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As a toy model for dissipative granular materials, we investigate a one-dimensional column of beads
undergoing external vibrations. The analysis is both experimental and numerical. We display the cross-
over from a condensed to a fluidized state of the column; the parameters are the agitation, the number of
beads, and the momentum restitution coefficient. We find clustered states for high dissipation and/or a
large number of beads. Our experimental findings support the appearance of a fluidized regime at low
dissipation and of a Feigenbaum-type bifurcation scenario at high dissipation.

PACS number(s): 46.10.+z, 05.60. +w, 05.40.+j

I. INTRODUCTION AND BACKGROUND

Recent years have seen a resurgence of interest in the
behavior of granular media (see, for instance, Ref. [1]).
Noncohesive granular materials are characterized by be-
ing assemblies of solid, nonuniform particles, which in-
teract via contact forces and are kept together by the ac-
tion of gravity. If the contact between the particles is
broken, their interaction ceases.

For example, a dry sandpile belongs to this class of ma-
terials. Such systems exhibit surprising properties, for in-
stance, a limiting slope for the free surface, spontaneous
heaping under vibration, non-Newtonian shearing, etc.
These are examples of properties which lie between those
of solids and those of liquids, and they establish the
granulates as being a quite specific and intriguing class of
materials. The a priori assessment of macroscopic pa-
rameters from the consideration of local-contact, dissipa-
tive interactions is a difficult problem, because of the high
level of disorder involved. It is evidently extremely
difficult to probe the dynamics of granulated particles on
scales comparable to their dimensions. Nonetheless re-
cent years have seen big advances in the possibilities to
monitor model systems on short scales [2,3]. Overall,
such systems are by far more accessible than powders or
sand, and they provide a probate means to investigate the
basic, complex behavior of real granulates. Also the mea-
surement of fundamental quantities such as the local den-
sities and the energy transfer between grains requires
much diligence. Furthermore, numerical simulations
[4-12] are a very adequate tool to study complex dynam-
ics, a tool which complements nicely the experimental
findings [2,3,12,13], and the more analytical approaches
[14,15].

In this paper we are interested in the behavior of
granular materials which undergo external vertical vibra-
tions. Note that this is a probate means of particle trans-
port of wide industrial use. Furthermore, experiments on
sandpiles in three dimensions (3D) have shown many in-
teresting aspects, such as spontaneous heaping formation
[16,17]. These findings are corroborated by the behavior
of 2D model media, where experiments and simulations
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show spontaneous fluxes of matter, heaping, fluidization,
and block motion [2,4-7]. Also these phenomena de-
pend on the local mechanical interactions such as the
friction coefficients of the beads. Here we focus on the
problem of fluidization, as different from problems
characterizing convection. A convenient way to achieve
this separation is to take a basically one-dimensional
model, i.e., a column consisting of N beads, which under-
go dissipative collisions. The aim of such a model is both
to have a transparent theoretical situation, as well as an
experimentally manageable arrangement. The one-
dimensional problem of interest here bridges also between
simpler models such as the one-bead problem in 1D
[18-20] and the many-bead problem in dimensions
larger than one [3,5-7,21-24]. In our 1D system we
neglect rotational motions and have the advantage that
the beads keep their order during the whole process.
Even without effects like convection or heaping our sys-
tem shows the fluidization of granular materials under vi-
bration. Thus we expect from our approach insights into
the complicated and analytically involved problem of real
granulates.

The one-bead problem was studied extensively both
from the experimental [19] and also from the analytical
and simulational [ 18-20] points of view. In the one-bead
problem many physical effects such as period doubling
can be found. On the other hand, simulating granular
media realistically (for D > 1) is an arduous task; under
the many methods which have been used we recall the
time-driven Monte Carlo [24] and molecular-dynamics
simulations [21-23,25-27] as well as event-driven algo-
rithms [7-10,12,28]. We mention first the work by Cun-
dall and Strack [5], who follow the motion of the parti-
cles via a molecular-dynamics scheme. Moreau and Jean
[6,29] solve the problem numerically, by using a time-
discretization procedure to follow the systems’ dynamics
via a set of nonsmooth equations. Other procedures are
event driven, such as the one described recently by Lu-
bachevsky [7] (who presented an algorithm to create a
random packing of billiard balls) and the method of Ber-
nu and Mazighi, who calculated the behavior of a hor-
izontal array of beads colliding with a wall [8].
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McNamura and Young simulated the same model [9] and
focused on the “cooling” of one-dimensional granular
media [10]. It is important to notice that in spite of the
wealth of recently obtained computer results on complex
systems, benchmark experiments which are connected to
straightforward simulation algorithms are still lacking.

In an earlier study [12] we presented some results of
simulations and experiments on columns of beads, where
we found that the columns fluidized, condensed, and
clustered. Reference [12] focused on condensation and
clusterization; additional work is in progress [30]. In the
present work we give the conditions for observing the
different regimes and display scaling for fluidized sys-
tems. We corroborate these findings with experimental
results, which we also present here.

In Sec. II we focus on the experimental setup. The nu-
merical procedure is discussed mainly in Sec. III and in
Appendix A. The outcome of our numerical work is
presented and discussed in Sec. IV. We devote Sec. V to
the comparison of the experimental findings with the nu-
merical results, especially in what fluidization aspects are
concerned.

II. THE MODEL SYSTEM

In both experiments and numerical simulations we use
a system of N beads. In the experiment the beads have a
well-defined diameter of d =2.99 mm and are enclosed in
a cell, which is a vertical groove of both width and depth
d =3 mm, cut in a rectangular block of brass of height 85
mm; a glass window in the front allows the visualization.
The horizontal bottom of the groove consists of a glass
plate. The plate is driven by a sinusoidal motion with
amplitude A4, and frequency f (radial frequency
o=2mf); hence its position at time ¢ is

zo(1)= Aysin(wt) . (1)

A schematic drawing is given in Fig. 1.

