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An alternative approach to the investigation of the space-time evolution of an electromagnetic Geld in

a nonlinear medium is presented. An adiabatic theory to obtain the dynamic picture of reflection and

penetration of electromagnetic radiation into a nonlinear medium is devised. It is based upon the energy

balance equation and uses the nonlinear modes of the stationary problem like trial functions. Filamenta-

tion and soliton generation are analyzed and the model easily predicts the giant nonlinear Goos-
Hanchen beam shifts that emerge from previously numerically intensive investigations. The method is

nonperturbative and is straightforward to apply to linear-nonlinear interfaces.

PACS number(s): 42.25.Gy, 42.65.—k, 03.40.Kf

I. INTRODUCTION

The problems associated with the interaction of elec-
tromagnetic waves with nonlinear interfaces continue to
be of very great interest. This interest is driven by the
desire to understand bistability in reflection (transmis-
sion} and, in particular, to understand how electromag-
netic beams behave at linear-nonlinear or nonlinear-linear
interfaces. There is, for example, the possibility of soli-
ton generation or substantial nonlinear changes to the
magnitudes of the Goos-Hanchen shifts.

This whole field was stimulated by the classic pioneer-
ing work of Kaplan [1—7], who in a series of elegant pa-
pers laid the foundations of bistability (multistability}
theory. The work of Kaplan, reviewed extensively by
Gibbs [8], created the first theory of plane-wave scatter-
ing at the interface between a semi-infinite linear medium
and a semi-infinite nonlinear medium. Both plane homo-
geneous and inhomogeneous surface results were con-
sidered and both positive and negative nonlinearities were
investigated. Kaplan was able to calculate [2) amplitude
profiles of nonlinear surface waves under conditions of to-
tal internal reflection and the total relative power carried
by the surface waves, as a function of the input intensity.
The question of how a two-dimensional Gaussian beam,
incident on a nonlinear medium through a linear dielec-
tric, behaves was addressed subsequently using a numeri-
cal simulation [6]. It was concluded that a nonlinear in-

terface cannot exhibit bistable reflectivity for an incident
Gaussian beam but that sharp changes occur in the
reflectivity at well-defined intensity thresholds. It was
also shown, numerically, that giant Goos-Hanchen shifts
are possible [6] and that the output beam amplitude
varies very rapidly with sma11 intensity changes. This
feature led to speculations concerning applications as
light-controlled scanning elements. The first detailed ex-
perimental investigations of the Kaplan concepts were
performed by Smith and co-workers [9—11].

Such applications are also suggested by very recent

work that uses a well-known particle model [12] to ana-
lyze the problem of the oblique incidence of a self-focused
channel on an interface separating two or more self-
focusing media [13—15]. This method represents the
self-focused channel as an equivalent particie and deals
with a "matched" interface. In other words, the interface
is between nonlinear media which have almost identical
linear refractive indices and nonlinear properties. Solitons
approaching such an interface are only weakly perturbed,
and it is then possible to represent the physical problem
as being that of a "particle" in a potential well and to
make stability predictions. The model we present here
will address a nonperturbatjve interface and is not the
same as the equivalent particle. It is an adiabatic theory
based on an energy balance equation using the known
nonlinear stationary states like trial functions. It is worth
emphasizing again that it is nonperturbative, unlike the
recent single-particle theory. It applies to a quite
difFerent type of interface. The self-consistent waveguide
that constitutes a nonlinear channel is a one-parameter
system that can be described by the position of the max-
imum intensity.

Finally, it is interesting that the way in which non-
linearity, induced by strong fields in the dielectric func-
tion of media, changes a reflected field and also any
penetration was investigated many years ago, in connec-
tion with the generation of electro-acoustic solitons in a
plasma whose boundary was exposed to electromagnetic
waves [16]. Under certain conditions, electro-acoustic
waves escape from a skin layer and, during propagation
into the plasma, transform into solitons. The physical
picture of such penetration by the incoming radiation is
quite simple. The radiation pressure reduces the density
of the plasma and, in any region where this occurs, radia-
tion tends to concentrate. It eventually propagates deep
into the plasma as an electro-acoustic wave. A similar
thing takes place during nonstationary reflection from a
weakly inhomogeneous plasma. For instance, if a plasma
interacts with p-polarized radiation then radiation cap-
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ture in "cavitons" occurs. These form in the plasma-
resonance region [17,18].

