The second equations in the pairs (6) and (7) are conse-
quences of the first equations and Eq. (9).

III. SOLUTION OF EQUATIONS FOR THE
ELECTRIC CROSS-SPECTRAL TENSOR

Subject to the asymptotic boundary conditions

(6)
Suppose that 4(r( ), r{ ), ~) is an arbitrary solution of

the equations

6
W, i(r (' ), r ( ), (u) —ik W,i (r ( ), r { ), ~)= o(1/r (') ),

6
W (r( ) r{ ) ur) + ikW (r{ ) r{ ) ur)= o(l/r( ))

Or(')

for r~"~~ ~,

t9
4(r ) r{ ) w) —ik4(r( ) r{ ) ~)= o(l/r( ) '

6
{ )

4(r ), r{ ), ur) + ik4(r( ), r{ ), u)= o(1/r( ))

W; (r{ ), r{ ) ~) for r " -+ oo.
1

(12)

The cross-spectral tensor also obeys the constraint

W. (r{ ) r{ ) ur) = W'. (r{ ) r{') (u). (9)

Here 8~()—:8/Dr~~, m = 1, 2, 3, r(") = ~r(")
~, A = 1, 2,

(A = 1, 2). Then the appropriate solution of Eqs. (5)—(9)
can be written in the form

(14)

where

(15)

gmn nOP k ~ O & P

p(ur) is an arbitrary complex function of f«quency, and o.(u), P(u) are any real functions of frequency. Expressions

(15) can be further simphfied using the identity , ei&l &
e= ha6z~ —bi~~it. The symbol e,ii, is the Levi-Civita unit

antisymmetric tensor and b;. is the Kronecker unit tensor. The last two tensor functions in Eqs. (15) a««la«d as

follows: g (r{i),r{2),ur) = 2',.(r{2),r{i),u). The solution (14) with tensor functions (15) is built in an analogous way
as the solution of "single" vector Helmholtz equation (see, e.g. , [22]).

Since any solution of Eqs. (10)—(13) can be expressed as an expansion using spherical harmonic functions (see,
e.g. , [13])

OO W 1 OO TL2

4(r, r, ~) = ) ) ) ) P„, (, „,(((u)h„' (kr )h„, (kp ) Y„', (0 )Y„, i (0 ),
nl ——0 l I ——~I n2 ——0 l2 ——n2

(16)
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where Y„'
~ (O) are the normalized spherical harmonics and h„(z) are the spherical Hankel functions of the second kind,

every solution of Eqs. (5)—(9) can be written as a linear combination of products of the vector functions M~" tj (r, u)
and N~"'i(r, (d).

00 TLy OQ Ag

w„(r 'r, , ~) = ) ) $ ) (a„, &, „,4(~)[M,""'(r', w)]'M."""(r™,~)+h, , r. . .,r, (~)
ng ——1/g ——n1 ng=& lg ———ng

x[N"'' (r ' ur)]'N "'' . (r ' ur)+c (~) [M""' (r ' (d)]'N""'(r (d)

yd & „,&, (w)[N,
""' (r .', ~)]'M "' (r, td)).

In Eq. (16) spherical coordinates are used and O—:(8, p).
Definitions of the functions M~"'j(r, (d), N~"'j(r, ur), and
some orthogonality equations are given in the Appendix.
From Eq. (9) it directly follows that

,t. (~)= & „t„„t,(~)

same" from any direction of observation. It means the
statistical characteristics of the field (at least the cross-
spectral tensor of the second order) do not change their
functional form under rotations of coordinates. More ex-
plicitly, if A is a transformation matrix corresponding to
a rotation of the coordinate system (r' = A r or in com-
ponents r,' = A;~r~) then

The first two relations imply that a„,t,„,t ((L)) and
b„t „t(u) are real. From the well-known non-negative
de6niteness of cross-spectral tensor, i.e.,

f W f'(O~'l) f (O ' )dO~' dO~ & 0
4m 4m

(19)

IV. SPHERICALLY SYMMETRIC SOLUTION

Under terms spherically symmetric or rotationally in-
variant field we mean the stochastic field which "looks the

for any vector function f(O) with square-integrable
components and for arbitrary r ~il, r ~2l, it follows
that a„,t, t ((d) and b„, ,„t, (tu) & 0. The con-
straint (19) can be derived in a manner similar to
that given in [23], starting from the obvious inequal-
ity (~ fz f f;(O)g(t)E;(r, t)dtdO~2) & 0 [g(t) is any
square-integrable function of time].

