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The synchro-betatron coupling induced by modulating a transverse dipole field at a frequency
close to the synchrotron frequency was studied experimentally. The combination of the electron
cooling and transverse-field modulation on the synchrotron oscillation is equivalent to a dissipative
parametric resonant system. Six-dimensional Poincare maps were measured at ten-turn intervals.
The proton bunch was observed to split longitudinally into two pieces, or beamlets, converging toward
attractors of the dissipative system within a rf bucket. Based on our experimental results, the effects
of ground vibration on the superconducting supercollider beam and the effects of power-supply ripple
on the relativistic heavy-ion collider beam are examined.

PACS number(s): 41.85.—p, 03.20.+i, 05.45.+b, 29.20.Dh

I. INTRODUCTION

The equation of motion for phase oscillations of a par-
ticle in a synchrotron is given by [1]

P + ~, (sin P —sin Po) = 0,

where P is the relative rf phase angle between the orbiting

particle and the rf phase, u, = ~0 2„'&,~& is the small-

amplitude synchrotron angular f'requency at Pp = 0, (dp is
the angular revolution frequency, h, V, and Po are respec-
tively the harmonic number, the peak rf voltage, and the
synchronous phase angle, Pc and E are respectively the
speed and the energy of the particle, and g is the phase
slip factor. Thus particles are executing synchrotron os-
cillations longitudinally around the synchronous particle.

Transversely, the horizontal and vertical deviations
&om the closed orbit of a beam particle satisfy Hill's
equation [2]:

dz AB, dz AB

(1.2)

Here K (s), K, (s) are focusing functions, Bp is the mag-
netic rigidity, s is the longitudinal particle coordinate,
and AB, AB are linear or nonlinear error magnetic
Gelds. In the linear approximation, the solution of the
error-&ee transverse Hill's equation is

y = 2P„(s)J„cos[P„(s)+ y„], P„(s)=
' ds

o pv'

where y stands for either z or z. Here P„(s)is the beta-
tron amplitude function, J„is the invariant action, P„(s)
is the betatron. phase advance, and y„is an initial phase
angle. The numbers of betatron oscillations in one revo-
lution are called betatron tunes defined as v„=z

Thus particles are executing betatron oscillations trans-
versely about the closed orbit of an accelerator.

Coupled motion between the transverse and longitudi-
nal degrees of freedom is called synchro-betatron (SB)
coupling. The SB coupling is significant for electron
storage rings [3], where the fractional parts of the syn-
chrotron and betatron tunes are of the same order of
magnitude. Similarly, the SB coupling can also be im-

portant for fast cycling proton synchrotrons, such as the
Fermilab Booster, where the synchrotron tune is of the
order of 0.1. On the other hand, the factional part of
the betatron and synchrotron tunes dier substantially
in proton storage rings, and the coupling between lon-

gitudinal and transverse motions is not as important.
However low-frequency transverse oscillations may cou-

ple to the synchrotron degree of freedom. For the super-
conducting supercollider (SSC), where the synchrotron
frequency varies kom 7 Hz at injection energy to 4 Hz
at 20 Tev, SB coupling may arise &om ground vibra-
tion. At the relativistic heavy-ion collider (RHIC), the
synchrotron frequency ramps through 60 Hz around 17
GeV/c for heavy-ion beams, and SB coupling may result
&om power-supply ripple.

The dominant efFect of ground vibration or power-
supply ripple is a modulation of dipole Geld. A slow adia-
batic dipole modulation gives rise to a closed.-orbit mod. —
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ulation. Provided that the resulting closed-orbit mod-
ulation is much smaller than the beamwidth, the adia-
batic modulation usually does not limit the performance
of colliders or storage rings. Detailed analyses have been
reported and compiled [4]. However, performance degra-
dation can arise &om nonadiabatic modulations, which
occur naturally at resonance conditions, e.g. , transverse
modulation at the synchrotron frequency. The resulting
motion can also be characterized as SB coupling. A de-
tailed study of this issue is therefore needed.

We have recently studied and reported experimental
results of SB coupling arising from the dipole-field mod-
ulation at frequencies close to the synchrotron frequency
[5]. This paper is intended to present our data analysis
based on the Hamiltonian formulation and determine the
tolerance of the SB coupling due to ground vibration or
power-supply ripple. The plan of this paper is as follows.
In Sec. II, the experimental method and data analysis
will be presented. In Sec. III, the synchrotron motion
with phase modulation resulting from the SB coupling
is formulated in terms of the Hamiltonian dynamics and
the tolerance of the SSC to the ground vibration and the
consequences of power-supply ripple for RHIC are dis-
cussed. The conclusion is given in Sec. IV.

II. EXPERIMENTAL METHOD
AND DATA ANALYSIS

The experimental procedure started with a single
bunch of about 5x10s protons with kinetic energy of 45
MeV at the Indiana University Cyclotron Facility (IUCF)
Cooler synchrotron. The cycle time was 11 s. The in-
jected beam was electron-cooled and was modulated si-
multaneously by a small dipole. A 23-cm window-frame
ferrite dipole magnet [6) was used to produce the trans-
verse dipole-field modulation. The effective length of the
dipole was measured to be f = 0.27 m. The horizontal
dispersion function was D, 4.0 m at the modulation
dipole location. At the end of 7 s, the beam-centroid
displacements were digitized, and recorded from signals
of beam position monitors (BPM's). The longitudinal
phase coordinate was measured by comparing the time
difFerence between the signal from a BPM sum signal
passing through a 1.4-MHz low-pass filter and the sig-
nal from the rf clock. A beam position monitor with a
low-pass filter (3 kHz) at a high-dispersion location was
used to measure the momentum deviation, which is re-
lated to the ofF-momentum closed orbit by Exp D

p
with D 3.9 m. A total of 8 channels were used to ob-
tain six-dimensional (6D) phase-space maps with 16384
points recorded at ten-turn intervals. Details of our data
acquisition system have been reported earlier [7, 8].

For this experiment, the harmonic number was h = 1,
the phase slip factor was g —0.86, the stable phase
angle was Pp

——0, and the revolution frequency was
fp ——P = 1.03168 MHz. The rf voltage was chosen to be
41 V to obtain a synchrotron frequency of f, = P = 262
Hz in order to avoid harmonics of the 60-Hz ripple. The
synchrotron tune was v, = ~ = 2.54 x 10 4. We chose
v = 3.828, v = 4.858 for this experiment to avoid non-
linear betatron resonances. The corresponding small-

est horizontal and vertical betatron sideband &equencies
were 177 and 146 kHz, respectively.