A charge-coupled device (CCD) camera hooked to an
image processing device allows us to monitor the experi-
ments. Furthermore, we also record the sound created
by the collisions of the beads, through a microphone
which is connected to a memory oscilloscope. Because of
the geometry, the beads are aligned so that each bead in-
teracts only with its upper and lower neighbors or, for
the lowest bead, with the vibrating bottom plate. In the
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FIG. 1. Model system with a vibrating bottom plate; here
three beads are shown.

simulations we neglect the contacts the beads have with
the walls of the groove and assume that the kinetic ener-
gy is lost only due to the inelasticity of the collisions.
The fundamental parameter which describes this dissipa-
tion is the restitution coefficient € of the momentum for a
collision between beads. In the simulations we account
for collisions between two individual beads (binary col-
lisions) as well as for collisions which involve several
beads in contact (clusters). The general numerical ap-
proach is introduced in the next section and the details of
the procedure are described in Appendix A.

We remark that the restitution coefficient € is material
dependent; also collisions of the lowest bead with the bot-
tom plate may have a different restitution coefficient,
which we denote by €,. In order to examine the two lim-
iting cases of high and of low dissipation, we experiment-
ed with beads made of aluminum and stainless steel, re-
spectively. We measured € in a rough manner by the
method of rebound and obtained €=0.60+0.05 for
aluminum on aluminum and €=0.90%0.05 for stainless
steel on stainless steel.

ITI. NUMERICAL PROCEDURE

The simulation consists in monitoring a sequence of
events (i.e., collisions) between which Newton’s equations
of motion for each object are solved exactly. Here an ob-
ject is an individual bead, the vibrating bottom plate, or a
cluster of beads (i.e., a collection of beads in physical con-
tact and moving with the same velocity). For an object,
an event is defined either by a sudden change in momen-
tum (collision) or by the takeoff from the bottom plate
(when the upward acceleration gets larger than the gravi-
ty, denoted by g). In the following, the N beads are num-
bered from the bottom starting with i =1; for the bottom
plate we set i =0. Between events each object i follows
its own trajectory; this is so because we assume dissipa-
tion to occur only on collision. Due to the one-
dimensional nature of the model, the order of beads never
changes and we may even dispense with accounting
for the diameter d of the beads. This fact allows us
to simplify the notation in the simulations; we
use diameter-independent coordinates z;(¢), which are
connected to the usual coordinates z*(¢) through z;(¢)
=z*t)— (i—1)d—1d.

With At denoting the time elapsed since the time ¢,
the position of particle i at time ¢, + At is

z:(A1)=z, o+, oAt —Lg(At)?, 2)

where z;, and v;, are the coordinates and velocities of
particle i at time t.

We now compute the time after which the next event
(i.e., between object i and i —1) happens. Events occur
whenever z;(At)=z; _,(At); this leads to a time step:

2,07 %Zi—1,0

At;=— (3)

Vio~Vi—1,0
Formally these event times At; are stored in an event
time array T. If At¢; <O the objects move away from each
other. If Az; =0 the particles are in contact, a case which
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will be discussed later in this section. Of interest are now
the positive At;, of which the smallest, A¢_; , determines
the occurrence of the next event. Once the next event is
identified we compute the positions and velocities of all
objects at this time 7, + At , carry out the transforma-
tion corresponding to the event, and update the event
time array; then we look for the following event.

As already mentioned, the simulations take care of the
energy loss on collisions through the dissipation
coefficients € and €,; furthermore, this is the only way we
account for energy losses. In the reference frame of the
center of mass of a colliding pair, the incoming velocities
are + Vand — ¥V and the outgoing velocities are —eV and
+eV. Using a matrix formalism [8-10,12], this
prescription reads

1—e 1+4e€
. . 2 2
Ui—y Vi1 | _ Ui—1
u; _Ci*“1v l— 1+e 1—¢ v;
2 2
(i=2,...,N), 4

where v; and u; are the velocities of bead i, just before
and after the collision, in the system’s frame of reference.
A similar form holds also for collisions with the moving
bottom plate, which will be assumed to have infinite
mass. In the reference frame of the plate bead 1 has just
before the collision a velocity V and after the collision the
velocity —¢€,V. In the collision matrix scheme [8] it fol-
lows that

1 0

1+€p —€,

Up
U

Vo
Uy

Vo
Uy

0,1 (5)

in the system’s frame of reference.

We proceed by noting that in some regions of the pa-
rameter space (i.e., for high dissipation, that corresponds
to low €, or at times when the acceleration of the bottom
plate is low) the time intervals between the events may
get to be very short. If such series of small time intervals
occur, then the computing time (which is proportional to
the number of events) may get very large. In the follow-
ing we show how to deal with this problem. For this we
focus on simulations with low restitution coefficients. We
start with a column of N =10 beads. As initial condi-
tions we take an equidistant separation between beads
(here 1 mm) and a random distribution of velocities (here
—1 m/s<v; <1 m/s). For the restitution coefficients we
take €=0.6 and €, =1 (which is typical for aluminum
beads and a bottom plate made of glass). Then we record
as a function of time the trajectories of the beads, as well
as the times At™™ 1 between events (the events are
numbered sequentially, m =1,2,3, .. .). This situation is
depicted in Fig. 2. In the upper part of the picture we
plot the actual positions of the beads (the diameter of the
beads is—as noted before—disregarded); the dotted line
gives the position of the bottom plate. Remember that
the order of particles does not change; this means that
the trajectory of one particle does not cross the trajectory
of another, but that their slopes change abruptly at the
time of a collision. The time intervals At™™ ~1 between
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FIG. 2. Motion of ten beads where the restitution coefficients
are €=0.6 and €,=1 (see text for details). The upper part
displays the trajectories and the dotted line indicates the bottom
plate; the lower part gives the time intervals At'™™ ~!) between
events.

events are given on a logarithmic scale in the lower part
of the picture and are represented by triangles. One
should remark that a sudden decrease in the time inter-
vals between events is noticeable in Fig. 2 for ¢t =0.044 s.
Moreover, at this moment both the distances between the
beads involved in the events, Az;=z;—z; _,, as well as
their relative velocities, Av;=v;_;—v;, get to be very
small (Av; >0 before and Av; <0 after a collision). Evi-
dently at such moments the event-driven algorithm runs
into a situation which is computationally very time-
consuming. It is furthermore also not of physical interest
to follow the procedure on such short time and length
scales, because when the times between events become
very small, our macroscopic description of the dissipation
via € and €, becomes questionable.