II. PLANE WAVES INCIDENT UPON
A NONLINEAR PLANE-WAVE DIELECTRIC

It should be recognized that first plane-wave theoreti-
cal results were produced by Kaplan [1—5]. Neverthe-
less, it is more informative, for the later development in
this paper, to generate afresh some of plane-wave results
and to present a few illustrative numerical examples in
the language we intend to use here. This is not to say
that these results are truly original; however, because
after some transformation they could be obtained from
Kaplan's papers [1—2].

Suppose that a strong, constant-amplitude, s-polarized,
plane electromagnetic wave E=(O,E~,O) and is incident
at an angle 8 upon an interface between a linear (dielec-
tric permittivity e=e, ) and a nonlinear (dielectric permit-
tivity e=e2+a~E~, a) 0), nondissipative medium, where
a is the nonlinear coefBcient. Let the incident angle 8 be
greater than the critical angle of total internal reflection
so that 8)8, =sin 'Qe2/e„e, )e2. As shown in Fig.
1, the z axis of the Cartesian coordinate system is perpen-
dicular to the interface, and the x,y axes lie in the plane
of interface. Assume that the nonlinear medium occupies
the z)0 half space and that a stationary nonlinear TE
wave has an electric field of the form

E =— —exp( itpt +ik—,x)+c c , . . (2.1)
1 A

a

where A is dimensionless, 1/v'a has dimensions of the
electric field, k„ is a wave number, co is the angular fre-

quency, c.c. means complex conjugate, and the amplitude
3 is a solution of the equation

peak amplitude (the channel position). Pp is a constant
shift which can be determined from the constant arnpli
tude, A; = Ap, of an incident stimulant (pump) wave, by
the application of the continuity conditions. If
a& =Qe& —y, gp=tanh(kpa'pzp) and the phase of the in-

coming pump wave is zero, then, under the total internal
reflection conditions,

1/2
K()

Ap= ~ tcp (1 gp) 1+
2 Ki

K0
Pp= tan ' —

gp
K)

(2.4)

(2.5)

These are the stationary-state conditions. Note that,
since z0 is the position of the peak intensity of the
waveguide channel (2.3), gp will now be called the channel
parameter.

A typical dependence of the channel parameter gp

upon the amplitude A0 of the pump wave is plotted in

Fig. 2, where Fig. 2(a) corresponds to angles of incidence
that satisfy the condition ~, )Kp.'ez (y (

&
( e2+ e, ) and

Fig. 2(b) corresponds to K&(Kp.'2(e]+e2) &y &e, . Fig-
ure 2 shows that threshold amplitudes Ap =ap/v 2 and
A p

= A p [(Kp+Kf )/2K@K) ] exist. If the pump-wave am-

plitude exceeds these values then stationary solutions that
vanish as z —+ 00 cannot be created. As stated earlier, it is
more appropriate to show how to generate Fig. 2 from
the present model than to try and quote it directly. It
should be emphasized, however, that Fig. 2 could be ob-
tained from the Fig. 6 contained in the fundamental Ka-
plan paper [2]. The energy density of the electromagnetic
field, calculated per unit area of the (x,y) plane in the
nonlinear nonmagnetic medium, is

W= —' f (E D+H B)dz
2 0

8 A
, +k ( 2,ey'+(A—)')A=O.z' (2.2) e2E+c p +c p, z, (2.6)

The quantities y and kp are defined as y=k„/kp
=Qe, sin8 and kp =to/c, where c is the vacuum velocity
of light. The amplitude A decreases as z —+ ~ and
satisfies the usual boundary conditions that the tangential
components of the electric and magnetic fields are con-
tinuous. Hence, in a nonlinear medium, A has the
stationary state wavegui-de channel [19]form

where ( ) means the time average, p, p is the permeability
of free space, D is the displacement vector, H is the

(a)

A (z) =v'2ape 'sech[apkp(z+zp )], (2.3) IL6

where ~p=Qy —ez and z =zp is the location of the C

limoges

2
non»near 6 +N[H[

X"

FIG. 1. Coordinate system at a linear-nonlinear interface.

FIG. 2. The stationary dependence of the channel axis coor-
dinate on the incident wave amplitude. Nondissipative non-
linear medium. (a) Kp= 0.146 KI =0.196' (b) K0=0.235,
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magnetic-field vector, and B is the magnetic-Aux density
vector.

