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Loci of limit cycles
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A recent method of Delamotte [Phys. Rev. Lett. 70, 3361 (1993)] for obtaining approximate analytic

expressions for the loci of limit cycles in one variable is applied to coupled nonlinear first-order rate
equations in several variables, the typical case for most models based on chemical kinetics. The first-

order approximation works we11 near a bifurcation point, with higher-order terms being required the fur-

ther the system is from the bifurcation point. The method complements linear stability analysis (which

gives the limiting frequency of the limit cycle at the bifurcation point) by giving a simple method with

which to construct an explicit formula that gives the evolution in space and time of a limit cycle near a
bifurcation point.

PACS number(s): 05.45.+b, 82.40.Bj, 82.20.Wt, 02.60.Lj

I. INTRODUCTION obtaining

Limit cycles, stable orbits in phase space toward which
a system moves spontaneously, are one of the more intri-
guing features that can arise from nonlinear chemical
kinetics. Recently Delamotte [1] proposed a very sitnple
method for determining approximate analytic forms for
the loci of limit cycles. For the examples he treated he
was able to obtain orders of magnitude improvement in
the values of the period and amplitude of limit cycles
compared with results obtained from very high-order
perturbation theory. Delamotte considered second-order
differential equations in a single variable. Here we cast
his method in a form applicable to first-order difFerential
equations in any number of variables, the common form
for the equations of chemical kinetics.

We treat a system of coupled first-order differential
equations that exhibit a limit cycle, for example

dx
dt dt

=f(x,y), =g(x,y),

where f and g are in general nonlinear functions of x and

y arising from mass action, or other kinetic mechanisms.
The number of variables is arbitrary, but we need at least
two variables to obtain a limit cycle. We will consider ex-
amples in two variables. We take co as the characteristic
frequency of the limit cycle. The essence of Delamotte's
method is to write the locus of the limit cycle as a
Fourier series

N

x(t) =a„(0)+g [b„(n)sin(ncot )+c„{n)cos(ntot )],
n=1

x(t)=a„(0)+ g [a„(n}g"+[a„(n)]'g "],
n=1

where

(1.4)

a„(n)= —,'[c„(n)—ib„(n)],

[a„(n)]"=—,'[c„(n)+ib,(n)] .
(1.5)

One then substitutes the form of (1.4) into the kinetic
equations, giving

F(g) = f(x,y)—dx
dt

= A„(0)+ g [ A„(n)g"+[A„(n)]*( "],
n=1

—g(x,y)

(1.6)

M

= A (0)+ g I A (n)g" +[A»(n)]"g
n=1

where [A„(n}]"and [A (n}]" are the complex conju-
gates of A„(n) and A»(n) The lim.its Mx and M» (which
are not necessarily the same) are generally larger than the
limit N in (1.4) and depend on the exact nature of the
nonlinear terms in f and g. Now if (1.4) is an exact solu-
tion of the locus of the limit cycle then one has

(1.2)
F(g) =0, G(g) =0, (1.7)

with a similar expression for y(t). The approximation
lies in the fact that we take a finite limit % on the sum;
for a first-order approximation we take N = 1, second or-
der N=2, and so on. Using the Euler relations one can
rewrite (1.2) in terms of the complex variable

(1.3)

and the coefficient of each power of g in (1.6) will be zero.
Delamotte's method consists of the requirement that the
coefficients in (1.6) be zero for n =0 to N (thus it is an ap-
proximation since not all of the coeKcients are required
to be zero). One has explicitly [we note that A„(0) and
A»(0) must be real]
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A, (0)=0, A (0}=0,
ReA„(n)=0, ReA (n)=0,

ImA„(n)=0, ImA (n)=0, (n =1 to X) . (1.8)

Equations (1.8) are in general a set of coupled nonlinear
equations for the coefficients in (1.4), i.e., a„(0), b„(n),
c„(n), a~(0), b~(n), c~(n}, and co. For each order of ap-

proximation, e.g. , N=1, 2, and so on, one gets a new set
of equations and hence all the coeScients change at each
order of approximation (hence it is not like a perturba-
tion scheme where the lower-order terms remain fixed as
one increases the number of terms). Delamotte does not
prove that a solution of (1.8) for the coefficients in (1.4) in

real numbers exists, nor that the solution must improve
with increasing X. However, the numerical results he
presents are very impressive.