A means to avoid such problems is to introduce a
cutoff velocity v,. The idea is to merge objects which
after the event have a relative velocity |Au;| <v, into a
cluster, while at the same time one conserves the momen-
tum of the center of mass of the newly created cluster.
The description therefore leads from independent objects
before the event to a new object, a cluster, in which the
objects have zero relative distance between them and
have (of course) the same velocity, after the event. We
are justified in proceeding in this way also by the results
of Refs. [8-10], in which it was found that in the case of
high dissipation clusterization occurs; this means that
there is a total loss of relative momentum.

We choose v, to be orders of magnitude smaller than
the typical velocity A o of the system (typical values are
Ay=10"%m and f=20 Hz, which lead to 4,0=0.125
m/s; we usually take v, around 1077 m/s, so that
v, << Agw). By varying v. we ascertained that the
specific choice of v, does not change the results of the
simulation, as long as v, and A,w differ by orders of
magnitude.

Our shift of point of view, consisting in replacing indi-
vidual beads by clusters, must now be supplemented by a
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procedure which determines how collisions of such clus-
ters (with the bottom plate, with another individual bead,
or with another cluster) have to be handled. In Appendix
A we give a detailed description of the algorithm in-
volved. The basic idea is to take a relative velocity
scheme, and assume that the next event in the cascade is
the one for which the relative velocity Av;,=v;_,—v; is
maximal. This is based on the fact that, as described
above, one runs into problems when one uses time
differences to establish the order in which the collisions
happen. For beads in contact (or almost in contact with
each other) a collision with an external bead leads to a
cascade of events involving other inner beads. In the al-
gorithm described in Appendix A one takes as next event
the one for which the relative velocity is maximal.

IV. RESULTS OF SIMULATIONS

We turn now to a discussion of the results of our simu-
lations. The parameters involved are the number of
beads N, the restitution coefficients € and ¢, as well as
the amplitude A, and the angular frequency w=2wf.
Some numerically established data are experimentally ac-
cessible; these are then compared in Sec. V with the mea-

surements.

A. The transition from a fluidized to a condensed regime

For restitution coefficients close to one and at high ac-
celerations of the bottom plate the individual motion of
the beads looks erratic. This is what we call fluidization.
If the input energy is decreased, the motion becomes
more and more regular and the column of beads eventual-
ly gets locked on the excitation period. This is what we
call condensation. In Fig. 3 we show three typical
behaviors of the column depending on the input energy of
the system. The parameters used are N =10, f =20 Hz,
€,=1, and €=0.92. The amplitude A4, varies from 4.97
mm in Fig. 3(a) to 1.24 mm in Fig. 3(b) and 0.932 mm in
Fig. 3(c). An important dimensionless parameter is «,
the maximal acceleration of the bottom plate divided by
the acceleration of gravity g:

Aom2
a= . (6)
g

In Figs. 3(a), 3(b), and 3(c), a is 8.0, 2.0, and 1.5, respec-
tively. The trajectories of the particles show the progres-
sive condensation of the column. To illustrate this
change of behavior we use a gray code: light gray indi-
cates high velocities and dark gray low velocities. It is
evident from Fig. 3 that for lower values of the accelera-
tion the motion is collective; at higher acceleration values
we find that the role of the fluctuations increases. In the
insets of Fig. 3 we show the frequency spectra obtained
through a fast Fourier transform (FFT) algorithm for the
motion of the center of mass (c.m.). In the FFT algo-
rithm the position of the diameter-dependent height of
cm. (h . ) was evaluated 25 times per period during a
total of some 328 periods, within which 2!3 data points
were obtained. At higher energies still, the motion of the
c.m. displays a continuous spectrum [Fig. 3(a)]. When

the input energy decreases, the motion of the center of
mass begins to show the harmonics and the subharmonics
of the excitation frequency [Fig. 3(b)]. If the energy de-
creases still [Fig. 3(c)], a Feigenbaum scenario is ob-
served, a bifurcation cascade which displays period dou-
bling.

The passage from a fluidized state [Fig. 3(a)—note the
quasiballistic trajectories for the momentum waves] to a
state involving collective motions of the column [Figs.
3(b) and 3(c)] is gradual. To monitor this behavior, we
look at the mean dilatation of the column (zy—z,)
where z, and zy are the height of the first and the Nth
particle. We recall that the z; coordinates are indepen-
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FIG. 3. (a) Motion of ten beads for f =20 Hz, a=8.0,
€=0.92, and €,=1. The inset displays the frequency spectrum
for the motion of the center of mass (c.m.). (b) Motion of ten
beads for f=20 Hz, a=2.0, €=0.92, and €,=1. The inset
displays the frequency spectrum for the motion of the center of
mass. (c) Motion of ten beads for f=20 Hz, a=1.5, €=0.92,
and €,=1. The inset displays the frequency spectrum for the
motion of the center of mass.
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dent of the bead diameters, see Sec. III. The mean dilata-
tion is a good indicator of clusterization. In Fig. 4 we de-
pict the dilatation using the dimensionless quantity A:

_ (zy—2z¢)

A
Aya

0]