Hence

2
KpEp KpW= (I+go) 'ei+y +—t~o+ —(0(1—

go)
'

ko

KpEp
(e2+y )(1+go),

2kpa
(2.7)

because the terms —5trL and (tco/3)go(1 —
go) are always

much smaller than the first two terms. The dependence
of the energy density 8'on Ap, the amplitude of the in-
cident pump wave, is determined by Eqs. (2.4) and (2.7).
The maximum value of W is W '"=eotco(ez+y )/koa)
and occurs for /ii=1 when the nonlinear channel axis
moves out to infinity (i.e., zo ~ ~ ). Hence

where v =P„'"/W '"=2yc/(e2+y ) is a group veloci

ty. The latter quantifies the transport of the electromag-
netic energy along the axis of the solitary self-consistent
waveguides that are formed. The left-hand side of Eq.
(3.3), therefore, describes the space-time evolution of the
channel axis parameter g, while the right-hand side of Eq.
(3.3) is the net energy flow determined by the value of the
incident-field amplitude at the interface. The energy-
transfer method is similar to that used in astrophysics or
space physics, where we imagine a source pumping ener-

gy down a "light tube. " In the nonstationary state, the
pump wave has an amplitude A, (x, t) which is not now a
constant, as it was in the derivation of Eq. (2.4). The in-
cident energy Bow is

Ep
S;= —ttiI A;(t,x)I—

1 ~max(1+g

and the energy Aux density along the x direction is

P, =f S„dz = ,'R—ef—EH,'dz =
—,'P, '"(1+$0),

where P„'"=2tr&y eoc /(ako ).

III. BASIC DYNAMICAL EQUATION

(2.8)

(2.9)

and, for a field distribution close to the stationary state in
the nonlinear medium, the interface radiates

s„=—~IA
I

—,C 2 Ep

r 2 1 0

where Ao is given by Eq. (2.4). The substitution of S;
and S„ into Eq. (3.3) yields

~+v ~ = —A;(t, x)
Bt Bx E +y

The investigation of the space-time evolution of the
electromagnetic field in a nonlinear medium can proceed
from the energy conservation law

2
KOK1 2 KO

(1 —g) 1+—g
2 K

1

BS, BS,
+divS = + + =0,

Bt
"

Bt Bx Bz
(3.1)

(3.4)

where iv is the energy per unit volume ( W = f o" ivdz) and

S is the Poynting vector. The integration of Eq. (3.1)
over the range 0 z ~ yields

BW BP
+ =S;(z =O, t, x) —S„(z =O, t, x),

Bx
(3.2)

(3.3)

where S;,S, are the z components of the flux of the in-

cident and rejected energy at the interface, respectively,

S,(z = ~, t, )=x0 and S,(z =O, t, x) =S;(z =O, t, x) S„(z—
=O, t, x)

If the characteristic scale of the incident wave is much
larger than (1/koao), the characteristic scale of the elec-
tromagnetic field in the nonlinear medium, then the rate
of change of the electromagnetic field structure is adia-
batically slow. This physical property permits the dy-
namics of space-time distribution to be determined in
terms of the stationary states. The basic step is to use the
quantities P and W, in Eq. (3.2), to form the evolution
equation of the channel parameter. This is done by intro-
ducing $0= /x, t) as a slowly varying function of x and t

The substitution of W and P, from Eqs. (2.8) and (2.9),
using (0=/(x, t), gives

a a = 2

dt ~ ~)x
+v = [S,(z =O, t, x) —S„(z =O, t, x)I,

which will now be used as the basic evolution equation.
The validity of this approach depends upon whether any
background radiation, which is ignored here, is

significant. The theory will be applied to soliton genera-
tion, with energy provided by the arrival of a pump wave,
or beam, at an interface between a linear medium and a
nonlinear medium. In the framework of the theory, the
generated solitons must be suSciently far apart for the
soliton interaction not to involve any significant back-
ground energy. In the ideal theory developed here the
solitons move far away from the interface before the next
soliton is generated, which is why the background is ab-
sent. In a real situation the solitons do not, of course,
reach infinity before the next soliton is generated. Hence
the theory here is only valid for a sparse lattice of soli-
tons. In any case, for this problem, "infinity" is only the
order of the skin depth. As wi11 be made clear, later on,
the period of soliton generation is restricted here to be
large enough for them to be far from each other, and the
calculation assumes the form of the channels without any
background. The conditions we derive will show that the
input energy is consistent with the original assumption of
a sech channel. The numerical simulations will also show
that most of the radiation is in the reflected field (because
of the total reAection condition in the linear limit), which
is also consistent with ignoring the background.