The nature of the hierarchy of approximations is illus-
trated below (where we drop the subscripts x and y for
simplicity). We illustrate the stages of approximation for
the case M=3, i.e., the powers of g range from minus
three to plus three. Each level of approximation (zeroth,
first order, second order) is obtained by requiring all of
the coefficients (real and imaginary parts) inside of the
curly brackets to be zero; the coefficients outside of the
curly brackets are not required to be zero (which is the
approximation involved). The zeroth-order approxima-
tion gives the steady-state solution of the differential
equations (a point).

[A(3)]'g +[A(2)]*( +[A(1)]'g '+[A(0)]+A(1}(+A(2)g +A(3)g, zeroth order,

[A(3)]"g +[A(2)]'g +I[A(1)]*( '+A(0)+A(1)g]+A(2)g +A(3)g, first order,

[A(3)]*( +[[A(2)]'g +[A(1)]'g '+A(0)+A(1)(+A(2)g ]+A(3)g', second order .

dX d X

dt
=0. (1.10)

Delamotte explicitly treats second-order differential
equations in a single variable

tant point is the consideration of the initial conditions.
Since we are seeking the locus of a limit cycle we do not a
priori know x (t =0). However, since x (t) is periodic we
can choose an extremum in x ( t ) as the starting point.
Thus we take (the dot signifying the time derivative)

He notes that (1.10}is equivalent to x(0)=0 . (2.3I

d x
+co x =F(t),

t2

In general the %= 1 level of approximation for x(t}
would be

where F (t) plays the role of an external force. Assuming
the finite Fourier sum of (1.2) is the same as making an
ansatz for F (t). We now turn to examples.

II. VAN DER POL MODEL

One of the models that Delamotte treated is the Van
der Pol limit-cycle model which can be written as two
coupled first-order equations [2)

dx

x =a + b sin(cot )+c cos(cut ) .

The initial condition of (2.3) requires b =0 giving

x =a+c cos(wt)=a+ —,'c(g+g ') .

Substituting (2.5) into (2.2) one obtains

A(0)=a =0,
ReA(1)= —,'c(1 —co )=0,
ImA(1)= —„'c~u —

—,'a ceo —
—,'c co=0,

(2.&)

(2.5)

dt
= —x —g(x —1)y,

(2.1)
which are satisfied by

a =0, c=2, lx)=l
or as a second-order equation in x only,

x 2 dx+g(x —1) +x =0
dt

(2.2)

The model exhibits a limit cycle for arbitrary g. We illus-
trate the method for both sets of equations, first to review
Delamotte's approach for equations in one variable and
then to show that the same result can be obtained by ex-
plicitly treating the two-variable version (which is the
form most commonly encountered in chemical kinetics).

We consider first the all-x version of (2.2). An impor-

It is important to note that (2.6) do not contain the pa-
rameter g; thus for the Van der Pol model the parameters
in (2.7) are independent of g. The locus of the limit cycle
in first approximation is then

x =2 cos(t) . (2.8)

The period, T=2~/co, is 6.283185 and the maximum
value of x is x,„=2; these numbers compare well with
the exact values (determined numerically [1] for the case
of g =1) of T=6.663 287 and x,.„=2.008 620. Thus in
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this case the lowest-order approximation is quite good.
Using odd harmonics of the form sin(2k + 1 }cot and
cos(2k+1)cot Delamotte notes that the results obtained
for k = 8 are five orders of magnitude better for the max-
imum amplitude and ten orders of magnitude better for
the period than the values obtained using perturbation
theory through g' (using Pade resummation; all results
for the case of g= 1). While this is remarkable, in this
case the first-order approximation is already very close to
the exact solution.