We display A as a function of a for N=8, 10, and 12,
while keeping €=0.92 constant. The frequencies used
are =10, 20, 40, 80, 100, 200, 400, and 800 Hz and we
vary the amplitude 4,. Note that for a given N, all the
curves collapse on the same master curve. For high-
energy input (corresponding to large o values) A con-
verges to a constant. Since in this limit we have
(z,) <<({zy), for fixed N the mean dilatation is propor-
tional to the potential energy; the scaling behavior, Eq.
(7), thus indicates that {zy —z,) and hence also the po-
tential energy are proportional to 4,a. Therefore in the
fluidized regime the potential energy scales with A3w’.
In other words, in the fluidized limit a proper scaling pa-
rameter is the squared velocity ( 4,»)* and not the ac-
celeration a. If a gets lower (say for a < 10) the column
behaves in a complex fashion and resonances may show
up. But « is not the only control parameter for the oc-
currence of condensation; for different N we find different
behavior for the same a values. Thus columns with
larger N show less dilatation. This is due to the fact that
the number of dissipative contacts increases with N; a
system with larger N displays a higher dissipation. Note
that for a dissipative block (or a completely inelastic par-
ticle) on a vibrating plate, the pertinent control parame-
ter is the relative acceleration a [18—20]. As a result one
has a very complex transition between the clustered re-
gime, a transition which depends on N, on ¢, and also on
a.

In the fluidized regime, the erratic motion of particles
and the large dilatation of the column may suggest some
analogy with the behavior of a dense gas column when
connected to a heat bath, and in general to thermo-
dynamic concepts. Mazighi, Bernu, and Deylon [28] re-
cently found an analytic description for a one-
dimensional array of beads where the bottom plate fol-

A Pl N:8
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FIG. 4. Mean dilatation A plotted versus a, obtained for sys-
tems with 8, 10, and 12 beads and the restitution coefficients
€=0.92 and €,=1.0. The frequencies used are f=10, 20, 40,
80, 100, 200, 400, and 800 Hz.

lows a triangular instead of a sinusoidal function. There
they find, using the dissipative Boltzmann equation, in
the limit of low dissipation, a density profile which is
nearly exponential. We remark that the function of the
bottom plate is analogous to a heat bath in providing
(and sometimes taking away) energy from the system.
Furthermore, we like to point out that other thermo-
dynamic and/or hydrodynamic ideas have been advanced
to describe a granular assembly [31-33]. Thus 1D
columns of beads seem to be good candidates to test the
relevance of such an approach. But one has to pay atten-
tion to the fact that even in such “one-dimensional” sys-
tems experimentally additional effects (such as rotations)
may appear and that important aspects of realistic three-
dimensional systems are neglected.

Here we are interested in the qualitative features of the
density and of the kinetic energy distributions. In Fig.
5(a) we present the density of the beads as a function of
the height. The density is evaluated for N =10, €=0.92,

and f=20 Hz. Here we use the diameter-dependent
T T T I
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FIG. 5. (a) Shown are the number density profiles p(z*) for
N=10,€=0.92, €,=1.0, and f =20 Hz as a function of z* with
d=3 mm for a=2, 3, 5, and 8. (b) Shown are kinetic energy
profiles 68(z*) for N=10, €=0.92, ¢,=1.0, and f=20 Hz as a
function of z* with d =3 mm for =2, 3, 5, and 8.
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coordinates z*(¢) (introduced in Sec. III) and a diameter
of d =3 mm. In Fig. 5(a) we show the density profiles
p(z*) for different a values (here a=2, 3, 5, and 8). We
have also evaluated the corresponding Kkinetic energy
profiles, by defining 8(z*)={v(z*)?). In Fig. 5(b) we
plot 6(z*) as a function of z*.

With increasing a the density p gets lower and extends
to higher z* (fluidization); furthermore, 6 basically de-
creases with increasing z*; 6 curves belonging to different
a values do not cross.

B. The dissipation time in the fluidized regime

The following study is meant to work out the charac-
teristic features of the fluidized regime and the conditions
under which condensation and/or clusterization is ob-
tained. We consider the mean dissipation time 7, of the
energy input at steady state, taking the energy E to be
zero when all beads are at rest and lie on the plate. 7 is
the ratio of the average total energy { E ) of the system at
steady state to the input (or equivalently, the output)
power {(P):

L, =AE)
b (p)y -

Evidently 7, measures the energy dissipation in the
system: on the time scale of 7, the kinetic energy which
is introduced into the system by the motion of the bottom
plate gets dissipated through collisions. We hasten to
note that on the average the input power is positive: Al-
though some collisions of the bottom plate may take en-
ergy away from the column of beads, on the average the
bottom plate feeds energy into the system.

Figure 6 was obtained by following the simulations to
times considerably larger than 7j; displayed is the dissi-
pation time 7, at steady state, as a function of a. The
parameters of the simulation are the same as those used
to obtain Fig. 4. We see that all data fall on a master
curve which depends on N. Thus 7 f is proportional to
a and therefore in the fluidized regime

(8)
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FIG. 6. Shown is the dissipation time 7, at steady state. The
plot gives 7 f as a function of a for the same parameters as in
Fig. 4.

In Eq. (9) 7 is proportional to the time of a ballistic
flight with initial velocity 4,o, but for the moment noth-
ing is said about the prefactor, which will be a function of
N and e. The dissipation time is larger for smaller N, be-
cause this corresponds to a smaller number of dissipative
contacts. For small 7, f values we observe (as in Fig. 4) a
wiggly structure superimposed on the master curves.
This is typical for the transition zone between the fluid-
ized and the condensed state.

C. Scaling behavior of the fluidized phase:
a crossover acceleration

Now we look for the scaling behavior of the relative
height of the center of mass. In the fluidized regime, this
quantity is proportional to the total energy and it can be
directly measured from the experiments. As we have
shown in the preceding subsection, a crossover between a
condensed regime and a fluidized regime is evidenced
when the dissipation time is of the order of the excitation
period. In this subsection we work in the fluidized re-
gime; therefore, for each numerical result, we verified
that the dissipation time was much larger than the excita-
tion period. Moreover, we make sure that the simula-
tions have reached a steady state before the average data
were produced (i.e., we start the average at t =107, and
end at t =507p).