The introduction of the dimensionless variables

,'(cv/c)x and ~=—2ccot/yv&, where vf ( +ye2)c/
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(2y) is the phase velocity along the interface and

Uf Us c, transforms Eq. (3.4) into

2 2
ag ag Ki, Kp, Kp,+y =—A; (~,q) ——(1—g ) 1+—g'
B7 i}'g Kp

i
2

Consider now solutions spatially homogeneous in the x
direction (i)/Brl=0), for the case in which the amplitude
of the pump wave A;(r, rl) = A; =const is greater than
the steady-state threshold amplitudes ( A p, A p ). Equa-
tion (3.5) then becomes

(3.5) 2 2
dg Kl 2 Kp 2 Kp

A, ——(1—g) 1+—(d7 Kp 2 K)
(4.2)

IV. INTERACTION OF PLANE HOMOGENEOUS
WAVES OR BEAMS WITH A NONLINEAR INTERFACE

A. Plane waves

(fig)+y (g)
1 rl

k+
81 8'g

K)=5
Ko

K K
A; ——(1—

g ) 1+—g2 K

This case is included here as the first illustration of the
use of the new method. A plane wave, of constant ampli-
tude, is represented here by A;(~, rt}=Ap =const. First,
the stability of the stationary solution, with respect to
small perturbations 5( to the steady-state nonlinear chan-
nel axis, is investigated. The basic equation is, from Eq.
(3.5),

In this case the interaction results in the periodic genera-
tion of solitons (waveguides) that penetrate deeply into
the nonlinear medium. According to Eq. (4.2), the right-
hand part of which is always positive ( A; & A p, A P ), the
displacement of the channel or waveguide is g(r), and
this tends to infinity, as time increases. It should be re-
called, however, that ~g~

& 1, so that, when (=1, the pro-
cess of soliton radiation ceases and the field in the medi-
um returns to its initial state where g= —l. In practice,
the connection of the nonlinear channel to the pump
wave is effectively cutoff when the coordinate value of the
channel axis reaches the skin-layer thickness
(L,k —-1/kpKp). After leaving the skin-layer region, the
soliton speed remains approximately constant and equal
to L,i, /T„where T, i is the period of soliton generation,
i.e., the time interval between two successively radiated
solitons. T, can be calculated from Eq. (4.2). For angles
of incidence close to the angle of total internal reflection
(Kp «Ki), Eq. (4.2) reduces to

where

=p(g'), (4.1)
dg Ki 2 Kp i 2=—A; — (1—

g ).
dr Kp 2

(4.3)

2
'

2
Kp Kp

p =KpK, gp 1 ——+2—gp
K) K(

and gp( Ap ) determines the dependence of the steady-
state channel axis coordinate position upon the amplitude
of the incident pump field. For a given g'&0 (or &0),
p&0 leads to 8/Br(5$)+y(B/Brl)(g') &0 (or &0), which
means that ~5g~ will increase exponentially. Such a sys-
tem is unstable and the state, for which p&0, is stable.
From Eq. (4.1) it can be appreciated that the b-c part of
the curve shown in Fig. 2(a}, and the b-c, d-e parts of the
curve shown in Fig. 2(b), cover the convective unstable
state regime [20). Indeed, these parts are characterized
by BW/BAp &0. The equilibrium states in Fig. 2(a) cor-
respond, physically, to a nonlinear skin effect and are la-
beled (a b) If the phy-sic. al conditions correspond to Fig.
2(b), then a stable channel-like state (c-d) occurs in the
nonlinear medium. It is important to note that transi-
tions from unstable to stable states are accompanied by
radiation or absorption of electromagnetic energy, equal
in magnitude to the energy difference between the corre-
sponding steady states. These energies are monotonically
increasing functions of g. The stable steady state of the
waveguide channel type (c-d) can be achieved by first in-
creasing the amplitude of the incident pump field to a
value A p, thus leading to a displacement of the nonlinear
channel to the region g'& 0 [in accordance with Eq. (3.5)].
The amplitude is then decreased to a value that lies in the
interval Ap (A,. & Ao.

