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Effects of frequency mismatch and wave dispersion on a self-consistent Hamiltonian model
for an arbitrary-amplitude cyclotron-resonance laser accelerator
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In this work, we develop a self-consistent, nonperturbative Hamiltonian formulation for the
cyclotron-resonance laser accelerator. The formalism takes into account wave dispersion and frequency
mismatch, enabling one to show how the mismatch can be used to remove some of the energization lim-

its imposed by dispersion.

PACS number(s): 41.75.Ht, 41.60.—m

I. INTRODUCTION

A promising configuration for laser acceleration is the
cyclotron-resonance laser accelerator (CRLA) [1], where
a coherent electromagnetic wave may transfer a large
amount of energy to a beam of electrons gyrating in a
guide magnetic field. This large amount of transferred
energy takes place because of the autoresonance mecha-
nism [2,3] where, under soine ideal conditions, an initial
wave-particle synchronism is self-sustained throughout
the accelerating period.

It has been observed, however, that one of these CRLA
ideal conditions is hardly obtained in feasible experimen-
tal schemes. This particular condition is the one requir-
ing the laser field to be dispersionless [4], a very restric-
tive condition if one takes into account dispersive effects
arising from the confining wave guides [5]. The analysis
of dispersive CRLA's has been recently carried out both
analytically (in a perturbative fashion) [6] and numerical-
ly [4], where it was shown that a typically small degree of
dispersion may create some severe limits to the accelerat-
ing efficiency. On the other hand, for the unlikely situa-
tion of extremely small dispersion and equally small wave
amplitudes, the accelerating efficiency was shown to be
larger than in the previous case, turning out to be criti-
cally dependent on the total amount of free electromag-
netic energy. In this latter case, one cannot simply solve
the relativistic particle equations under the influence of a
given electromagnetic wave; one has to consider the self-
consistent dynamics of particle plus waves.

In the present work we intend to investigate further
the mentioned self-consistent wave-particle interaction.
To this end, we develop a general formalism where under
the maeroparticle approximation, both particle and wave
dynamics can be canonically obtained from one general-
ized Hamiltonian. The formalism is general in two basic
senses: it is not perturbative in wave amplitudes [7], and
it allows for the inclusion of a frequency mismatch
fi=m —(co,o/y+kv, ) (&co, where co is the wave frequen-
cy, k is the wave vector, co,o is the nonrelativistic cyclo-
tron frequency, v, o is the initial longitudinal velocity, and

yo is the initial value of the relativistic factor (henceforth,
subindex "0" denotes initia1 value). Magnetic field tape

ring is not included, but by varying the mismatch, we
shall show how to compensate and even partially elimi-
nate the limiting effects due to dispersion on acceleration
processes. The formalism will be applied in the mi-
crowave range (frequencies on the order of GHz), where
we shall see that even if one considers dispersive systems,
wave dynamics may be an important factor to take into
consideration in view of the fact that careful choices of
the mismatch can cause the particles to absorb an
amount of energy comparable to that contained in the in-

itial laser field.
This paper is organized as follows. In Sec. II we intro-

duce the model and briefly derive the complete set of
wave-particle dynamical equations; in Sec. III, using the
macroparticle approximation, we obtain a self-consistent
Hamiltonian formalism governing the dynamics; in Sec.
IV we perform a numerical investigation on the analyti-
cal results along with a simulation analysis to check the
validity of the macroparticle approach, and in Sec. V we
conclude the work.

II. MODEL AND BASIC EQUATIONS

Let us consider an electron beam and a circularly po-
larized electromagnetic wave, copropagating along the
homogeneously magnetized z axis of the chosen reference
frame.

The circularly polarized wave vector potential is writ-
ten as

A= '&"e' e—'~—'f' '+e +c ct C
PlC

where p and o. have a slow-time dependence, e is the elec-
tron charge, e, =x+iy, and co =—co/~, o. The wave fre-
quency co satisfies a dispersion relation of the form
~=co(k,f) where ro(k, f) is modeled as co(k,f)lck=f—
(~ 1.0). Factor f accounts for wave dispersion (it could
be a factor connected with the finite transverse dimen-
sions of some guiding system) and it is related to the
dispersion factor P h of Ref. [4] through f=P~z'. We
take k as the wave vector, co,0= ~eB,olmc ~

with B,o as

the background magnetic field, and normalize time and
space to ci) o and co o/c, respectively. Then it becomes
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%={1+[P„+V p cos[co(fz t)—+o ]]