We denote by &, o the height of the c.m. when the
system rests on the bottom plate; thus A_, —h_, ( is di-
ameter independent. Now, from dimensional analysis
[and according to Eq. (9)], it is clear that the relative
height of the center of mass should scale with a typical
velocity square, ( 4 )% the prefactor being a dimension-
less function F(N,e€).

Ade?

hem —h

F(N,e) . (10)

c.m. cm0 ™

To determine the function F(N,e) we carried out a
series of simulations by varying a (a=10, ..., 10000),
varying N (N=2,...,100), and \varying €
(6=0.9995, ...,0.01); €, is either held equal to one or
set to €, =e.

In the following we will first find the behavior in the
nearly elastic regime. It is clear that the height of the
c.m. diverges for €é— 1, since in this case very little energy
is dissipated per collision and around this limit fluidiza-
tion is more likely to occur. Figure 7(a) shows
hem —hemo as a function of (1—¢) for a=10, €,=1,
and N =5, 10, and 20. We obtain in the limit e—1

hc.m.__'hc.m.Ooc(l_e)—B1 ’ (11)

with 8,=1.001+0.02. The next step is to find the N
dependence of h. ,, —h_ . o. Itis obvious that the c.m. is
higher for smaller N and vice versa. So we propose that
hom —hmo should depend on the number of dissipative
contacts in the system (which is in our simulations N —1
for €,=1 and N for €,=e). Figure 7(b) gives simulation
results for A, —h_ .., as a function of N —1 for a=10,
€,=1, and €=0.999, 0.99, and 0.9. The simulations lead
to
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Rem ~hemox(N=1) "2, (12)
with [,=1.01+0.02, ie., within our accuracy
B=pB,=B,=1. Therefore both the N and the € depen-
dence have the same exponent. So we will now introduce
the parameter X by setting

X=(N—1)1—e€) for e,=1 (13a)

and

X=N(1—e€) for €,=€ . (13b)

X seems to be the main variable of the problem as long as
it is small. In Fig. 8(a) we plot A, —h . divided by
A3®?/g as a function of X found from 4000 realizations
of the process using several parameter values. In the

T T —r—

(a)

FIG. 7. (a) Plotted is the diameter-independent height of the
center of mass as a function of (1—e¢) for different N values and
for a=10 and €,=1. Crosses, triangles, and squares corre-
spond to N =20, 10, and 5, respectively, while the dashed line
gives a slope of —1. (b) Plotted is the diameter-independent
height of the center of mass as a function of N — 1, for different
€ values and for a=10 and €,=1. Crosses, squares, and trian-
gles correspond to 1—e=10"3, 1072, and 107!, respectively,
while the dashed lines give a slope of —1. The notation h¢y on
the ordinate stands for A, .

fluidized regime all data points fall on the same master
curve. Figure 8(a) is plotted in a log-log scale to show
clearly the behavior of A, —h ., o; at values X <0.1
the master curve shows a slope around —1. Using the
points displayed, we obtain for F(N,e) introduced in Eq.
(10) F(N,e)=F(X)=4/(3X), so that the height of the
c.m. for small X (X <0.1) can be approximated through

A(Z)co2 1
— . 14
. X (14)

h(O) =h

4
c.m.0 3
On the other hand, for X >0.1 the data follow a master
curve only for N >>1 and high acceleration. In Fig. 8(b)
we fit the data obtained for a > 1000, N =20, and €=>0.8
and thus extend the validity of Eq. (14) to the range

—hcemoasa

FIG. 8. (a) The height of the center of mass A
function of X scaled by ( A,w)*/g for different N values (from 2
to 100), € values (from 0.01 to 0.9995), a values (from 10 to
10000), and €,=¢€ or 1. (b) The height of the center of mass

hem —hemo as a function of X scales by h°) —h ., for
different N values (from 20 to 100), € values (from 0.2 to 0.9995),
large o values (a¢=10000), and €,=€ or 1. The dashed line
gives a first-order polynomial fit with root X =3.17, the full line
gives a second-order polynomial fit with root X =3.09.
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X £2.8, by setting
2 2

4 A50° p(X)
hf:.ll?n.=hc.m.0+?_g_% , (15a)
with
pX)=1—a, X—a,X?, (15b)

where the constants are a; =0.098 and a,=0.073.

This expression was obtained through a polynomial fit
in the interval from O to 2.8. As can be seen from Fig.
8(b), for X >2.8 the displayed curve changes from being
concave to being convex. Equations (15a) and (15b) ex-
trapolate to an intersection with the real axis at
X=X,=3.09. A linear data fit [plotted as a dashed line
in Fig. 8(b) and carried out in the interval from 2 to 2.8]
leads to an intersection at X=X, =3.17. These findings
suggest that (in the absence of additional effects) clusteri-
zation occurs around X.=3.1. Indeed for X >X_ one
never reaches a fluidized phase, regardless of the ac-
celeration. On the other hand, in the intermediate region
(i.e., for 2.5 <X <4) and for very large accelerations (a
values between 10* and 10°) the simulations lead to the
separation of the column into an array of beads con-
densed at the bottom and of several beads fluidized at the
top. Thus for X above X, the dissipation inside the
column is so important that no complete fluidization ever
occurs and the lower part of the column stays condensed.
This means here that the motion of the lower beads is al-
ways correlated. We can relate our X, value to the work
of Bernu and Mazighi [8], who find X =1 (see Appendix
B) for a column of balls colliding with a wall. Note, how-
ever, that the situation investigated by Bernu and Ma-
zighi is different from ours: They monitor the dissipation
of the initial internal energy; we have a steady influx of
energy into the system. This difference may also be the
reason why we obtain for X >X/ partially condensed
states.