With a horizontal dipole (vertical Beld) modulation at
location ap, the horizontal closed-orbit deviation z~(t)
becomes [2]

where 8(t) = 8sin(v t+ yp) with 8 =
& and B as

the peak modulation dipole field. Furthermore, if the
dispersion function at the modulating dipole location is
not zero, the path length is also modulated. The change
in the circumference is given by

hC = D 8(t) = D 8sin((u t+ yp), (2.1)

where D is the dispersion function at the modulation
dipole location. The corresponding rf phase difference
becomes b,P = 2zh &, where C = 86.82 m is the cir-
cumference of the IUCF Cooler Ring. In our exper-

A

iment, the maximum rf phase shift per turn b,P was
0.78 x 10 sB [gauss] radians.

The longitudinal phase-space coordinates (P, ~) at
the nth and the (n+ 1)th revolutions are transformed
according to the following mapping equations:

+2o.u, a sin u t, (2.4)

where the damping coefficient is a = 44iA. With an
electron current of 0.75 A, the damping time for the 45
MeV protons was measured to be about 0.33 6 0.1 s or
a = 3 6 1 s [8), which was indeed small compared with
Kc) = 1646 s

Because the synchrotron &equency is much smaller
than the revolution &equency in proton storage rings,
the phase errors of each turn accumulate. The equiva-
lent phase modulation amplitude is enhanced by the fac-
tor 2, i.e., the effective phase modulation amplitude
parameter a is given by

luupD 8 (up

ld ~ C 27C(d~
(2.5)

Although the cooling was weak, the transient solution
of Eq. (2.4) has damped out by the time of measurement.
%le therefore measured the steady-state solution, in con-

P„+i——P„+2vrhg!
~

+ AQ, (2.2)

eV+, »n 4~+i —&!&~).
(2.3)

where the fractional momentum deviation of particles
(~) is the conjugate variable to the synchrotron phase
angle P, and A is the phase-space damping parameter
related to electron cooling. Thus the synchrotron equa-
tion of motion, in the presence of transverse modulation,
becomes

d2$ dP+ 2a—+ u, sing = ~ ur, acos~ t
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trast to our earlier experiment where the transient so-
lutions were measured [8]. Let the steady-state solution
of the nonlinear parametric dissipative resonant system,
Eq. (2.4), be given by

150

125

I I i I

I

P = g sin(u) t —y), (2 6) 100

where we have used the approximation of a single har-
monic [9]. Expanding the term sing in Eq. (2.4) up to
the first harmonic, we obtain the equation for the mod-
ulation amplitude g as

50

[ a~g—+ 2u, Ji(g)] + [2au~g] = [ur~ur, a] + [2nw, a],
(2.7)

with the phase y given by

0
150 200 850

f (Hz)

300 350

g~ (ur' + 4n') —2ur,'(u~ Ji (g)
y = arctan (2.8)

where Ji is the Bessel function [10] of order 1. Steady-
state solutions of Eq. (2.7) are attractors for this dissipa-
tive system. The existence of a unique phase factor y for
solutions of the dissipative parametric resonant equation
implies that the attractor is a single phase-space point
rotating at the modulation &equency ur

There are three solutions to Eq. (2.7) when the mod-
ulation &equency is below the critical bifurcation &e-
quency, u„given by the condition

= 0.

((u u), )2 + (2n(u, )2

((u2 —~2 )2 + (2au) )2
(2.9)

A stable solution with a large phase amplitude g and
the phase factor y —

z is called the outer attractor
solution, and a stable solution at a smaller phase am-
plitude gi, with gs —

z called the inner attractor so-
lution. A third solution g, with y, ——

2 corresponds
to the unstable (hyperbolic) solution. When the damp-
ing parameter o. is small, these two stable solutions are
almost opposite to each other in the synchrotron phase
space. They rotate about the origin at the modulation
frequency [see Eq. (2.6)]. When the damping parameter
a is increased, the stable solution (g, g ) and the unsta-
ble solution (g„g,) approach each other. They collide
and disappear for a large damping parameter. Figure 1
shows the phase amplitude g as a function of f, calcu-
lated from Eq. (2.7) for B = 2 G with a = 2.5 s i and
10 s . Note that the outer attractor solution disappears
at a large damping parameter. When the modulation &e-
quency is larger than the bifurcation &equency, only the
outer attractor solution exists.

When the modulation &equency is far away from the
bifurcation &equency, the response amplitude for the in-
ner attractor at ~ (( u or the outer attractor at

can be approximated by the solution of the
linearized Eq. (2.7), i.e.,

FIG. 1. The attractor solutions of Eq. (2.7) [with the or-
dinate g=g] fora=2. 5s and 10s ' at B =2G. Note
here that when the damping rate a is larger than 10 s ', the
outer attractor disappears at modulation frequencies below
253 Hz.

A. Observation of attractors

The injected beam &om the IUCF K200 azimuthal
varying 6eld cyclotron is uniformly distributed in the
synchrotron phase space within a momentum spread of
about ~ +3 x 10, therefore all attractors can be
populated. The phase coordinates of these attractors
could be measured by observing the longitudinal beam
pro61e &om BPM sum signals on an oscilloscope. Fig-
ure 2 shows the longitudinal beam profile accumulated
through many synchrotron periods with the modulation
field B = 4 G for the modulation frequencies of 210,
220, 230 240, 250, and 260 Hz. The rf wave form was
also shown for reference.

It was puzzling, at first, that the longitudinal profile
exhibited gaps in the time domain seemingly as if there
was no synchrotron motion for the beam bunch located
at a relatively large phase amplitude. However, using a
fast sampling digital oscilloscope (HP54510A) for a sin-
gle trace, we found that the beam profile was not made
of particles distributed in a ring of large synchrotron
amplitude, but rather was composed of two beamlets.
Both of these two beamlets rotated in the synchrotron
phase space at the modulating &equency, as measured
from the fast Fourier transform (FFT) of the phase sig-
nal. If the equilibrium distribution of the beamlet was
elongated then the sum signal, which measured the peak
current of the beam, would show a large signal at both
extremes of its phase coordinate, where the peak current
was large. When the beamlet rotated to the central po-
sition in the phase coordinate, the beam profile became
Bat with a smaller peak current. Therefore the pro61e
observed with the oscilloscope overed an opportunity to
study the equilibrium distribution of charges in these at-
tractors.