+ (x+P —&p sin[co(fz t)+—0 ]] +P, )'~ (2)

I

possible to cast the Hamiltonian that governs the dynam-
ics of a single electron in the form

with&/me ~%and P/mc~P.
The structure of the Hamiltonian can be made simpler

if one introduces canonical guiding-center variables I and
(I) through P„=&2IcosP and x+P„=&2Ising along
with the additional canonical transformations
/+co(fz t—)~P, P, ~P, +fcoI, and ff~gf+coI. This
enables us to rewrite the Hamiltonian (2) as

JV= coI—+'))/1+2I+(P, +cofI) +2i/2I pcos(P+o )+p=— coI—+I' . (3)

The slow-time self-consistent evolution equation for the amplitude of the vector potential is readily derived from
Maxwell's equations in dimensional form

icod, (&pe' )= 4me J ewe . i(kz—' ut')—d 3r dt
mcVT

(4)

(d, =d/d—t), where we have performed a Fourier transform over the fast (primed) variables introducing the volume V
and the period T. The current density on the (x, y) plane is written as

Ji=g eve, .(t')5(r' —r;(t')),

with the subscript i =1,2, . . . , N labeling the N particles present in the system; vi;(t') denotes the perpendicular com-
ponent of their velocities and r, (t ) represents their instantaneous positions. Now, one writes the canonical connection
between velocity and momentum

eA
I;v~, ; =Ps, ;

—
2

+
mc

(6)

where adimensionalization is reintroduced. With relations (5) and (6) and taking into account the approximate reso-
nance condition

CO 0
N +kU

it becomes possible to cast Eq. (4) in the form

2ire )/ i —i[((',.(t)+&[fz,. (t) —t}[ V pe'
m coco,oV,. I; I,.

with the resonant wave-particle phase P; +co(fz, t ) as a variab—le depending only on the slow-time scales.
Then, if one identifies the factor P, (t)+co[fz, (t) t] of Eq. (7) —as the canonically transformed wave-particle phase

factor introduced in Eq. (3), it becomes possible to write the complete set of wave-particle dynamical equations in the
form

+2I,p
d, I, = Btgf; = sin(—P; —o ), (8)

1+cof(P, , +cofI; )+Qp/(2I, )cos(([);—o )
d, P; =Btgf; = —co+

t

A,+2I,pdp= — '
sin(P; cr)), —

t

(10)

and

A,+2I,
d, cr = '

cos(P; —o )+2I', p
' 2I;

The set (8)—(11)can be numerically solved, but before
that, let us obtain some analytical information by means
of the macroparticle approximation.

where (G(I,Q) ) =g, G(I, ,Q, )/N for a generic . one-
particle function G (I,P), and where we define
A, —=co&/(coco, o)= 4ne N/(mcoco—,oV); co plays the role of
an average plasma frequency.

III. MACROPARTICLE APPROXIMATION
AND HAMILTONIAN FORMALISM

The macroparticle approach consists of regarding all
the particles as a single entity and its accuracy is closely
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related to the factor 1/QI, present in Eq. (9). Indeed, if
the initial value of I; is the same for all particles (let us
call it Io) and is small enough, the mentioned factor is
large and drives a fast bunching that causes all the parti-
cles to concentrate around the phase space point charac-
terized by P —cr =n/2 . and I=Io, during the very initial
dynamical stages with the subsequent motion being there-
fore approximately the same for all the particles, no
matter how diffuse the initial gyrophase phases were.
This hypothesis shall be tested in the next section, but for
now let us assume that it is fulfilled.

If this is the case, the particle index i is unnecessary
and it is seen immediately that the dynamical equations
take the form

d—, cr =5+ i{, —cos(P+ o ) +&2I
2F 21

(14)

Now, if one rescales p according to p =kp the interest-
ing and final conclusion is that all the relevant dynamical
equations for both particles and fields can be derived
from one generalized Hamiltonian given by

(16)

(17)

I = [1+2I+(P,+QfI} +2{/2IApcos(P cr')—+Ap]'~

(18)

and

d, I= —BPf, d, iti=Br&,

&2I
d, p= —2i{. &p sin(P+ o ),2I

(13)

where besides the canonical pair (I,P) one considers p as
the "momentum" corresponding to the wave field and
o. '( = —0 ) as the canonically conjugated coordinate. The
canonical transformations P

—o ' =P' and p =p, I—
reduce the degrees of freedom (p, is a constant of motion)
and allow us to write a final effective canonical system as

dI= a,@, d—y=a, y,
1 =[1+2I+(P,+cofI) +2+2IA(p, I)cosg+—k(p, . I)]'— (19)

cod, I =d, I

which can be combined with d, p = —d, I to furnish

(20)

d, (Ppii) +d, l =0, (21)

a relation that indicates energy conservation between
wave and particles. We quote that copomc =co p, mc
may be viewed as the total electromagnetic energy avail-
able per particle.

