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Transverse particle motion in radio-frequency linear accelerators
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The transverse motion of a relativistic charged particle in a radio-frequency linear accelerator (rf
linac) is examined. The spatially averaged equations of motion are derived for a particle in a periodic ac-
celerating cavity system, and solved exactly in the ultrarelativistic limit. These solutions, along with an
impulse treatment of the transients at the entrance and exit of the linac cavities, allow derivation of a
linear transport matrix through the cavity. This generalized matrix is improved over previously derived
results in that it is applicable to both traveling- and standing-wave structures, allows for arbitrary injec-
tion phase and spatial-harmonic content of the rf fields, and is more accurate in approximating the exact

charged-particle motion.

PACS number(s): 41.75.—i, 41.85.—p, 29.17.+w, 29.27.Eg

There has been much recent interest in the focusing
effects of radio-frequency (rf) fields in linear accelerators
[1-3]. This focusing is important in understanding the
design and performance of high-gradient rf electron guns
[1-3] and linacs [2], and can contribute to multibunch
beam breakup instability in linear electron-positron col-
liders [4]. The derivation of the transverse particle
motion in high-frequency rf fields has been approached in
a variety of ways [1,5,6] which are all specific to certain
physical situations. The purpose of this paper is to
present a general approach to solving for this motion
which is broadly applicable, covering standing- and
traveling-waves linacs in a single formalism. The solu-
tions to the equations of particle motion, which are de-
rived by averaging over the motion in a periodic cell of
the linac structure, allow for arbitrary injection phase,
and include the effects of higher spatial harmonics in the
if fields. A treatment of the transient kicks that the par-
ticles experience while traversing the fringing field re-
gions at the ends of the linac cavities, which is suitable
for matching into the periodic focusing of the interior
linac cells, is also given. Finally, a generalized matrix
description of the motion through a full cavity is ob-
tained.

We begin the discussion by writing the radial elec-
tromagnetic forces on an ultrarelativistic (v=fc =¢) par-
axial charged particle due to the transverse rf fields in a
cylindrically symmetric, spatially periodic, rf cavity. In
terms of the longitudinal (accelerating) field profile, we

have d
. (1)

where g is the charge of the particle and the total deriva-
tive with respect to z, the distance along the beam axis
that the particle propagates [7].

To maintain the discussion in most general terms, we
write the accelerating field profile in Floquet form [6],
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where E; is defined as the average accelerating field ex-
perienced by a particle injected at the phase which gives
maximal acceleration, k, =(¥+27n)/d is the wave num-
ber of the traveling wave associated with the nth space
harmonic, and Y=Im/m is the phase advance per cavity
cell (/,m integers, I <m) of length d, the periodicity
length of the structure. While this sum is explicitly writ-
ten in terms of traveling waves, the special case of a 7
mode standing-wave structure is obtained by requiring
that the field coefficients obey the relation b_(, . ,,=b,’.
For ultrarelativistic particles only the n =0 component
of the field contributes to the average acceleration; in the
present normalization this implies that b, =1.

In order to take advantage of the form of Eq. (1), we
substitute wt=kyz+A¢, where A¢d is the phase of the
particle with respect to the maximum acceleration phase,
and ky=v/d=w/c for an ultrarelativistic particle, to
obtain
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Following Ref. [1], we average the periodic force de-
rived from Egs. (1) and (3) to yield
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where ymc? is the total particle energy and the b,’s are
assumed to be real. The knowledge of the field com-
ponents, and therefore 1n(A¢), is straightforwardly ob-
tained by using electromagnetic design computer codes,
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as well as bench measurements. This second-order pon-
deromotive focusing force can, because of its cylindrical
symmetry, be written as a focusing strength parallel to ei-
ther transverse Cartesian axis,
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Here the prime indicates the derivative with respect to
the longitudinal position (=d/dz), and
y'=qE,cos(Ad)/myc? is the gradient in the particle en-
ergy averaged over a period of the structure. It should be
noted that this expression is equivalent to the compact
form previously found by Helm and Miller [6],
1
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written explicitly in terms of the spatial harmonics of the
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The complete traversal of an rf cavity requires that the
particle experience a first-order transient force in the
fringe field regions at both the entrance and exit of the
cavity. Ignoring the variation of the both the particle en-
ergy and transverse position in the transient region, we
can integrate Eq. (1) to give the change in particle angle
at the entrance (exit) of the cavity [6],
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where g is the ratio of the maximum accelerating field in
the end cell to the average accelerating field experienced
by a synchronous (A¢=0) particle in the structure. In
writing the series form for the longitudinal field in the
end cell, we assume that the last half of the end cell is
identical in field profile to the periodic interior cells. Let
us note that Eq. (10) can be derived by simple application
of the Panofsky-Wenzel theorem [9], as shown in Ref. [3].

In order to construct transport matrices for these im-
pulsive kicks for the secular (averaged) particle motion,
one must be careful to subtract the angle of the oscillat-
ing orbit corresponding to the homogeneous periodic
solutions to the zeroth-order (in transverse position)
equations [1] assumed in deriving Eq. (4). This angle is,
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accelerating field.