Equation (4.3) integrates to

g(r) = )/p 1 tan —+p —1r
2

—tan ' (4.4a)

2 1

KpKi Qp 2 —1
tan

2

+ tan
1

p2

where P=&2(A;/Kp)=A;/Ap is going to be called the
superthreshold, since p&1 corresponds to energy above
the threshold needed for soliton generation.

The dimensionless soliton generation period, T„ the
time during which g goes from —1 to +1, is obtained by
substituting g'= 1 into Eq. (4.4), i.e.,

(4.4b)

4 1T tan '
KpKi Qp

1

Qp2
(4.5)

The dependence of T, (p ) upon p is shown in Fig. 3. As
the angle of incidence of the wave increases, the soliton
generation threshold increases from Ap, when Kp(K~ to
Ao for which Kp)K, .
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2$ ----------'5

2 2

y =—A; ——(1—
g ) 1+—

~g
Ki ICO

2 O 2

d 7j' Kp 2
(4.&)

Ts 0---------35

The solutions of Eq. (4.8) are similar to the solutions of
Eq. (4.2) but with the substitution r~i)/y. Hence, by
analogy with Eq. (4.5), the spatial period of the filament
"lattice" formed is, in dimensionless form,

175---------
L, = tan

4 1

KpKi +@2—1

(4.9)

0
0 The general (space-time) solution of Eq. (3.5), for the case

when the angles of incidence are close to the angle of to-
tal internal reflection, is

FIG. 3. Dependence of the soliton generation period on the
superthreshold rate (p ).

The nonstationary reflection coefficient, R (r), is
defined as the ratio of the instantaneous energy flux leak-
ing from the medium,

C 6'0S=—~[A (r) —,r 2 1 0

to the incident energy flux

S, = —~, /A, f—2 60

g(r i))=+@ —1

OA;-

~pc, , Fo(i)—yr)
tan p —lr +

2 p2 —1

Fo(rl 1'&) &o&i
1 — tan ~ p —1~

2

(4.10)

and is given by

R(r)=

2

[1—
g (r)] 1+—

g (r)
K)

(4.6)
p

where g(r) is given by Eq. (4.4a) and R (r)=1/p at its
maximum. Maximum values of 1/pi, 1/pz are shown in

Fig. 4(a). For angles of incidence close to the critical an-

gle (xo ((lri ), R (r) reduces to (1—
g )/p .

As p, the superthreshold, increases, T, and the peak
value of R (r) decrease. The dependence of R (r) on the
time r is illustrated in Fig. 4(a), where ju, & pz. The mini-

ma in the reflection coefficient correspond to the mo-
ments when solitons are emitted. The average of the
reflection coefficient R (r), over the period T„is &R&

0

-I
0'
0

(R) =1— p —1

1
p2tan '

(4.7) 04-------

Its dependence upon p is shown in Fig. 4(b). For p & 1,
no soliton will be generated.

Stationary solutions also exist in the form of nonlinear
plane waves that can penetrate deeply into the nonlinear
medium. Such waves, as is well known, are unstable and
break down into self-consistent waveguide channels (fila-

ments) in which the energy of the electromagnetic field is
concentrated. The steady nonlinear state, as a result of
the development of this instability, may also be investi-
gated with Eq. (3.5) after setting 8/Br =0, i.e.,

0
0

FIG. 4. (a) Time dependence of the reflection coefBcient
when the incident field is a monochromatic plane wave. (b)

Time-averaged dependence of the reflection coeScient on the
superthreshold rate (p').
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where Fp(g)=g(0, g), the initial displacement of the
channel, is determined by the pump wave. In this case a
two-dimensional and nonstationary "lattice" of solitons
makes up the spatial structure of the wave field. Equa-
tion (4.10}returns to Eq. (4.4) if Fp(rt —yi) = —1.