In a way similar to the above we establish the scaling
behavior of the dissipation time 7, obtaining

_ Aqw P'(X)

T (16a)
where
@(X)=1—a; X —a,X?*. (16b)

Again the data were fitted in the interval from O to 2.8;
the values of the parameters are now a;=0.087,
a4=0.065, and y =1.5.

From Eq. (16) we infer now a condition for fluidization
in the range X <X_. In the fluidized regime the time
scale of energy dissipation is much larger than one
period. Thus we use 7 f >>1 as a criterion for fluidiza-
tion. Translated in terms of the acceleration a this gives

X7

a>>a052m7 .

(17)

This result is well corroborated by further simulations.

V. EXPERIMENTAL RESULTS

A. The case of high restitution coefficients: steel beads

The following experiments were performed using steel
beads. First we measured the value of the restitution
coefficient, by determining the height of rebound for a
bead dropped from a height of 1 m on a smooth block of
the same material. In this way we found e=0.9010.05.

With the help of a video camera connected to an image
processing device, we accumulated images of the light
dots formed at the center of the beads by a remote light
source. The results allow us to access experimentally the
density profile of the column of beads. From such
profiles we extract the height of the center of mass h_
(here a diameter-dependent quantity). We compare these
data to the corresponding computer simulations; the best
fits to all our experimental data are obtained for
€=0.92£0.01, while we take €,=1. The data obtained
in three experimental runs with steel beads are presented
in Figs. 9(a)-9(e); the curves show h_, as a function of a
and N. The first set of data is displayed in Figs. 9(a) and
9(b) where the frequency was set at f=16.5 and 15 Hz,
while the amplitude A, was varied. The second set of ex-
periments was performed at amplitudes 4,=3.42 and
1.96 mm, while the frequency was varied [see Figs. 9(c)
and 9(d)]. In the third set of experiments we kept the am-
plitude 4;,=2.98 mm and the frequency f =15 Hz con-
stant and we varied the number of beads N; the results
are shown in Fig. 9(e). In all these figures we plot the
simulation results as small squares, the experimental data
as circles, and the limiting scaling laws for the fluidized
regime as continuous curves [see Eq. (15)]. We are now
in the intermediate a regime, in which the simulations
exhibit a complicated resonant behavior as discussed in
Sec. IV. The scaling predictions of the fluidized phase
agree well with the experimental results, although not all
theoretical details are reproduced: Thus the wiggly
structure does not appear, possibly due to disturbances
induced by the friction with the walls, a fact which may
destabilize the organization of the column and therefore
cause a disordered regime to occur more rapidly.

In Fig. 10 we compare the experimental density profile
(here N=10, A,=2 mm, and f =21 Hz) with the simula-
tion results in the fluidized regime for €é=0.92; overall we
find that the agreement is fair. Hence the experimental
data can indeed be understood from simulations, in
which a single parameter (namely € =0.92) enters.

B. The case of low restitution coefficients: aluminum beads

Here we report our experimental findings with alumi-
num beads. Experimentally we measured the restitution
coefficient for aluminum beads to be €=0.6010.05.
Again the column consists of N =10 beads. The
behavior of the column of beads is now vastly different
from what we found previously; in fact the column
behaves as a condensed block. We found it convenient to
measure the time between two collisions of this block
with the bottom plate; we denote this time by T;. The
time T, is determined as a function of the normalized
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acceleration a, by recording the sound created by the
heap when colliding with the bottom plate. In Fig. 11 we
plot on the same diagram the experimental findings and
the results of two numerical simulations for N =10,
€=¢€,=0.6 and for N =1, €,=0. The simulation results
for these two cases practically coincide in the range
displayed in the figure, and hence lead only to one curve

(denoted by triangles).

We recall now that in the one-bead problem a series of
bifurcations occurs [18,19], which involve a set of funda-
mental modes that are multiples of the lowest fundamen-
tal period T=1/f. Our experimental findings with
aluminum beads, given in Fig. 11, parallel this picture in
that the experiments display clearly the first two bifurca-
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FIG. 9. (a) Experimental (circles), simulation (dots), and fit (full line) results for the height of the center of mass A ., of N =10
beads (here diameter dependent with d =3 mm) as a function of a. The frequency is f=16.5 Hz and the restitution coefficients are
€=0.92 and €,=1. (b) The same results as in (a) but the frequency is here f=15 Hz. (c) The same results as in (a) but here we varied
the frequency and held the amplitude constant, 4,=3.42 mm. (d) The same results as in (c) but the amplitude here is 4,=1.97 mm.
(e) The same results as in (a) with 4,=2.98 mm, f =15 Hz, and N =38, 10, 12, 14, 16, and 18. The simulations here are depicted by

squares.
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80

z' (mm)

FIG. 10. The number density p as a function of the height
z*; compared are experiment (circles) and simulation (line) for
N=10, f=21Hz, Ag=1.97 mm, €=0.92,and ¢,=1.

tions, whose onset mirrors nicely the simulation results.
How far the bifurcation cascade can be monitored is an
interesting question since even in a dissipative one-ball
system fully developed chaos should not show up [34].

VI. DISCUSSION AND CONCLUSIONS

In this article we studied a one-dimensional column of
beads undergoing vertical vibrations. We presented ex-
periments and numerical simulations using an event-
driven algorithm, suited to deal both with the fluidized
and with the extremely condensed phase. Thus we have
achieved a direct dynamical assessment of a numerical
model on a tailored granular system. As stressed, in this
system a progressive transition takes place between a con-
densed phase, where the dilatation is close to zero and the
beads’ motion is collective, to a fluidized phase, where the
beads’ motion is erratic. We found that the position of
the transition regime is controlled by the relative ac-
celeration of the plate. At low accelerations the Fourier
spectrum of the c.m. motion shows subharmonic

Tcoll f

FIG. 11. Times between collisions, Ty, with the bottom
plate in experiments (circles) and simulations (triangles) for
N=10 and f=30 Hz. Plotted is T, f versus a. The simula-
tions use e=¢,=0.6.
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responses, which reproduce a Feigenbaum-type scenario,
interrupted by series of fluidized and chaotic regimes. In
this case, the column behaves for all practical purposes as
a condensed block, with long phases of motion where all
beads have almost the same velocity but are not neces-
sarily in contact. An important point is that the ac-
celeration which determines the onset of the transition
regime may get to be extremely large in the case of low
restitution coefficients and/or high number of beads. For
one inelastic bead this highly dissipative behavior was
studied by Mehta and Luck [20], who evidenced the ap-
pearance of a complex pattern of bifurcations.