For ultrarelativistic particles, the averaged equation of
motion for paraxial trajectories is thus [8], for either
transverse Cartesian coordinate, of the form

2
x| X B ¥ 7
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The solution to Eq. (7) can be written in terms of initial
conditions on the position and angle (x;,x;) as
172
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and ¥y, is the initial (final) normalized energy of the par-
ticle. The transport matrix form of the solution to the
initial-value problem is thus
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at the maximum of the accelerating field in the entrance
(exit) cell,
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where we have made the same assumption concerning the
field profile as was done in writing Eq. (10). The trans-
port matrices corresponding to traversal of the entrance
(exit) of the cavity are therefore

10
, . (12)
T
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It should be emphasized that this result applies only to
the secular portion of the trajectory. If one is concerned
with the actual angular deflection of the particle as it
enters or leaves a cavity (for example, the phase-
dependent, emittance diluting deflection of particles leav-
ing an rf gun [8,9]), then the results of Eq. (10) should be
applied. On the other hand, the secular motion is of
more importance when the beam envelope inside of the rf
cavity is of concern, such as when one is designing an em-
ittance compensation system [10].

The full transport matrix for the secular motion
through the cavity is now obtained by multiplying the
component matrices in sequence,
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For a particle injected into a pure 7-mode standing-wave
accelerating cavity at A¢=0, we have by=>b_; =1 (with
all other field components vanishing, n=1), and the
transport matrix reduces to

cos(a)—V2sin(a) \/§—yi;sin(a)
v (14)
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This is identical to the result obtained previously by
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Chambers using a different method for the special case of
a pure (no higher spatial harmonics) 7-mode standing-
wave linac [5].

It is useful to compare the results of an exact solution
of the equations of motion to the generalized matrix solu-
tions developed above, as well as to Chambers’ matrix
solution. Figure 1 shows a m-mode standing-wave case
where there is a  higher spatial harmonic
(by=b_,=—0.2) which flattens out the spatial field
profile near its extrema, as is the case with many high
gradient linac structures. To test the accuracy of the top
left and right matrix elements, the solutions with initial
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FIG. 1. Comparison of the numerical solution to the exact
equations of motion in a w-mode standing-wave cavity
[yi=100, E;,=50 MV/m, k;=59.8 m™! (f=w/2mr=2856
MH?2z)] containing a higher spatial harmonic (b, =b_,= —0.2),
with the predictions of Chambers’ matrix and our generalized
matrix. Initial conditions are (a) (x;,x/)=(1,0) and (b)
(xivxi,)= (0,1).
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FIG. 2. Comparison of the numerical solution to the exact
equations of motion in a pure w-mode standing-wave cavity
[¥;=100, E;=50 MV/m, k,=59.8 m™! (f=w/27=2856
MHz)] of a particle injected at A¢ =1 /4, with the predictions of
Chambers’ matrix and our generalized matrix. Initial condi-
tions are (a) (x;,x;)=(1,0) and (b) (x;,x;)=(0,1).
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conditions (x;,x;)=(1,0) and (x;,x;)=(0,1), respective-
ly, are displayed in Figs. 1(a) and 1(b). It can be seen that
the solutions corresponding to Eq. (13) are more accurate
than that obtained from Chambers’ matrix [Eq. (14)].

In practice, in order to compensate for the phase-
dependent wake-field energy losses in high intensity
linacs, particle bunches are injected “off crest,” that is
A¢+0. Figure 2 illustrates the effects on the rf focusing
of altering the injection phase of the particle. In this case
we have taken A¢=w/4, and used a pure m-mode
standing-wave field. Again, the agreement of our gen-
eralized matrix solutions with the exact solution is much
improved over the previous results.

While the accuracy of this method is quite good, some
discussion concerning the range of applicability is neces-
sary. The averaging technique for the second-order
focusing, as well as the derivation of the kick matrices at
the ends of the cavities, require that the relative change
in the energy over a cell be small. Likewise, the fast
transverse oscillations of the particles in the rf field must
be small compared to the slow secular part of the trans-
verse offset. For further clarification of these require-
ments, see the discussions in Refs. [1] and [5].

Even though the results given above are considerably
more general than those produced before, being applica-
ble for traveling- and standing-wave cavities with arbi-
trary spatial harmonics and injection phase, the assump-
tions made in deriving them need a bit more comment.
In particular, the kick matrices were derived assuming
that the transition (fringe) field region can be modeled by
requiring only that the fields at the first and last ac-
celerating field maxima match those of the periodic inte-
rior cells. This assumption is fairly general; it allows cav-
ities which begin on the ‘“half-cell,” such as the plane-

wave transformer linac currently under development at
UCLA [11], which have a very short fringing region near
the accelerating field maximum, yielding a short transient
region consisting of a mainly electric transverse kick. It
also allows for cavities which begin on the “full cell” (the
case considered by Chambers, which is typical of super:
conducting rf cavities), where the accelerating electric
field is near zero as the particles enter the structure, and
the transverse kick is produced by nearly equal com-
ponents of electric and magnetic deflection. Unlike the
half-cell case, in the full cell start there is non-negligible
acceleration in the fringe field region. This is not taken
into account in the kick matrices, but instead is included
in the interior second-order matrix, Eq. (9). The approxi-
mation involved in this procedure is valid to second order
in the field strength.

If the above considerations are kept in mind, the linear
transport of particle beams can be calculated quite accu-
rately and quickly using the matrix given in Eq. (13).
This may be of particular applicability when modeling
large multibunch systems, such as one encounters in cal-
culating beam breakup in linear colliders [3]. If the
transport is nonlinear, e.g., in the presence of space-
charge forces, the results of Egs. (5) and (12) may be used
to integrate an envelope equation [1,12].
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