Assuming an equilibrium elliptical beamlet pro6le with
Gaussian distribution, the distribution function (current
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density) becomes (see Sec. III B)

(4' —4 i (I)1

p(4»t) =
+2moi

f+-+~(t)l'
P2 e

/2m. cr2

(2.10)

ei ——0'io(1+ ri sin u~t), nz = 0'zp(l + rz sin 4&rat).2= 2 2 2 2

Here g b and y ~ are the amplitudes and phases of these
two beamlets obtained &om solving Eqs. (2.7) and (2.8).
Since the profile observed on the oscilloscope was accu-
mulated through many synchrotron periods, it would not
depend on the parameters y s, i.e., these profiles were
not sensitive to the relative positions of these two beam-
lets. The eccentricity parameters r i,z signify the aspect
ratio of these two beamlets, and 0M, 0'zo represent the av-
erage rms bunch length. For example, the aspect ratio,
given by 1:1+ri of the outer beamlet at the modulation
frequency of 220 Hz was found to be about 1:3&om the

where pi and pz depict the relative population of these
two beamlets with pi + pz

——1. Since each particle in
these taro beamlets rotates in the phase space at the mod-
ulating &equency ur, the parameters Pi, z and oi z are
given by

4i(t) = g sin((u t —y ), 4r2(t) = gs sin((u t —ya),

profile of Fig. 2. This means that the peak current for
the outer beamlet was reduced by a factor of 3 when the
beamlet rotated to the center of the phase coordinate.
The relative population of these two beamlets was about
75'%%uo for the inner and 25'%%uo for the outer, obtained from
6tting the data. As the modulating kequency increased
toward the synchrotron &equency, the phase amplitude
of the outer beamlet became smaller and its population
increased. When the modulating &equency eras higher
than a critical frequency, ur„the center peak disappeared
(see the 260-Hz data of Fig. 2).

Figure 3 shows the phase amplitude of the outer beam-
let measured with the oscilloscope (squares) and the
phase amplitude obtained &om the phase detector (di-
amonds). Since the phase detector was not intended for
use with more than one beam bunch present, it appeared
that the phase detector measured the centroid of these
two beamlets. Only when one beamlet dominated the
charge distribution was the phase detector able to mea-
sure the phase properly. In the bottom part of Fig. 3
the phase response data &om a square-wave modula-
tion were shown to compare with the attractor solutions.
Since the square wave can be expanded in Fourier se-
ries, B,&sin~—,qt+ s B,qsin3&u, qt+, a peak in the
response was expected and observed at a modulation fre-
quency of 87.3 Hz.

To verify that the synchro-betatron coupling observed
was caused by dipole modulation in a region with disper-
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FIG. 2. The oscilloscope traces of accu-
mulated BPM sum signals showed the split-
ting of beam bunch into beamlets below the
bifurcation frequency. The modulation am-
plitude was B = 4 G. The sine waves in
this Bgure were the rf wave form.
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sion as described in Eq. (2.1), we installed the modulation
dipole at a low-dispersion location and repeated the mea-
surement of the beam response for modulation &equency
around the synchrotron frequency. Our experimental re-
sults confirmed that the effective phase modulation am-
plitude parameter a was greatly reduced.

B. The hysteretic phenomena of attractors

The phase amplitudes of attractors shown in Fig. 3
also exhibited hysteresis phenomena. When the modu-
lation frequency, which was started initially above the
bifurcation &equency, was ramped downward, the phase
amplitude of the synchrotron oscillations would increase
along the outer attractor solution. When it reached a
frequency far below the bifurcation &equency, the phase
amplitude jumped &om the outer attractor to the inner
attractor solution. On the other hand, if the modulation
&equency, when originated &om a value far below the
bifurcation &equency, was ramped up toward the bifur-
cation &equency, the amplitude of the phase oscillations
followed the inner attractor solution. At a modulation
&equency near the bifurcation &equency, the amplitude
of the synchrotron oscillations jumped from the inner to
the outer attractor solution.

The hysteresis depended on the beam current and the
modulation amplitude a. Since a large damping param-
eter could destroy the outer attractor shown in Fig. 1,
the hysteresis would depend also on the dissipative force.
The observed phase amplitudes were found to agree well

with the solutions of Eq. (2.7). Similar hysteretic phe-
nomena have also been observed in electron-positron col-
liders related to the beam-beam interactions [11]. At a
large beam-beam tune shift, the vertical beam size ex-
hibited a Hip-Hop effect with respect to the relative hori-
zontal displacement of the two colliding beams. The am-
plitudes of the coherent vr-mode oscillations also showed
hysteretic phenomena [11].
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C. The e8'ect of BO-Hs ripple

During the experiment, the power supply to the mod-
ulation dipole had inadvertently picked up 60-Hz ripple
from the transmission line. Thus the actual modulation
dipole field was given by

B = [B sinus t] (1+Rcos(uspt)
A

= B sinu t + —B R(sin[a + esp]t
2

+ sm[~~ ~sp]t) ~ (2.11)

where B represented the amplitude of the 60-Hz rip-
ple. This efFect is particularly important at 2 (u
esp) = 260 Hz, where the response is large, i.e., g2sp =
3(zaR) ~ obtained from Eq. (2.7). Thus the measured
phase response is given by

P = g sin(&u t —y ) + g2ep sin(520vrt —y2sp).
100 200 300 400 500 600

(2.12)

FIG. 3. The phase amplitude of outer beamlet measured
from the oscilloscope trace (square) and from the digitizing
system (diamond) are plotted as functions of modulation fre-
quency for the sinusoidal wave at B = 12 G (top), B
2 G (middle) and the square wave at B,~ = 1.42 G (bot-
tom) respectively. For the square-wave modulation, large-
amplitude response was expected and observed at 3' = cu, .
Here P = g.

Such efFects are most important at f = 320 and 200 Hz.
Figure 4 shows an example of the observed phase beating
between the modulation Frequency f = 320 Hz and the
260-Hz frequency at B = 4 G. The resulting response
at 320 Hz agrees well with the Formula in Eq. (2.9).

From these data, the amplitude of the 60-Hz ripple was
found to be about B = 5 x 10 . During the later runs
for B = 2 C, the 60-Hz ripple was reduced by a 30 dB
attenuator relative to the driving signal. The effect of
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the 60-Hz ripple was therefore reduced as shown in the
lower parts of Fig. 3, where there was no peak in the
phase response at modulation frequencies of 200 and 320
Hz.

D. The off-momentum closed-orbit analysis

FIG. 4. The synchrotron phase measured &om the phase
detector at the modulation frequency of 320 Hz and modu-
lation amplitude of B = 4 G was plotted as a function of
orbital revolutions at a ten-turn intervals. The beating of the
synchrotron phase oscillations at 320 and 260 Hz arose from
the 60-Hz ripple picked up from the cable run between the
power supply and the modulation dipole.
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measured data for B = 12 G. Since the measured closed
orbit corresponded to the centroid of the charge distri-
bution of the bunch, the measured data deviated from
Eq. (2.16) at frequencies below the bifurcation frequency.
When the modulation frequency was far from the bifur-
cation frequency, the closed orbit arose mainly from the
modulating dipole because the phase amplitude g result-
ing from the synchro-betatron coupling was small.