We now consider the set of first-order equations given
in (2.1) and treat the same model explicitly as a two-
variable system. Again we take (dxldt), O=0 (we can
do this for only one variable since in general the extrema
in the two variables will not occur at the same time}.
Thus the solution we assume for X= 1 is

+b(3)sin(3cot )+c(3)cos(3cot ) . (2.13)

The initial condition of (2.3) now gives

b(1)+3b(3)=0 . (2.14)

gives a very good estimate of the maximum x amplitude
and the frequency. What we see from Fig. 1 is that the
first-order approximation does not reproduce the bulges
along the y axis (which increase in magnitude with g). To
see how the next order of approximation begins to in-
corporate this feature we follow Delamotte and use the
next odd harmonic. The next-order approximation for x
is then (using the x-only approach)

x = a + b(1)si n(cot )+c(1)cos(cot )

x =a„+c„cos(cot)=a„+—,'c„(g+g '),
y=a +b sin(cot)+c cos(cot}

=a~+ —,'(c ib )g+—
—,'(c +ib )g

Substituting (2.9) into (2.1) gives

A„(0)= —
a~ A„(0)= —a~,

ReA„(1)=—,'c~,

1m A„(1)=—,'(by+c„a)),

A~(0)=(a, —a~)+a„a~+ —,'a~c„+a„c„c~,

(2.9)

(2.10)

The equations for the parameters are [for simplicity we
set b(1)=b, c(1)=c, b(3)=8, and c(3)=C; we take

g = il

+8
tOO 0~ JI~Oy ~I~

~~ ~

'J 'I

~ ~
~ ~
~ ~

Vj

I

which are satisfied by

a, =0,
6„=0,

a =0,
b = —2,

(2.11)
c —2, c —0,

giving for the locus of the limit cycle

6
~ fJQ

~ ~
~ ~

~ ~

W

x =2cos(t),

y = —2 sin(t),
(2.12)

which is of course equivalent to the results obtained from
the x-only version. The importance of the two-variable
approach is that in general we cannot eliminate y and
produce a second-order equation in x only.

In Fig. 1 we compare the first-order approximation of
(2.12) with the numerical solution of (2.1), both for the
case of g=1. Curve a is the numerical solution while
curve b is the first-order approximation. We have al-
ready pointed out that the first-order approximation

% ~

FIG. 1. Limit cycle for the Van der Pol model. Curve a is a
numerical solution of (2.1) with g =1, curve b is the first-order
approximation given by (2.12), and curve c is the third-order ap-
proximation given by (2.16). The arrows indicate the direction
in which the limit cycle is traversed.
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A(0)=a =0,
ReA(1)= —,'c+ —'Bco ——"8 co —'B—C co

2 4

+—,'cBCco —
—,'c Bco—

—,'cm

ImA (1)= —,'8 ——', 8 Ccu —
—,'ceo+ —„'cB co+ —,'cC't~

+ —„'c C~+ —„'c m ——„'Bo)

Re A ( 3 )
= —,

' C —
=,
' 8~+ ", 8 —co+ ,'BC—&~

—„'c 8 co— —', Cro—

Imd(3)= —
—,'B —

—,'Cu+ —"B Cco+ —'C co —="cB ~)

+ 4c Cco+ &c 6)+—„Bco

,0,. (0)=0,

Im A„(1)= 2b — b—,c„c„+—,'c„cu,

A, (0)=0,

which have the solution

c„=--0, c„.=0 .
(3.5)

The first of these equations gives a=0; the terms in

Re A (2) and Imd (2), not shown, all contain the parame-
ter a as a factor and thus these are identically zero. Us-

ing the parameters obtained from the solution of (2.1S),
Eq. (2.13) for x (t) now becomes

x =0.642 sin( tot ) + 1.912 cos( tot )
—0.214 sin( 3 tot )

+0. 137 cos(3tat )

(co=0.942S) . (2.16)

Taking y =dx/dt we obtain the third-order approxima-
tion for the limit cycle. This is shown in Fig. 1 as curve
c. One sees that in this order of approximation the bulges
along the y axis are now developing and that we have a
fairly good fit to the actual limit cycle.