In order to investigate the inAuence of wave dynamics,
wave dispersion, and frequency mismatch on the autores-
onance process, let us first recall that according to the
simplest definition, autoresonance takes place when we
set f =l,p, I~p„kp,&&1,—and P, =0 in Eqs. (19)
with P(t =0)=(2m +1/2)ir, which means an approxi-
mation of small amplitude dispersionless laser waves, en-
ergizing both the transverse and longitudinal particle dy-

where for simplicity the prime has been dropped off the
angular variable $.

Taking into consideration that the above Hamiltonian
is time independent, one can derive the relationship

(I)'+ V(I )=0 . - (22)

In the equation above, V(I) is an efFective potential driv
ing I excursions, written as

namics (recall that P, =0 causes the physical longitudinal
momentum to be proportional to I). Under such cir-
cumstances, the canonical equations for I and P imply
the constancy of the angular variable and the unlimited
growth of the momentum I. On the other hand, when
wave dynamics is taken into account with f = 1 and the
previous initial condition for P, the canonical equations
indicate that the energization process proceeds without
variations of i'(t), up to a maximum value for I, readily
evaluated as I „=p,. Autoresonance is rapidly des-

troyed for f & 1 and the corresponding energization is

highly reduced. In general, even for lasers of large ampli-
tudes it can be observed that autoresonance is present as
long as one takes f = 1 in the absence of wave dynamics.

To evaluate I,
„

in the generic situation of f & 1 and

arbitrary amplitudes, it is convenient to combine our
canonical equations (19) to obtain a closed equation for I
in the form

8AI(p, I)—[(h+coI) —[1+2I—+(Q fI) +g(p, —I}]}~
V(I)=—

4(h +coI )-'
(23)

where we set P, =0 and h =O(Io, itio), with iii as the nu-
merical (and constant) value of O calculated for some ini-
ti» conditions Io, fo. I,„shall be sought as the first
nontrivial zero of the function V(I), assuming
sinitio= +1.0 and IO=O. O.

IV. NUMERICAL ANALYSIS

A. Macroparticle approach

Now we make a numerical application of the formal-
ism to some experimentally relevant situations. Among
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these situations, we chose to focus on systems operating
with electromagnetic modes in the microwave range be-
cause this range appears to require the most feasible ex-
perimental conditions [4]. Other ranges, such as the opti-
cal one, should not be discarded but will not be further
investigated here.

Recalling that we are assuming a small mismatch 5 be-
tween wave and Doppler-shifted initial cyclotronic fre-
quencies, we write co=co,o/I o+kv, o+5 in dimensional
form or

12.0
(a)

10.0 f 0.95 $=0.99 f 1.0

8.0

x 60
E

a= 1 yr, +@fv„+5
in the respective adimensional form (with the latter 5 adi-
mensionalized). Considering beams of small initial ener-
gies Io =v, o=0.0, in Fig. 1 we plot I,„vs5 for different
values of the dispersive factor f. We take co=10 GHz
and the plasma frequency co —1.0 GHz (tenuous beams
of densities —10 cm }, which implies A, =0.01, consid-
ering p, =10.0 in Fig. 1(a), and p, =100.0 in Fig. 1(b).
With these figures one can appreciate the role of the
mismatch; while for f =1.0 the largest I excursion is at-
tained for 5=0.0, for f & 1 the largest excursions occur
for 5&0.

For nonperturbatively large values of the laser ampli-
tude as in Fig. 1(b) the effects of the 5 and f factors are
even sharper. If one does not select a convenient negative
5 one reaches amplitudes much smaller than the max-

imum allowed. However, with the proper choice, one
can partially remove the limiting effects of dispersion and
reach the maximum allowed I,„,(I,„),„.It is also
seen from Fig. 1(b} that maximum energy exchange does
not always occur. If p or f ' (f =0.95 corresponds to
1 —

P~t, 10 ') is too large, (I,„),„=p,may not be ac-
cessible from small values of Io, similarly to what takes
place in mismatched beat-wave accelerators.