The character of this solution of the nonlinear problem
is corroborated qualitatively by numerical calculations of
interaction of a plane wave with an interface [20]. These
calculations demonstrate the penetration of an incoming
electromagnetic field into a nonlinear medium in the form
of generated stationary channels. As previously dis-
cussed, the theory developed above does not take into ac-
count the interaction between the modes and, therefore,
the distance between the channels (L, ) must exceed the
characteristic scale (1/kpap). Also the period of the soli-
ton excitation ( T, ) must be much greater than the
steady-state relaxation time ( y /BKp ). These require-
ments lead to an upper limit on value of the superthresh-
old rate, i.e.,

where A, is the reflected amplitude, and there is a
spreading factor

f" g'A, '(g)dg f" A„'(q)dq™,(4.13)

i.e., E is the ratio of the widths of the incident and
reflected beams.

For states close to their linear values, g= —1+a(ri)
(a «1), so that

da +2a =
d ib

, A, (rib),
Kp

Kp 1+—
K 1

(4.14}

beam space shift, the Goos-Hanchen shift, defined as

gA, q
—A; q—oo (4.12}

8 7+~2
p ((p,&=-

K) 2f

(in the case of soliton generation) and

where

KpK) Kp
2

1+—
K)

8
P &&P 2=—P

K)

Equation (4.14) is a first-order, linear, ordinary
difFerential equation, which, after applying the condition
a(gb = —Oo ) =0, has the solution

(in the case of filamentation) [21]. In the limit of total
reflection, y =ez, the values of p„and p, 2 are close to
each other.

B. Electromagnetic beams

a(rib)=2e "'f e 'A, (t')

Since

dt'
2

Kp
Kp 1+—

K 1

(4.15)

In this section we consider the interaction of time-
continuous but space-limited waves (beams) with a non-
linear medium. The analysis is based on Eq. (3.5), and
uses an assumption that Bg/Br=0. Of particular interest
here are the changes in the form of beam after reflection,
any space shift that occurs, and, finally, soliton genera-
tion.

Equation (3.5) becomes, in this case, then

K 2

A„(rib)=Ap= —(1—
g ) 1+—

g
K)

2
Kp1+—a,
K 1

2—Kp

2 2

y =—A, (ri) ——(1—g ) 1+—
g

K 1 2 Kp 2 KO

d'g Kp 2 K)
(4.11)

where A;(g) is a slowly space-varying function.
Beams are localized in space and have two possible

ways of interacting with a nonlinear medium, as can be
seen from the constant wave amplitude case already con-
sidered. First of all, there is the possibility that the peak
intensity of the electromagnetic beam is less than the
threshold values Ap Ap ~ For this condition there is
only a nonlinear modification of the skin layer. This
occurs in a manner similar to a linear interaction of a
beam with the medium. Jf the peak amplitude of the
beam is above threshold ( A,. & A p, if ap & a&, or A,. & A p
if ap & ~, ) it is possible to excite a nonlinear channel
which, through its dependence upon value of A;, can ra-
diate completely back to the linear medium or can break
its connection to the pump wave and penetrate deeply
into the nonlinear medium. For both cases the nonlinear
interaction can be usefully characterized by a reflected-

A„(7)b)=2e ' f e '
A; (t')dt' . (4.16)

The various integrations f A„dpi, f riA„dg,

f rPA„dpi can now be calculated to give the following
linear (a « 1) results:

= 2y
2

KpK )

KpK) 1+—
K 1

29p
El =

2 7

1+2')+2gp

(4.17}

(4.18)

where vg= f "„gbA,2(gb)drab/f" A;(gb)drab is the
square of the mean width of the incident beam, and

g, = f "„gbA (gb)drab/f "„A (qb)drab meas«es the
distortion of the input beam from a symmetrical one. g&
is zero for a perfectly symmetrical input beam.

In the region where the incident angles are close to the
total internal refiection angle (~p&&af), Pp, the phase
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shift of the field given by Eq. (2.5), is a rapidly varying
function and the Goos-Hanchen shift of the beam can be
obtained from the theory given by Brekhovskikh [22],
i.e.,

2
~No 2

Bl' K@K)

(4.19)

This agrees with Eq. (4.17).
In the nonlinear regime, there is also a space shift of

the reAected beam. This nonlinear shift occurs for values
of a that are no longer small. In this case, the square of
the reflected field amplitude is, from A„= A o, Eqs. (4.11)
and (2.4),

b, =A~ I a(g)dg j p'(r))dg, (4.20)

where p (g) =23, (q) Ao.
For the angles of incidence close to the critical angle

(~o &&a, ), a satisfies the Riccati equation

da 2=p —2a+a
d'gb

(4.21)

where g&
= rilb, L, and Eq. (4.11) has been used. The Ric-

cati equation has an exact solution [23] for certain depen-
dences of p (r)1, ) upon ri~. A simple example that illus-
trates the principles of the theory is the square profile
beam