Furthermore we evaluated, as a function of the param-
eters € and N, the acceleration, Eq. (17), needed to reach
the fluidized phase for all the beads. When N >>1 we
showed that the acceleration scales with X =N(1—¢). In
particular, for very high accelerations a and for X > X,
(say X,=3.1) we never found that the whole column
fluidizes. Instead, for 2.5 <X <4 we find that the column
separates into an array of condensed beads at the bottom
and into several fluidized beads at the top. For very low
accelerations we observe that the column moves as a
block, so that no fluidization occurs. For X <X, we
found that these clusters may separate due to a collision
with the bottom plate, while for X > X, a clustered block
stays clustered. Furthermore, we related the threshold
value X, to the findings of Bernu and Mazighi in the
study of a column of beads hitting a wall (there no gravi-
ty was involved); in our case we found a variety of addi-
tional effects, since here energy is steadily fed into the
system.

The agreement between experiments and numerical
simulations is good. We observe both the predicted fluid-
ized behavior at high restitution coefficients (here steel
beads) and condensation as well as clusterization for low
restitution coefficients (aluminum beads). For small X we
are able to show that the density profiles scale; for large X
(X =4) we observe a bifurcation scenario. Nevertheless,
not all details of the complex resonant behavior predicted
by the simulations could be found experimentally.

It is worth noticing that some of the features of the
response of a vibrated 1D column reappear, at least quali-
tatively, also in higher dimensions. In 2D and 3D bifur-
cation scenarios are observed [2,3,20]. Fluidization is
also evidenced in 2D and 3D; there it coexists with the
condensed phase (in fact one has surface fluidization).
Similarly to the 1D case, surface fluidization was shown
to be strongly dependent on the internal dissipation of the
granular material [2].
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APPENDIX A

Using the event-driven algorithm presented in Sec. III
we are able to simulate the fluidized regime very
effectively. This is so because the computing time is pro-
portional to the number of events, and not (as in
molecular-dynamics simulations) to the number of time
steps. In the fluidized regime the times between collisions
are large and beads move independently of each other. In
the condensed regime the time intervals between col-
lisions decrease (e.g., Fig. 2) and several beads get close
and move in a correlated way [compare Figs. 3(b) and
3(c)]. In the following we describe an alternative algo-
rithm which is able to get rid of collisions occurring at
extremely short time intervals. This algorithm is similar
in spirit to the procedure for individual beads but is also
able to handle clusters.

1. The handling of clusters in an event-driven procedure

Formally, we introduce the concept of clusters as sys-
tems of beads in contact. We let two objects turn into a
cluster if their relative velocities after an event lie below a
certain value v,; then we set their relative velocities to
zero. As long as there is no cluster in the system, the
normal event-driven procedure increases time with time
steps At; defined in Eq. (3). These time steps get to be
very small for objects almost in contact (see Fig. 2). Then
many processes happen almost simultaneously. To speed
up the algorithm we developed the largest-relative-
velocity (LRV) procedure. For this we compute all rela-
tive velocities Av; =v; _;—v; between all pairs (i,i —1) of
clustered objects. Objects with Av; =0 do not collide,
whereas the objects with Av; >0 are bound to interact.

The LRV procedure works as follows: we pick out the
maximal value of the set (Av;), say Av;=max(Av;), and
let the corresponding pair (say j,j—1) collide. The ve-
locity changes are computed, using the same collision
matrices as defined in Egs. (4) and (5); then the set (Av;)
of relative velocities gets updated. The above procedure
is repeated until all Av; of objects in a cluster are less
than or equal to v, (some Av; can become, of course, neg-
ative, in which case some beads leave the cluster).

Now we will discuss the special cases which involve
collisions of clusters. On the first view we may
differentiate whether the bottom plate is involved in the
collision or not; this leads to three possible situations to
be accounted for. If the bottom plate is not involved col-
lisions occur between two clusters, say with N, and N,
beads each. If the bottom plate is involved we have a
cluster (N,) colliding with the bottom plate, or a cluster
(N,) that collides with another cluster (N,) which rests
on the bottom plate. These situations include as special
cases the simple binary collisions of one bead with the
bottom plate or with another bead (one bead is a special
case for a cluster). These three distinct situations are
handled on the same footing by the LRV procedure; they
differ, however, physically, due to the very large mass (as-
sumed infinite) of the bottom plate. We consider them
one by one.

(1) Collisions of two clusters. In a collision involving

FIG. 12. Trajectories of five beads, initially in two clusters,
for €e=0.8.

two clusters of sizes N; and N,, a total number of
M=N,+N, objects are in contact which means in 1D a
total of M —1 interacting pairs. To visualize this case we
plot in Fig. 12 the trajectories of two columns of N, =2
and N, =3 beads each during a collision; the computa-
tion was performed with the restitution coefficient
€=0.8.

To test the outcome of the LRV procedure we look at
what happens when the initial separation s between the
beads decreases towards zero. Thus we carry out a series
of simulations in which we vary s; we take it to be
s=1073,107% 1073, 1075, and O m. The simulations for
s >0 are performed in the event-driven fashion, whereas
for s=0 LRYV is used. In all simulations the center of
mass is a conserved quantity; for identical initial condi-
tions (except s) the trajectories after the collisions coin-
cide quantitatively for all s <107 m. Thus the LRV
procedure reproduces the behavior of two colliding
columns of beads very well when s is small.