(20)

A deterministic spherically symmetric radiative elec-
tromagnetic 6eld does not exist. This is a consequence
of the transversity of electromagnetic waves. [And this
is connected with the fact that the vector functions
Mio Oi(r, ~), N~o si(r, ~) corresponding to the only rota-
tionally invariant spherical harmonic function Yo 0(O) are
zero; see the Appendix. ]

Nevertheless, the spherically symmetric solution of
Eqs. (5)—(9) for cross-spectral tensor describing stochas-
tic field exists. If the solution of Eqs. (10)—(13),
4(r~il, r~2l, u), is spherically symmetric (as a function
of two spatial variables) then the cross-spectral tensor
W~ l (r~il, r&2l, ~) [see Eq. (14)] is also spherically sym-

metric, in the sense of Eq. (20). This follows from
Eqs. (14) and (15) and from transformation properties
of e,~t„b;~, 8;, and r;. The existence of rotationally in-

variant 4'(r~ l, r&2l, u) can be demonstrated on a simple
example (in more special forms given in [13,14]):

4(r~ l, r~ l, ur) = p(u) ho(kr~ l)ho(kr~ ) Yo'0(O~ l)Y('),0(O ) + q((d) hi(kr l)hi(kr~ l)

x Y* (O~'l)Y' (Ot l) + Y' (O~'l)Y (O~'l) + Y' (O~'l)Y' (Ot'l) (21)

where p((d), q(u) are any non-negative real functions of
&equency. This function is evidently rotationally invari-
ant because Yo o(O) = 1//4z and

) Y„' (Ot l)Y', (Ot i) = P (cosy), (22)

In general, each spherically symmetric scalar func-
tion of two spatial variables can be written as a su-
perposition of the Legendre polynomials of arguments
u~ ~ . u~ ~, so that for such functions the coefficients
in the expansion (16) have the form P„, t, „,t, ((d)

y„, ((d)h„, „,bt, t, .

where P (z) is the Legendre polynomial and cos y = u&i&.

ut l =

cosset

&

cosset

~ +

sindhi

l sin 8& l cos(rp( l —y( l)
(see, e.g. , [24]) depends only on the angle y between unit
vectors u~ ~, u& ~ given by 0& &, 0&2~, respectively.

V. SPECTRUM OF RADIATION

According to the well-known Wiener-Khintchine theo-
rem, the spectrum of electric 6eld may be de6ned by the
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expression

OO

S(r, u)= — (E'(r, t) . E(r, t+7.)) e ' d~2'
= W;;(r, r, ur), (23)

where summation over repeated indices is to be under-
stood. The radiation Beld is, of course, assumed statisti-
cally stationary.

%e will now derive an expression for the spectrum of
a spherically symmetric field. In this case the spectrum
cannot depend on direction —it may be only a function
of radial distance r. Thus, by substituting from Eq. (17)
into Eq. (23), integrating over 4m solid angle [the left-
hand side of Eq. (23) is only multiplied by 4'] and
using orthogonality of the set of functions M~"'j(r, ~),
N~" ij(r, ~) (see the Appendix) we finally obtain for
the spectrum the expression

1 1 1
S(r, &u) = —

z z ) ) n(n+ 1) a„,~,„,~(ur) g„(kr) + b„,t „,~(~) (n+ 1) q„ i(kr) + ng„+i(kr), (24)4~ k2~2
~=1 1=—n

2n+1-

where

( ) = *'lb ( )I' = ) ( )" '"
qq( -q)')' (25)

(see [25]). Equation (24) can be rewritten in the form

1 1
S(r, ur) = ——Q g„(~)g„(kr),

n=o
(26)

where

(~) =
kz ) u t l(~) n(n+ 1) + ) b —i, l, i t(~)

2 1
+ ) b +l, l, +i,/(~)

(n —1)'n "+. (n+ 1)(n+ 2)'

l=—n+1 l=—n —1

(27)

Of course, for n = 0 the first and the second terms are
zero and for n = 1 the second term is zero. Because
of the non-negativeness of a„ t „~(ur) and b„~ „t(&u), the
coefficients g„(ur) are also non-negative.

Equation (26) allows us to determine the spectrum at
any spatial point &om the knowledge of the coeKcients
Q„(u). These coefficients can be evaluated from the
knowledge of the cross-spectral tensor on some sphere
(this represents a boundary condition from which one
can determine completely the cross-spectral tensor ev-
erywhere outside the sphere; the sphere can be regarded
as a surface of a source).

The frequency dependencies of Q„(u) are modified (for
each fixed r) by factors rI„(kr) and for fixed frequency
the modes with higher n decrease faster with increasing
r than those of smaller n (this fact is connected with the
improvement of coherent properties of radiation on prop-
agation). Because of this, the functional dependence of
the spectrum on the &equency may be different at dif-
ferent distances from the origin. The spectrum normal-
ized with respect to maximum value (in the frequency
domain) can change its functional form from point to
point.

The coefficients g (w) corresponding to the simple ex-
ample built on the basis of the scalar function given by
Eq. (21) are @o(u) = 4P(u)q(ur), @i(u) = 6n(u)q(~),
and $2(ur) = 2P(u)q(ur) (the others are zero). Here q(cu)
originates from Eq. (21) and o.(u), P(&u) are coefficients

from Eq. (14) (but now they are non-negative because
of the non-negative definiteness of cross-spectral tensor).