A„(q)= A; (g) —y—
K)

deaf

poi I qi I
—no

2
P ("Ib ) = 0, I q„ I & q, ,

(4.22)

The substitution of this into Eq. (4.12), and integrating by
parts, give the nonlinear shift

for which the solutions of Eq. (4.21) are the following.
(1) For po ( 1,

0, gb (—
go

a= 1 —gl —po/tanh[+1 —po(ri&+rlo)+tanh '(Ql —p2o)], —go& g& (go
—2(rgb vyo)

aoe 90 —Ib

(4.23)

where ao= 1 —Ql —po/tanh[2qo+1 —po+tanh '(Q 1 —po)].
(2) For po & 1,

where

Ib +

1+Qpo —1 tan Qpo —1(q|,+qo) —tan

2( YJy 7/o )

aoe IO — Ib

1

( +po
lo —Ib + lo (4.24)

ao= 1+Qpo —1 tan 2go+po —1 —tan

The shifts are the following.
(1) For po & 1,

1

Qp,' —1

1 +1—po[1 —tanh (y)]eln.
'9oPo +1—Po[1+tanh (y)]+(2—Po)tanh(g)

(4.25)

where y=q +1—p .
(2) For po & 1,

1
1n ~

'9oPo

Qpo —1[1+tan (f)]e

Qpo —1[1—tan (f)]+(2—po)tan(P)
(4.26)
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dU
+[@()b)—1]U=O.

d 7th

(4.27}

This equation describes the motion of a "particle" in a
potential field [24]. The number of coupled states that
are solutions of Fq. (4.27) determines the number of radi-
ated solitons. The limiting values (=+I, 0 correspond to
the states of p =0, 1, which further correspond to the
asymptotic values of the eigenfunctions, which are
U(gb)-exp(+gb) or U(gb}=C, where C is a constant.
As a further example, we can find the number of the soli-
tons, generated by beam with the form

2

v'("ll )= I p

cosh (qb/qo)
(4.28)

for which Eq. (4.27) has an exact solution. The number
of solitons, generated by the beam (4.28), with width go,

where f=')0+po —1. Note that b, ~BI =2@/vos& as

F0~0, which corresponds to the linear limit of the
theory. Equation (4.26) shows that the value of the shift
goes logarithmically to infinity at the threshold of soliton
generation. The logarithmic breakup of Eq. (4.26) can be
understood from simple physical considerations. At the
threshold for soliton formation the field forms a solitary
channel which travels to infinity. This solitary channel
will not return to the linear medium again. The depen-
dences 6/b, z for different values of the parameter go are
shown in Fig. 5.

If the peak intensity is large enough, it is possible to
generate more than one waveguide (soliton) channel. In
order to calculate the number of solitons to be formed, it
is necessary to find a general solution of Eq. (4.11) for a
range of angles of incidence. This is possible when the
condition ~0«a, holds. Equation (4.21), which is de-
rived from Eq. (4.11) under this condition, reduces to the
linear stationary Schrodinger equation after the substitu-
tion u= 1 dU/d—qb/U, i.e.,

0
0

FIG. 6. Number of solitons generated shown on the (po, go)
parameter plane.

and superthreshold rate po, is equal to
' 1/2

1 + gpNg = 1+ —+g(pep
1

(4.29)

where the square brackets denote the integral part. The
dependence of the number of radiated solitons on the
values pp and gp is shown in Fig. 6.

The electromagnetic energy that is transmitted into the
nonlinear medium is a discrete value, determined by the
number of radiated solitons. This is illustrated in Fig. 7,
where the dependence of the (total) reflection coefficient
upon p, namely,

R'=f A„'(q(dq f A(q)dg,

is shown. The same discrete characteristic is exhibited by
the coefficient K(p, } and the shift 5(l" ) of the reflected
beam. The minima in the functions Rz ((" ), E(I' ), and
h(p~) correspond to values of the superthreshold rate
when a coupled state is formed. The behavior of Rz, as
shown in Fig. 7, is already established in the literature.