(2) Collisions of one cluster with the bottom plate. To
illustrate this case we plot in Fig. 13 a cluster of beads
(N;=15) that hits the bottom plate; here we take €=0.9
and €, =1.0. This special case computed in the LRV for-
malism can be directly compared to the results of the
independent-collision wave (ICW) model introduced by
Bernu and Mazighi [8]). The ICW formalism uses for one

FIG. 13. Trajectories of five beads, initially in one cluster,
which hits the bottom plate. The restitution coefficients are
€=0.9and ¢, = 1.
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collision wave the transfer matrix Y such that u; =Y ;v;,
where u; and v; are the velocities of the particles before
and after the collisions, respectively. Y is an ordered
product of (N +1)(N +1) matrices; say for one collision

wave from below
Y,=D,_,Dy—3,-1"""Di;3Dqg; - (A1)

The D;_, ; are related to the C;_,; of Egs. (4) and (5);
they have an almost diagonal form:

1

Di—yi= row i .

Ci—l,i

1

For small X [see Eq. (13)] (say €=0.9 and N =5) the
collision waves do not interfere and we find that the ICW
and the LRV models lead to exactly the same results.
The difference in the velocity of the beads is smaller than
10712 m/s after the collision. At these low X values the
order of collisions is indistinguishable in the two models.
For large X (say €=0.6 and N =5) the order of collisions
in the two models does not coincide anymore, since
different collision waves catch up with each other and in-
terfere.

(3) Collisions of a cluster resting on the plate with
another cluster. As in Figs. 12 and 13 we carry out the
sequence of collisions in the order specified by the LRV
procedure when the clusters hit each other. As an exam-
ple for this case we plot in Fig. 14 the situation when
N,=3 beads hit N, =2 beads which rest on the bottom
plate.

2. A test for the cutoff velocity

When the relative velocity of two objects drops below
the cutoff velocity v, we merge in the LRV procedure
these objects into a cluster. This leads to a transition
from a condensed (but still separated) stack of objects to a
cluster of objects in contact. In the stack the times be-

FIG. 14. Trajectories of three beads in a cluster which hits a
cluster of two beads resting on the bottom plate. The restitution
coefficients are e=0.9 and €, = 1.

tween collisions do not vanish in general, whereas in the
cluster the times between collisions are zero. Thus we
have to choose the arbitrary cutoff velocity v, to be or-
ders of magnitude lower than the typical velocity of the
system, given, say, by 4A,w. In an independent series of
simulations we have tested the dependence of the height
of the center of mass A , of the dissipation time 7,
and of the mean dilatation A on the value of v,. We find
that the choice of v, does not influence these quantities,
as long as v, << Ayw. In Fig. 15 we display the height of
the center of mass A, (triangles), the dissipation time
Tp (circles), and the mean dilatation A (squares) versus v,
of a system of N =10 beads with 4,0=0.25 m/s, €=0.9,
and €,=1. These values do not change as long as we
choose v, such that v, <10~* m/s; thus when computing
hem» Tp, OF A taking v, below 10™* m/s allows us to de-
crease the computing time without affecting the outcome
of the simulations.

APPENDIX B

In a recent article Bernu and Mazighi [8] investigated
the problem of a column of N beads hitting a wall which
moves with a constant velocity (in Ref. [8] no gravity was
involved). One of the findings of Ref. [8] was that below
a critical value of the restitution coefficient €. the beads
condense on the wall. Now €, was found to be indepen-
dent of the initial state of agitation of the beads, but to be
a function of the number N of beads [8]:

T 1
€. =tan’ LR (B1)
In the limit N >>1 this leads to €,=1—m/N or to
X =, (B2)

where X, =N(1—¢,) is the value above which clusteriza-
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FIG. 15. Results for h., (triangles), 7p (circles), and A
(squares) obtained as a function of the cutoff velocity v.. Here
N=10, 4y©=0.25 m/s, €=0.9, and €,=1. Below 107* m/s,
the data are independent of v,.
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tion of the column of beads occurs. Physically it corre-
sponds to the possibility for a column of beads to cluster
on a moving plate independently of the initial velocities
in the column. From our simulations we found that in
the fluidized phase the relevant parameters (i.e., height of
the center of mass and dissipation time) scale with
X=N(1—¢) for N>>1. The behavior of, for example,
the height of the c.m. can be fitted with a parabola in the

interval from O to 2.8, see Eq. (15). This fit leads to an ex-
trapolated value X.=3.1 for the intercept with the x
axis. Since our simulations are dynamic and energy is
steadily fed into the system we cannot expect h . to
vanish. Indeed, for X >2.8 we find deviations from the
simple pattern, a fact which indicates a more complex
behavior of the column.
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FIG. 1. Model system with a vibrating bottom plate; here
three beads are shown.



FIG. 12. Trajectories of five beads, initially in two clusters,
for e=0.8.



FIG. 13. Trajectories of five beads, initially in one cluster,
which hits the bottom plate. The restitution coefficients are
€=0.9and ¢, =1.
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FIG. 14. Trajectories of three beads in a cluster which hits a
cluster of two beads resting on the bottom plate. The restitution
coefficients are e=0.9 and €, = 1.
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FIG. 3. (a) Motion of ten beads for f=20 Hz, a=8.0,
€=0.92, and ¢,=1. The inset displays the frequency spectrum
for the motion of the center of mass (c.m.). (b) Motion of ten
beads for f=20 Hz, a=2.0, €=0.92, and ¢,=1. The inset
displays the frequency spectrum for the motion of the center of
mass. (c) Motion of ten beads for f=20 Hz, a=1.5, €¢=0.92,
and €,=1. The inset displays the frequency spectrum for the
motion of the center of mass.