FIG. 5. The amplitude of the transverse closed-orbit os-
cillations as a function of the modulation frequency was fit-
ted by using Eq. (2.16) including both the synchro-betatron
coupling and the closed-orbit components. The modulation
dipole field was 12 G.

axld

X (s) = . Hcos[z'v —IP (s) —P (so)I],
Sp

2 slxl vip~

(2.14)

D-(");„...
P A g4Pp gC

g cos(u t —y) — ' a sin u t. (2.15)
kgb)p A gcalp

Since y = 2 for the outer solution, the closed orbit is
given by

D (s)X — (~ g —~,a) sin ur t.
AL g (do

(2.16)

Using measured betatron amplitude function and disper-
sion function at a BPM location, Fig. 5 compares the
calculated amplitude of the closed orbit with that of the

The particle closed-orbit can be decomposed into a
slow dipole induced closed-orbit modulation component
and the ofF-momentum closed orbit resulting from the
synchro-betatron coupling, i.e.,

2:„(t)= zs(t) + zp(t) = X (s) sin(u t + D (s)
Ap

p

(2.13)

where

E. The e8ect of intrinsic rf phase noise

Since we were measuring the steady-state solution of
the dissipative driven pendulum equation, any coher-
ent synchrotron oscillation should have been completely
damped. The damping time was about 0.33 s, there-
fore the coherent synchrotron motion should have been
damped sufBciently at the end of 7 s. However, we ob-
served consistently a 260-Hz coherent signal at all mod-
ulation frequencies. Figure 6 shows an example of a 520-
Hz modulation at B = 12 G. The upper part of Fig. 6
shows the Poincare map of (P, "~"),where "~"was

obtained from the closed-orbit deviation, z„,divided by
the dispersion function. The lower part shows the FFT
of the phase oscillations.

The 260-Hz component had a phase amplitude about
56% of the 520-Hz modulation component shown in the
lower part of Fig. 6. Such rf noise could be misidenti-
6ed as period doubling. The measured phase amplitudes
were respectively about 0.040 rad for the 520-Hz com-
ponent and 0.023 rad for the 260-Hz component, which
was consistently constant for all driving &equencies. As-
s»ming that the 260-Hz component arose totally from rf
phase noise, the xnagnitude of rf phase noise could be es-
timated by using solving Eq. (2.7), i.e., a = (&s)s —0.43
grad. The rf phase noise could arise from the rf systexn or
from the high voltage power-supply ripple of the electron
cooling system.
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F. Numerical simulations
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FIG. 6. The Poincare map of the phase space, (P, "—s"),
measured at ten-turn intervals with B = 12 G and f = 520
Hz is shown at the top. The FFT of the phase oscillation
is shown at the bottom. The pattern resembles that of a
period doubling. However, the essential mechanism here was
not period doubling but rather arose from the rf noise at the
synchrotron frequency. The 260-Hz noise was present at all
modulation frequencies.

Numerical simulations have become a powerful tool
in the study of nonlinear mapping equations. For a
given initial phase-space coordinates, (P;, [~];),a parti-
cle obeying Eq. (2.3) will damp to an attractor solution
due to the dissipative force. When the modulation &e-

quency lies below the critical &equency ~, there exists
two stable attractors. Figure 7 shows those initial phase-
space coordinates converging toward the inner attractor
(upper) and outer attractor (lower) for f = 230 Hz

(left) and f = 240 Hz (right) with B = 4 G. The sim-
ulation results indicate that there are more initial phase-
space points which converge toward the inner solution
than the outer solution at 230 Hz, while the converse is
true at 240 Hz. Such calculations con6rm qualitatively
the experimental data in Fig. 2.

It is interesting to note that those particles converging
toward the inner (or the outer) attractor form nonin-
tersecting intervolving spiral rings. To which attractor
a particle will converge, depends sensitively on the ini-
tial phase-space coordinates, in particular for those par-
ticles located outside the bucket. It is worth pointing
out that the orientation of initial phase-space coordinates
which converge toward the inner or the outer attractor
depends on the initial driving phase go of the dipole field
in Eq. (2.1).

Numerical simulations indicate that all particles lo-
cated initially inside the rf bucket will converge either
to the inner or to the outer attractor. However, a small
patch of initial phase-space coordinates located at the
separatrix of the rf bucket converges toward two attrac-
tors moving along the separatrix. We do not yet un-
derstand the importance of this third attractor. Calcu-
lations of the Poincare surface of section indicate that

'~

o&

~~a-~ ~gtg~@ tN-'
, I. . . , T. . . , I, ,

-~
-2 0 2

I I I I I I I I I

I

I I I

FIG. 7. The initial phase-space points,
which damp to either the inner (upper
graphs) or outer (lower graphs) attractors at
modulation frequencies 230 Hz (left frames)
and 240 Hz (right frames), obtained from nu-

merical simulations are shown as black dots
in phase space.

(rad) ~ (wad)
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there are two stable fixed points and one unstable fixed
point located at the separatrix of the rf bucket.

G. Melnikov function

The Melnikov function, which is a measure of the dis-
tance between two nearby trajectories, is usually used to
test the chaotic bifurcation condition of a dynamical sys-
tem [12]. In particular, when two trajectories, which pass
through the hyperbolic fixed point, cross each other, the
Melnikov function becomes zero in certain regions of the
phase space. This gives rise to homoclinic structure and
causes the onset of chaos in the dynamical system. The
Melnikov function of Eq. (2.4) is given by

M(eo) = '
(+

„

Los
(d~ Hp 16Cl

A. Tori near the Srst-order synchrotron resonance

When the modulation &equency is close to an odd xnul-
tiple of the synchrotron frequency, the parametric reso-
nance term in Eq. (3.5) becomes important. As an ex-
arnple, we consider the resonance near the first harmonic,
i.e., v v, . To gain insight into the Hamiltonian fiow,
we transform the coordinate system to the resonance pre-
cessing frame using the generating function,

Z, (y, J) =(y —v e- — J. (3.6)

the modulation frequency equals an odd multiple of the
synchrotron frequency, i.e., v —(2k + 1)v, . These
resonances, created by the external modulations at har-
monics of &equencies intrinsic to the system, are usually
called the paraxnetric resonances.

(—~ & 8, & ~), (2.17)

which may become zero when the condition

The coordinates are transformed according to g = g-
v 8 —2, J = J. The new Hamiltonian becomes

8o.
a & cosh

2~s
(2.18) H = (v, —v )J ——'J — ' cosQ+bH(J, Q, H).

is satisfied. Thus homoclinic structure can exist in this
dynamical system with weak damping at a moderate
modulation strength. The parameters used in this ex-
periment did satisfy the condition of Eq. (2.18).