I 0 0 00

1.0

0.8—

0.6—

0.4—

pl
0

O.2-

I I I

2 4 6
I I I I I

8 10 12 34 16 18 20

FICs. 5. Dependences of the nonlinear Cxoos-Hanchen shift
6 /EL on the superthreshold rate pz for (1) go =0.04, (2)
go=0.2 (3) go=2.0.

FIG. 7. The dependence of the total reflection coe%cient Rz
upon p for y =2.67.
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0/&
100 200

0.0 0.1 0.2

FIG. 8. Positions of peak intensity of beams in a nonlinear
medium for y =2.65 and (1) p =2.8, (2) p =3.0, (3) p =3.5, (4)

p —3.77, (5) p —3.78.
FIG. 9. Stationary dependence of the channel axis coordinate

upon the incident wave amplitude in a dissipative medium.

]co & ~l. e; =0.001.

The interesting thing here is that we have obtained it
from quite a simple and elegant formalism. We have also
been able to compute the positions of the peak intensity
in the nonlinear medium for various values of power,
from Eq. (4.11}directly. These are shown in Fig. 8 and
are precisely of the form obtained from purely numerical
simulations [7].

2 2
Bg Bg lrI 2 +o 2 o 2+y =—A; (r, r)) —(1——( ) 1+—

gB'r BY/ Kp
!

2 K1

—2e, (1+(), (5.3)

which has an extra dissipative term on the right-hand
side, compared with Eq. (3.5}. If an incident wave with
constant amplitude A;(r, rl)= Au is used, then, for the
stationary case, Bg/Br=0, Bg/Brl=0, and Eq. (5.3) gives

V. INFLUENCE OF WEAK DISSIPATION
IN THE NONLINEAR MEDIUM 2

A =—(1—
g ) 1+—g +—5(1+(), (5.4)

In the previous sections, dissipation in the nonlinear
medium has been neglected, but the inhuence of weak
dissipation can be calculated readily, however, within the
framework of the energy method. The equation for the
energy balance (3.1), when the dissipation is taken into
account, is

where 5=4@;/KOK'). For simplicity, attention is restricted

Bw +dlvS= ~diss &at
(5.1)

where qd;„=2@,w is the time-averaged energy dissipating
per unit volume of the nonlinear medium, and c, is the
imaginary part of its dielectric permittivity. Under con-
di.tions when the imaginary part of the dielectric permit-
tivity is small enough in comparison with its real part,
the calculation of the energy loss can obviously be made
using a field structure that is close to that of the solution
of the nondissipative problem. As an example, we inves-
tigate the inhuence of energy dissipation in a spatially
homogeneous medium such as the one discussed in Sec.
IV. In this case, 0.3

b:

(5.2)

Equation (5.1) then becomes
FIG. 10. Absorption coefficient Q dependence upon su-

perthreshold p .
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'Vdiss 1+
S, p

(5.5)

ase when the incident angle is clos« '"' '"g
1 internal reflectlon (tto « +1)

the form, on the basis of Eq. (5 4),

here to the case of ac &it, . The dependence of g( Ao) for
weak dissipation (5 & 1) is shown in Fig. 9. The (ab) part
of the curve covers the stable regime and (bc) covers the
unstable regime. The absorption coefficient Q is defined
as the ratio of the dissipated power to the energy density
flux of the incident radiation, i.e.,

'2

Q, 2= 1+—+ —+1 —p
5 5 5 2

p 2 2

1/2 '

(5.6)

where p =23 0/tto. Q, with its branches 1 and 2, is illus-
trated in Fig. 10. The sign (

—
) in Eq. (5.6) gives the ab-

sorption along the stable branch of the solution (part ab
in Fig. 10) and the sign (+) gives the absorption along the
unstable branch (part bc in Fig. 10). Thus it is seen that,
in the stationary problem, strong absorption takes place
only along the unstable branch, which is characterized by
a higher field intensity in the nonlinear medium.

As in the nondissipative case, if the amplitude of the
pump wave is greater than threshold value A 0, periodic
generation of solitons is possible. The period, in this
case, is

Ts
2 1+—

—1-2- ]/2

1 ——
2

2
p — 1+—

2

—1'2 1/2 +
1+

2

p — 1+—2

2

shows that T in'creases wit»n«easing d""P
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