The form of Eq. (26), which is rather similar to the
form of equation for the spectrum obtained within the
domain of scalar theory, is not surprising, because &om
Eqs. (5) and (7)—(9) it is clear that W;, (rl l, rl ~, u)
(summed over i) have to satisfy Eqs. (10)—(13) [which
are equivalent to Eqs. (3)—(5) in Ref. [13]].Nevertheless,
there is an important difference. The set of possible se-
quences of coefficients Q„(&u) in Eq. (26) is restricted by
Eqs. (6). Above all, if go(u) g 0 for some ~, then at
least the coefficient gz(ur) has to be also nonzero as can
be seen from Eq. (27). It means that the spectrum can-
not depend on the radial distance r in a trivial manner,
i.e., through factor 1/r2 [rjo(kr) = 1]. It even seems
that the spectrum cannot be factorized, i.e. , expressed
as the product of a function of &equency and a function
of radius, though this result has not yet been proved.

The spectrum of magnetic Geld can be obtained by re-
placing mutually the coefficients a ~ „~(u) and b„~ „~(ur)
in the expressions for the spectrum of electric field and,
of course, by multiplying these expressions by a constant
depending on the units used [26].

VI. ENERGY CONSERVATION

From the conservation law for deterministic Gelds and
from the definition of the operation of averaging it is clear
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that energy has to be conserved also for any stochastic
electromagnetic field; see, e.g. , [17,27]. As an example,
showing at once that our foregoing calculations are cor-
rect, we derive an explicit form of the law of conservation
of energy for' the Geld described before.

The average energy Bux is deGned as

F(r, t) = m Re (E'(r, t) x H(r, t)),

(the operator nabla is acting with respect to variable r).
Using the vector identity

V (A x B) = B.(V x A) —A. (V x B)

and employing again Eqs. (A2) we obtain a series for

V .W(r, r, &u), which contains the scalar products of type

where the complex vector H(r, t) is constructed by the
same manner as E(r, t), but on the basis of the magnetic
field vector, and e is a real constant depending on the
choice of units. Re denotes the real part.

Statistical average of the conservation law has the form

[M(""')(r,~)]' M(""")(r, (u),

[M(""')(r, ~)]' N """)(r, &u),

V ~ F(r, t) = 0 (29)

in any region which does not contain sources. The time
variation of the averaged energy density is zero in the
case of a statistically stationary field.

Let us introduce the vector

Re[V W(r, r, u)] = 0 (34)

etc. Reordering the series and using relations (18) one

can readily show that V W(r, r, ur) is purely imaginary.
Thus

~( (&) (2) t(&) t(&)) V F(r, t) = V Re %(r, r, ur)Cku = 0.
0

=~ E' r~'& «'~ xH r~'~ t;~'~ 3O

Prom Maxwell's equations it follows that

c)
y', ( (&) (2) t(2) t(&))

gt(2)

These formulas show that energy is conserved at each
&equency.

We note that the spherical symmetry have not been
used in this consideration.

VII. CONCLUSIONS

= «.;,.«8I" (z'(r «, «'I)z (r~« ~~«))

(31)

where Pc is a real constant. Performing the Fourier trans-
form of Eq. (31) with respect to 7 = t( ) —t( ) we obtain
the equation

We have described spherically symmetric statistically
stationary stochastic electromagnetic field within the
framework of the second-order correlation theory. We
have noted that the spectrum is, in general, "non-
invariant" on propagation and have shown by explicit
calculations that there is no contradiction with the en-

ergy conservation law.
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OO
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APPENDIX: VECTOR SPHERICAL %PAVE
FUNCTIONS

kM("')(r, ~)= V x N("')(r, ~),

k N("') (r, ~)= V x M ("')(r, (u)

The solution of the equation

V'C+ I 'C = 0, (A1)

[see Eqs. (A2)] we could write the explicit form of vector
~(r( ), r( ),~). Then it is easy to derive V . W(r, r, ur)

where V C = VV .C —V x V x C, can be written (see
[22]) as a superposition of the functions [28]
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L("'~(r, ar)= V' [Y„,(A)z„(kr)],

M("'rj(r, ar)= L~"'~)(r, ar) x r = —V x N("'~~(r, ~)

= V' x [rY„~(O)z„(kr)],

N ("')(r, ar) = —V x M("') (r, (u)
1

1= —V x {Vx [rY„,(O)z„(kr)]), (A2)

where z„(z) denote suitable radial functions. In this pa-
per we identify z„(x) with the spherical Hankel func-
tions of the second kind because expression (17) then
satisfies the radiation conditions (7). Only the functions
M(" ~)(r, ur), N(" ~)(r, &u) have zero divergences and con-
sequently only they are convenient for description of elec-
tromagnetic radiation fields. From Eqs. (A2) it follows
that M( 1(r, ~) = Nl )(r, ar) = 0.

The orthogonality relations for functions M["'&) (r, w),
N(" rj(r, (u) [z„(x) = h„(z)]:

[M("')(r, ar)]* . M(" ' j(r, (u)d0 = 8„„8~,n(n+ 1) [h„(kr)[2,
4m

~

~[N("'~I(r, ~)]* N(" '~ )(r, ar)dO = h„„bi ~ ((n+ 1) ]h„ i(kr)[ + n[h„+i(kr) ] ).

All other combinations give zero.
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