(3.7)

The time-dependent part of the perturbation, AH, oscil-
lates at the frequency of 2v with

III. THE HAMILTONIAN FOR THE FX PHASE
MODULATION THROUGH SB COUPLING

..vz6H = ' cos(g+2v 0)+
2

(3.8)

p„+I——p„+2Irv, b'„+2+v, a sin v 8,
2'

b~~I = b~ —27l'v~ S111/~+I —27K—b~.
(dp

(3.1)

(3.2)

The Hamiltonian formalism is a powerful tool for un-
derstanding the dynamics of particle motion. With the
normalized momentum variable defined as b = ~(~),
the synchrotron equations of motion become

Because of the stationary phase (or resonance) condi-

tion,
&& 0, the time-independent part of the Hamilto-

nian contributes coherently to the perturbing kicks. Thus
the particle motion is strongly perturbed by the external
modulation force through the resonance condition. The
particle trajectory in phase space can be described by the
torus of the time-averaged Hamiltonian [8],

Neglecting the damping term by setting a = 0, Eq. (3.2)
can be derived &om the following Hamiltonian

v.a/2J
(H) = (v —v )J ——'J — ' cosy,

16 2
(3.9)

H = —v, b + v, [1 —cos P] + v, ab' sin v 8,
1
2

'

where the orbital angle 8 is used as the time variable.
Transforming the phase-space coordinates (P, b) into the
action-angle variables (J,g) discussed in the Appendix,
the Haxniltonian becoxnes

1J = ——v, ay 2Jsing
2

' ) (3.10)

which is an invariant. Particle trajectories follow the tori
of the Hamiltonian fiow. Tori with constant Hamiltonian
values are shown in Fig. 8 for ~ = 0.935 and a = 0.02.
Hereafter, we drop the tilde notation for simplicity. The
equation of motion for the Hamiltonian How becomes

H = Hp (J) y HI (J, $, 8), (3 4) P~ &s+@=(v, —v ) ——J— cos Q.2/2J (3.11)

where the unperturbed Hamiltonian is Hp(J) = v, J—
~~6 J + - - -, and the perturbation is given by

HI ——— v, a[sin(vj —v 8) —sin(g+ v 8)]+
2

(3.5)

The external dipole modulation induces a synchrotron
phase modulation, which gives rise to resonances when

1 ~m—g —(1 — )g+ —= 0,16 Va 2
(3.12)

which is identical to Eq. (2.7) at v v, and a = 0.

The 6xed points of the Haxniltonian are given by J =
0, @ = 0. Let the phase coordinate of the fixed point be
g = g2Jcos@ with @ = 0 or z. We find that g satisfies
the following equation:
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FIG. 8. The Poincare surface of section is shown for f
245 Hz and f, = 262 Hz at a = 0.02.

Therefore the attractor solutions, discussed in Sec. II, are
fixed points of the time averaged Hamiltonian. A weak
damping force does not destroy the resonance island cre-
ated by the external rf phase modulation. Because of the
phase-space damping, these fixed points of the Hamil-
tonian become attractors. Particles in the phase space
are damped incoherently toward these attractors. The
steady-state solutions shown in Figs. 1 and 3 correspond
to two stable fixed points (SFP's) and one unstable fixed
point (UFP). As the damping force becomes larger, the
outer SFP and the UFP may collide and disappear. Fig-
ure 1 shows that the outer SFP disappears at &equency
below 253 Hz for o. & 10 s

When the modulation &equency v is less than v„
where v, is called the bifurcation tune given by

10 I S I I I I

i

I I I i

)

I I I I

with v & v, or —& 1. The solutions g with @ = ir

and gb with g = 0 are SFP's and the solution g, with

Q = 0 is the UFP. Stable tori in phase space are closed
curves around the SFP's. The particle motion in phase
space can be described by the tori of constant Hamil-
tonian around SFP's shown as an example in Fig. 8 for

f = 245 Hz and f, = 262 Hz with a = 0.02.
Figure 9 shows fixed-point solutions [Eq. (3.14)] nor-

malized by
(

s,&, , as a function of (—)1~2 for x & z, .
C

Other solid lines will be discussed later. The longitudi-
nal beam profiles obtained &om the sum signal of a BPM
shown in Fig. 2 at modulation &equencies below 250 Hz
are particles trapped in islands around SFP's, which ro-
tate coherently at the modulation &equency. The dis-
tribution function of these beamlets will conform to the
local potential well. Because the local potential well is
not uniform (see Fig. 8), these beamlets, shaped like an
elongated ellipse, will display a high peak current at both
extremes of the phase coordinate.

In the limiting condition v « v„we have (
2, g~ m —4x )', g, m 4z )', gg ~ 0, where the phase-
space area of the island around the outer SFP is small in
comparison with that of the island around the inner SFP.
When the modulation frequency is increased, the phase-
space area of the outer island increases while that of the
inner island decreases. As the modulation &equency ap-
proaches the bifurcation &equency &om below, the UFP
and the outer SFP move in and the inner SFP moves
out. At the bifurcation frequency, where ( = 0, the UFP
coincides with the inner SFP with the phase amplitude
gb = g, = (4a)1Is and the phase-space area of the inner
island becomes zero.

Beyond the bifurcation &equency, v & v„there is
only one real solution to Eq. (3.12) given by

v, = v, 1 ——(4a)'I (3.13)

there are three solutions to Eq. (3.12) given by

g (z) = — x cos-,8 iI'2 (
3 3'

8, , (~
gb(Z) = Z Slil !i6 3) '

g (x) = x' ' sin! —+ —!,8,(, . fm.
3)

where

(3.14)

4
O

ga
(4u) 1

gi
(4u)'

I I I I I

(
~ ~1/2

vanx= 1—
V~

vc
x =1——

C
vs

( = arctan !
—

!
—1,

&c)

FIG. 9. The stable and unstable fixed points of the Hamil-

tonian are shown as a function of the modulation frequency
in terms of (—)

~ defined in Eq. (3.14). The intercepts of
the separatrix with the phase coordinate are also shown. For
a given phase amplitude of the beam bunch @, bunch dilution
may occur for phase modulation frequencies between (v2, vi).
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( )s -1/3
g = —(4a)')' 1 —

I

—*
I

+1

(z~
1 — — —1

E*.)
(3.15)

and all tori are closed curves orbiting about the outer
SFP. The longitudinal beam pro6le shown in Fig. 2 at
f = 260 Hz corresponds to a single beamlet orbiting
about the outer SFP, where the accuxnulated beam profile
measured with an oscilloscope exhibited also a smaller
peak current when the beamlet rotated to the center of
the bucket, or the center of the phase coordinate.