B. Integration of the complete set of equations

The calculations carried out so far assume Io =0.0, the
ideal initial condition for phase bunching. An important
issue would be to discuss what happens with the system
as one considers larger (and more realistic) values of the
initial action. In order to briefly address this point, in
Fig. 2 we compare the results of Fig. 1(b) with numerical
simulations based on Eqs. (8)—(11). The simulations are
performed with N=500 particles starting with gyro-
phases uniformly distributed over 0&(() &2m and with
Io=0.001 (circles) and In=0. 5 (squares); the remaining
parameters are the same as used in the macroparticle cal-
culation. We plot the average (I),„,to see that the ma-

croparticle model is expected to be adequate only for
small values of the initial action. As soon as one in-
creases Io, the agreement becomes poorer. Besides, the
differences between simulations and macroparticle calcu-
lations increase as —5 gets larger. For these large values
of —5, the maximum (I ) excursion may be larger in the
absence of bunching; however, beam quality is greatly re-
duced as shall be seen next.

In Fig. 3 the phase space obtained from simulation is
plotted for 5= —0. 1 and f =0.99. In Fig. 3(a) we take
Io=0.001, t =290.0 and in Fig. 3(b) Iu =0.5, t =180.0.
It becomes clear that a large energy spread does occur for
too large values of the initial action.

4.0

2.0

V. FINAL REMARKS

The possibility of reaching maximum allowed I values
makes it necessary to include wave dynamics (and its
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FIG. 2. Comparison of the macroparticle model of Fig. 1(b)
with f=0.99, with the corresponding numerical simulations.
The simulations are obtained for I0 =0.001 (circles) and I0 =0.5

(squares).
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FIG. 3. Phase spaces generated from simulation. We consid-
er f =0.99, 8= —0. 1. In (a) IO=0.001 and t =290.0; in (b)
Io =0.5 and t = 180.0.

finite amount of free energy) in the formalism. Other
effects such as synchrotron emission and beam defocusing
or beam spread also limit the potential for maximum
wave-particle energy exchange interaction, saturating the
process even within the macroparticle approximation [7].
Synchrotron emission, however, is important for particles
with energies on the order of TeV [8], which are much
larger than the ones acquired by particles in the mi-
crowave range. For instance, even in the cases where
(I,„),„=p,=100.0, the maximum kinetic energy at-
tained is approximately given by E,„=(l,„—1)mc

=I,„mc ~0. 1 GeV if mc +1 MeV. As for spread of
the particle beam one can start by estimating the particle
gyroradius as r —(c /co, o)&2I. For some typical frequen-
cies on the order 10—100 GHz and even for the nonper-
turbatively maximum gain of Fig. 1(b) I=(I,„),„-p„
this yields r —1 —10 cm for A, -0.01, which are radii not
much larger than the initial beam radius itself; any in-
crease on the magnetic field strength (with a subsequent
increase on the resonant frequency) or any reduction on

p, can further reduce the gyroradius and the spread.
If one notes that the slow-time scale is regulated by the

parameter k, the interaction time interval t,
„

for max-
imum energy extraction may be estimated as cot,„—1/k,
with co as the dimensional wave frequency. This relation
enables us to estimate the length interval (L) for max-
imum energy extraction as L ~ceo/l, . Considering the
microwave range with A. =0.01 and cu-10 —100 GHz,
one can approximately obtain L —1 m with acceleration
gradients approximately lying in the range 1 —100
Me V/m.

To conclude, we have analyzed the cyclotron-
resonance laser accelerator in terms of a generalized
Hamiltonian approach. The formulation is general in

two basic senses; the dynamics of arbitrarily large laser
fields is fully taken into account and the inclusion of
efFects connected with frequency mismatches and wave
dispersion is allowed. By explicitly considering the mi-
crowave range, we have shown on theoretical grounds
how an adequate adjustment of the mismatch factor can
partially remove the limiting effects originated from wave
dispersion on wave-particle energy exchanges. In the an-
alyzed range some of the usual limits to energy exchange
processes are not crucial, such as synchrotron emission
and beam spread. Others, such as the bunching problem
and energy spread, may become relevant if one takes not
small enough values of Io or too large values of the
mismatch as shown in the numerical simulations of Sec.
IV B.
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