B. Hysteresis of resonant islands

C. The equilibrium distribution of beamlets
and the island tune

In the presence of dissipative and difFusive processes,
the equilibrium beam size is determined by the balance
of the dissipative and the difFusive forces. At the IUCF
Cooler Ring, the damping force came &om the drag force
of the Coulombic interaction between protons and the
cold electron beam in the electron cooling region while
the diH'usive processes could result &om the instabilities
due to impedances, intrabeam Coulomb scattering, beam
gas scattering, and noise in accelerator devices, etc. How-
ever, the beam profile, which satis6es the Vlasov equa-
tion is determined by the external potential well at a
fixed point of the Hamiltonian and possibly also by the
xnean 6eld of the beaxnlet, e.g. , the potential well dis-
tortion. Sxnall-amplitude oscillations about a fixed point
can be obtained by making a local coordinate expansion
of the action-angle variables. Let y, py be local coordi-
nates about a fixed point of the Hamiltonian, i.e.,

y = V'2Jcos@ —g, p„=—v'2JsinvP, (3.16)

The hysteresis phenomena discussed in Sec. IIB can
be explained based on the resonant islands of SFP's. At
a modulation &equency above the bifurcation &equency,
there is only one SFP given by Eq. (3.15). When the
modulation &equency is ramped adiabatically downward
through the bifurcation &equency, the axnplitude of the
synchrotron oscillations follows the outer SFP toward
a large amplitude. When the phase-space area of the
outer island becomes too small to contain the bunch (see
Fig. 8), the synchrotron oscillations will jump &om the
outer SFP to the inner SFP.

At a modulation &equency far below the bifurcation
frequency, the size of the outer island is either non-
existent or very small and the beam populates mainly the
inner island. When the modulation &equency is ramped
up toward the bifurcation &equency, the beam bunch will
follow adiabatically the inner SFP until the size of the
inner island becomes too small to hold the beam bunch.
Thus the hysteretic phenomena observed are related to
the bifurcation of fixed points due to the nonlinearity of
the parametric resonance system.

where g is a fixed point. The Hamiltonian becomes

va( g), va,
I

1 ——Iv + I„+"-.
4g ( 4a) 4g

(3.17)

S
This implies that the fixed point g is a SFP if 1 —

~4 & 0
S

or conversely the 6xed point g is a UFP if 1 —
~4

S S
0. Because ~4 ( 0 and ~4 & 1, both g and gg are

SFP's. On the other hand, ~z & 1, so g, is the UFP. The
island tune for a small amplitude oscillation in Eq. (3.17)
around a fixed point is given by

vg )' g &

vislanti = vn vyyt16 ( 4a)
(3.18)

pt Q~ py) =
2 po

(3.19)

Since each particle in the steady state rotates in the phase
space at the modulation &equency, the beam profile will
retain its shape except for the exchange of the local co-
ordinates. The observed longitudinal profile, which cor-
responds to the line density of the bunch, is obtained by
integrating the local xnomentum coordinate, i.e.,

n(p) = f p(p, ps)dp„ (3.20)

which leads to the line density of Eq. (2.10) with the
efFective bunch width modulating at the modulation &e-
quency. The aspect ratio (the ratio between the width

and height) of the ellipse is given by )(1 —sswhich-,
agrees well with data.

D. The separatrix and the bunch dilution due
to the rf phase modulation

The torus which passes through the UFP is called the
separatrix. Stable tori about resonance islands are sep-
arated by the separatrix, which is given by phase-space
coordinates (J, @), satisfying

H(J@) 2: 2 1 4 a
v, 2 64 2ge gc —gc& (3.21)

with x = 1 —~ and the UFP g, given by Eq. (3.14).
The separatrix intercepts the phase coordinate at gq and
g2, which can be obtained by solving Eq. (3.21). Us-

~&'», , Ih, = ~~, &, etc. , the solutions of Eq. (3.21) are

S
In the limit that i4L « 1, Eq. (3.18) also implies that the
solution of the Hamiltonian can be expressed in terms of
a linear superposition of the homogeneous and inhomo-
geneous solutions [8].

The equilibrium beam pro61e, which satisfies the
Vlasov equation, is a function of the Hamiltonian of
Eq. (3.17). Assuming a Gaussian distribution, we obtain
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(3.22)

Figure 9 shows the phase amplitudes, h, hg, h, hq, and
h2, of fixed points and the intercepts of the separatrix as
a function of (—) / at —) 1. The location that the

C C

separatrix cuts through the origin of the phase space is
= 2 /' with h = 2 ~ . In the intermediate region,

1 & (—)
i/3 & 5, h, hs, and Ii, can be approximated well

with

ti —1.650(—)
i/3 —0.350,

hi —1.575(—) / —1.425,

h2 ——1.889(—) / + 1.445.

(3.23)

Asymptotically at (—)i/3 )) 1, we have

( ) 1/2

(&c)

For a beam bunch with a phase amplitude P (the cor-

responding phase-space area is qrP in normalized coor-
dinates), the normalized phase amplitude of the bunch is

,» shown schematically as the horizontal line in

Fig. 9, which intersects the hq, h, and h2 curves at the
modulation &equencies given approximately by

—= 1 —0.0689(4a)3/ (h —0.350),
ve

—= 1 —0.0756(4a) / (Ii —1.425),
vs

—= 1 —0.0525(4a) / (h+ 1.445)'
vs

(3.24)

When the modulation &equency is smaller than v2, the
separatrix is outside the bunch area, and the phase
modulation will have little effect on the beam. When
the modulation &equency is larger than v&, the separa-
trix is completely inside the bunch area, therefore the
bunch area will not be affected. When the modula-
tion &equency lies between v2 & v & vq, particles
having the phase axnplitude greater than $3, given by

i4~~', /, ——h, — &, will oscillate about the fixed point g
of the island and reach the maximum oscillation ampli-

tude of ~4~~'»,
——h, + ~&

—
~h ~+ . Therefore the

percentage growth of the bunch area is

8 (4a) '=8
h3/2 ~$3)

(3.25)

(3.26)

for the modulation &equency at v = v2. Modulation
frequencies lying below v2 do not produce strong pertur-
bation to the beam. Note here that those particles within
the core of the bunch, i.e., P & $3, are not affected by

Demanding the phase-space area growth to be less than
50%%uo, we obtain the tolerance criterion of the rf phase
modulation as follows:

the rf phase modulation. It is worth emphasizing that
the validity of Eqs. (3.23) and (3.24) are limited by the
condition —& 25. Application of these equations should
be checked carefully.

E. The tolerance of the SSC beams
to ground vibrations

During the acceleration of the SSC beam from 2 TeV
to 20 TeV, the synchrotron &equency sweeps &om 7 to
4 Hz. Unless there is a strong resonant ground vibra-
tion wave in this frequency range, we expect that the
constraint is most severe at the storage mode. In the
storage mode at 20 TeV, the rf parameters are the rf
voltage Vo ——20 MV, the harmonic number h = 104544,
the circumference C = 87120 m, the momentum com-
paction factor 9.1 x 10, and the synchrotron &equency
f, = 4.13 Hz. The bucket area is 18.34 eVs and
the 95% bunch area is 4.4 eVs. The bunch length is
u, = 6.0 cm or o@ ——4.1 and the momentum spread
is 0'3 = 0.58 x 10 . The 95% phase amplitude of the
beam is given by P = i/6m~ = 10 . Using the criterion of
Eq. (3.26), the tolerable modulation amplitude is given

by a ( 5 x 10
Let us consider the contribution of a single arc

quadrupole to the synchro-betatron coupling caused by
a displacement of Ax. The phase shift parameter a is
given by

~o Az D
a = 2z.h = 2.4 x 10 Ax [y,m],

2nur, fq C
(3.27)

where the focal length of a quadrupole is fq 62.5 m
and the average dispersion function is (D ) = 1.3 m.

The dominant ground vibration amplitude &om a
quarry blast has been measured [4] to be about 0.143
pm at 1 Hz and 0.108 pm at 3 Hz. The phase mod-
ulation amplitude arising &om the 3-Hz component is
about a~B = 7.2 x 10 by taking the statistical sum of
1000 quadrupoles. At such a small amplitude, the 3-Hz
phase modulation may not couple strongly to the SSC
beam because the separatrix of the modulating islands is
outside the phase-space area of the bunch. The danger-
ous modulating frequency lies within 4.11 to 4.12 Hz [see
Eq. (3.24)] for the synchrotron frequency of 4.13 Hz. In
order to maintain a less than 50% phase area growth, the
tolerable ground vibration amplitude is Ax & 0.007 pm
integrating over a range of Af = 0.01 Hz from the mod-
ulation &equency of 4.11 to 4.12 Hz.

Similarly, the &equency spectrum arising &om a train
crossing is a broad spectrum around 3 Hz and 7 Hz. The
3 Hz does not afFect the beam while the phase modulation
at 7 Hz may afFect the SSC beam during the injection. If
we assume that 10 quadrupoles will contribute coherently
to the phase modulation during a train crossing [13], the
phase modulation amplitude becomes aTg ——1.2 x 10
with Ax = 0.058 pm. The efFective phase-space area
growth given by Eq. (3.25) will be about G =75'%%uo. Active
compensation by using rf systems might ease or solve
some problems of phase-space dilution.
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F. The eSect of power-supply ripple
on the RHIC beams

8.0 I 1 I

)
y

For RHIC, the circ»mference is 3833.84 m with tran-
sition energy p~ = 23.6. The parameters for the ac-
celerating rf cavity are h = 342, V = 300 kV, and the
synchronous phase Po ——0.161 rad. The acceleration
rate is j = 1.6 s . The beam crosses 60 Hz at about

p = 17.5. The 95% phase-space area is 0.3 eVs with
rms momentum spread 0.0005 and rms phase spread
o4, = 0.33 rad. The rate change of the synchrotron tune

is &~'
—1.9 x 10 s or —2.4 x 10 per revolution.

Figure 10 shows the separatrixes at a = 0.001 for ~&

0.95 (curve 1) and 0.995 (curve 2).
When the beam energy is accelerated toward the tran-

sition energy, the synchrotron &equency decreases toward
the 60-Hz ripple modulation frequency and thus the fixed
points of the synchrotron Hamiltonian with the 60-Hz
phase modulation move inward as shown in Fig. 11. At
the synchrotron frequency fz where the inner intercept

gz of the separatrix equals the phase amplitude of the
bunch (+6o~

——0.80 rad), the beam particles begin to be
affected. Once the synchrotron frequency becomes lower
than fq, where the outer intercept gI of the separatrix
lies inside the bunch width, the phase modulation will
not affect the bunch area of the beam. Figure 12 shows

fq and fz as a function of the modulation amplitude a for

P = 0.80 rad. Note here that Eqs. (3.23) and (3.24) are
not applicable for a & 0.00025. At a small modulation
amplitude a -+ 0, we find that fq and fz become a single
&equency given by

fi = fz ——60

The time required for the bunch to be accelerated
through synchrotron frequencies fq and fz is about 100—
300 ms depending on the phase modulation amplitude a.
When the acceleration rate is fast, particles do not have
enough time to follow the separatrix and therefore the in-

1.5

C4
II 1 0

O)

0.0
80

I I I ~

40 60

f. (Hz)
80 100

FIG. 11. The Sxed points for f = 60 Hz as a function
of the synchrotron frequency f, for a = 0.01.
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I I I I

i

I I I I

crease in the bunch area is small. When the acceleration
rate is small, particles can move along the separatrix and
reach large amplitudes. The increase in the phase ampli-
tude is given approximately by 2.8(4a)~~s obtained from
Eq. (3.23). Allowing the phase-space area to increase by
a factor of 2, we obtain the condition 2.8(4a) ~~ & z +6cry
or

3

a & — 7.5x 10 4
48

The synchrotron frequency ramps through 60 Hz at
17 GeV/c for heavy-ion beams. Assuming that power-
supply ripple contributes an error s to all dipoles, the
resulting path length difference will be b,C = (D )2Irs,
where the average dispersion function at the dipole loca-
tion is (D ) —1 m. Thus the amplitude of the rf phase
shift per turn is AP 3.52'. The resulting phase shift
parameter becomes,

2 I I I I I I I I I I I I I I I

0— 62

I. . . , I

0 0.002 0.004 0.006 O. OOB

-2
-2

I I I I I I I I I I I I

-1 0 1

~2Jcos

FIG. 10. The separatrixes for the Ha~iitonian of Eq. (3.9)
with a = 0.001 and ~ = 0.95 (curve 1) and 0.995 (curve 2).

FIG. 12. The synchrotron frequency fz where the separa-
trix touches the bunch area occupied by the RHIC beam and
the frequency fz at which the separatrix is completely inside
the RHIC beam are shown as a function modulation ampli-
tude a at 60-Hz modulation frequency. The phase amplitude
of the hunch used is P = 0.80 rad.
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a= 4$=730c.
2~~s

If the power-supply ripples of all dipoles are in phase,
the phase modulation amplitude may be large. At the
level of c = 10, the resulting phase modulation ampli-
tude is a = 7.3 x 10 rad, which is at the tolerable limit
discussed earlier. At c = 10, the phase modulation
problem can be alleviated by designing the power-supply
bus to cancel the effect of ripple via reversing the phase
of power-supply ripple in each arc. With proper can-
cellation, the resulting synchro-betatron coupling can be
suppressed.

It is fortunate that the synchrotron frequency stays
below the 60-Hz modulation &equency after the transi-
tion energy crossing. If the synchrotron frequency were
ramped through the modulation &equency &om below,
the resonance island created by the phase modulation
would transport particles &om a small synchrotron am-
plitude outward. The growth of phase-space area would
be much worse in this later case [11].On the other hand,
ramping the rf phase modulation &equency through the
synchrotron &equency &om above may be used effec-
tively for the bunched beam dilution.

about 0.007 pm, which includes statistical enhancement
of 1000 quadrupoles. At a lower modulation &equency,
the beam will not be strongly affected. The effect of train
crossing is more important to the SSC beam at the in-

jection energies. In reality, some ground vibration effects
are adiabatic. Particle motion may follow the Hamilto-
nian How adiabatically without diluting the bunch phase-
space area. The effects of phase-space dilution due to the
synchro-betatron coupling could be overcome by an ac-
tive feedback rf system. Experiments testing these ideas
are being planned. In this paper we did not discuss the
beam diffusion due to nonresonant rf phase noise induced
by ground vibration or the power-supply ripple. Such a
process can be estimated by the well-established rf diffu-
sion theory [14].
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APPENDIX A: THE ACTION ANGLE
OF THE UNPERTURBED HAMILTONIAN

IV. CONCLUSION

We found that the synchro-betatron coupling res-
onance in a proton storage ring can be induced by
dipole modulation at &equencies near the synchrotron
&equency. Due to the weak dissipative force of the elec-
tron cooling at the IUCF Cooler Ring, the beam particles
were found to converge toward attractors of the dissipa-
tive parametric resonant system. These attractors were
found to orbit about the center of the bucket at the mod-
ulation frequency displaying the coherent nature of the
dynamical system. The transverse dipole-Beld modula-
tion resulted in a very unusual bunch shape distribution
in the longitudinal phase space. Data observed with an
oscilloscope revealed that the bunch split into two beam-
lets located at amplitudes corresponding to the stable
Bxed points of the Hamiltonian. The experimental data
agreed well with the synchro-betatron coupling analysis.

Numerical simulations were performed to test the
damping mechanism of the dissipative resonant equation.
We found that the initial phase-space coordinates which
converge to the inner or the outer attractor form nonin-
tersecting spiral rings.

Based on our experimental data, synchro-betatron cou-
pling effects due to ground vibration for the SSC and
the power-supply ripple for RHIC have been studied.
We found that the effects of the synchro-betatron cou-
pling due to power-supply ripple with amplitude 10 for
RHIC resulted in a tolerable longitudinal phase-space di-
lution of about a factor of 2. At the power-supply ripple
amplitude of 10 5, the efFects should be corrected by re-
versing the power-supply ripple phase in difFerent arcs.
The efFect of ground vibration on the beam dynamics
for the SSC beam has also been analyzed. We found
that if the modulation frequency is 4.12 Hz then the tol-
erable quadrupole vibration (50'%%up emittance dilution) is

Let the unperturbed Hamiltonian and its perturbation
of Eq. (3.3) be given by

Hp ———v, b + 2v, sin=1 2 22' ' 2'
Hi ——v, ah sin v 8.

(A1)

(A2)

Here v, is the synchrotron &equency at zero synchrotron
amplitude. The action-angle variables of the unper-
turbed Hamiltonian can be expressed in terms of the
complete elliptical integral of the first kind to be dis-
cussed in the following [10]. Expressing the synchrotron
coordinates in parameters k, m as

b
sin —= k sin m, —= k cos m,

2
'

2
(A3)

one obtains Ho ——2v, k with 0 & k & 1. The relation be-
tween the parameter m and the synchrotron phase angle
will become clear later. Using the definition of Eq. (A3),
the action of the unperturbed Hamiltonian is given by

1 = — ddt = —[E(k) —(1 —k') K(k)],
1 8

27r jr

where the complete elliptical function is given by

(A4)

OHp

OJ '2K(k) ' (A5)

where we have used the identities

2

E(k) = gl —k2 sin ip dw,
0

1

gl —k2 sin va

The angle variable conjugate to the action J can be ob-
tained &om Hamilton's equation of motion, i.e. ,
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~ dP
~.(e —eo) = —= u —uo,

b
(A7)

where
Ql 1

gl —k sin to'
tDp 1

tLg =
gl —k sin to'

Here the Jacobian elliptical function is then defined as

sinto = sn(u]k), costs = cn(u~k). (A9)

Thus the expansion of b = 2k cn(u]k) in Fourier harmon-
ics of vP can be obtained from the formula of Eq. (16.23.2)
in reference [10), i.e.,

2k'" (") = E(k) —Z(k),

2k' „„(,") =, '„Z(k)-Z(k).

Now the task is to expand the momentum coordinate
b in Fourier harmonics of the conjugate angle variable g
given by

(A6)

Using P = v, h', the relation between the orbital aagle 8
and the parameter m is given by

—~z'/z

Using power-series
1.e.)

k2 (k l (k2~—+81 —
I

+84( —
I16 g 16) i 16)

(k21
+9921 i + ''

g16)
expansion of the elliptical integrals,

2

2 (2) (2 x 4)
(I x 3x 5't'

+ + '''
i2x4x6)

(I) k2 &I x 31 k4
&(k) = —I -

i

—
i

—-
I

2 i2) 1 i2x 4) 3

fl x3x5i ks

i2x4x6) 5

one obtains

J=2k
i
1+-k + —k +" i, (All)2 ( 1, 3 4

8 64 )'
J(k'= —

~

1 ——J- J' —"i, (A12)
2 ( 16 256 ) '

2J)3/2
2kcn(u]k) = (2J)')2 cos g + cos 3$

64
2J 5/2

+ cos 5$ + ~ ~ . (A13)
4096

Substituting the elliptical cosine function into the per-
turbation, one obtains

+1ff2

cn(u~k) = ) 2 +, cos(2n+ 1)g,
kK(k) - 1+q2"+' (Alo) %(J,4)

&,a (2J) cos@+ cos3$+ sin v 8.
(2J)"'

64

(A14)
where the parameter q is given by [see Eq. (17.3.21) of
Ref. [10]],
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