III. OTHER MODELS IN T%'0 VARIABLES

We now treat several models in two variables in lowest
order, i.e. , N = 1. For all we have the form of (2.9) which
incorporates the initial condition of (2.3). First we treat
an exactly soluble textbook example of a two-variable
model with a limit cycle. The model is given [2,3] by the
equations

at
=y+x(1 —x' —y'),

dy = —x+y(1 —x —
y ) .

giving (3.3), the exact result.
Next we turn to the Lotka-Volterra model, the sim-

plest two-variable system that exhibits oscillations. In
this ease the orbits are not true limit cycles in that there
is no particular orbit toward which the system evolves.
This feature will come out naturally in the present
method. The model is [4]

8A
- —X XP

3' +x3'
Qg

dt

(3.6)

dx x (y —1)
dy y (1 —x)

[3 7I

which can be separated and solved to give the locus of the
metastable orbit [4]

-- O'=Cxe

Applying the present method we substitute (2.9) into
(3.6) and obtain

There is a steady state at x, =y, = 1 and the system exhib-
its closed orbits about this steady state with the ampli-
tude determined by the initial conditions. The solution of
(3 6) is not known but on taking the ratio of the
differential equations one has

The locus of the limit cycle is the circle x +y =1. On
the limit cycle the differential equations are

A„(0)=a (1—a„, ) ——,'c, c~,

Re 3„(1)= —,
' (c„—a,, c, —a„c ),

Im A„(1)=+ ,'(a„b,,
—c„~)—,

dt

which have the solution

x = —cos(t),

y =sin(t) .
[3.3)

.4,, (0)= —a (1 —a, )+ —,'c c, ,

Re A ( 1 ) ——(aye~ c +a~cd 6yco)

ImA„(1)=
—,'(b a„b —c co), —

which has the solution
For simplicity here we anticipate that a =a =0, i.e.,

the limit cycle is centered at the origin; we caution that
the origin or a steady state need not determine the values
of a and a . We substitute this simplified version of (2.9)
into (3.1) and obtain the following relations:

c =0 b =c
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We note that in this case a„and a are given by the
steady-state values here. We are unable to specify c,
which simply means that there is not a unique orbit.
Thus we have

x =1+c„cos(t),

y =1+c sin(t) .
(3.11)

This incidentally is the solution that one would obtain for
the equations linearized about the steady state. It is not
true that the N=1 level approximation is in general
equivalent to linearizing the differential equations about
the steady state as the next two examples will illustrate.

Our next example is a variant on the Lotka-Volterra
model that does exhibit a proper limit cycle. This model
was constructed as part of a study of the effects of
cooperation, clustering of particles, and excluded volume,
on the metastable orbits of the original Lotka-Volterra
model [5]. The differential equations describing the mod-
el are

Note that while a„=x, one has a„Ay, . Our first-order
approximation for the locus of the limit cycle is thus

x =0.3+0.291 cos(0.392t),

y =0.266+0. 198 sin(0. 392t) .
(3.17)

Figure 2 shows a numerical solution of (3.12) with
a=2. 5 and p=0. 3 which is compared with the first-
order approximation of (3.17). The numerical solution of
(3.12) gives co=0.318 which compares with co=0.392 in
the first-order approximation of (3.16). One sees that the
first-order approximation is a fair approximation to the
actual limit cycle in this case.

A famous model from the Prigogine school is the
Brusselator [6]:

dx =A+x y
—x(B+1),

(3.18)

dt
=Bx—xy.

dx
dt

=ax (1—x —y) —xy,

dy = —py+xy .
(3.12)

The steady state is at

x, =A, y, =B/A

and is unstable for

(3.19)

The system is constrained by the relation (x+y) & l.
The steady state in the interior of the reaction simplex is
given by B)1+2', (3.20)

ys
x, =p, a=

x, (1—x, —y, )
'

while the condition for a limit cycle is

x, ((I—y, )/2 .

(3.13)

(3.14)

As an example of conditions under which the system ex-
hibits a limit cycle we take x, =y, =0.3 with a=2. 5 and
P=0.3.

Substituting (2.9) into (3.12) one obtains

A „(0) = —aa„+aa„+a„a +aa„a —
—,
' ac„+—',aa„c„

2 y z +
2 z y +Qaz z y

Re A„(1)= —aa„c„+—3aa„c„+—,'a„c„+aa„a~c„+—,'ac„

in which case the system exhibits a limit cycle. There are
no bounds on x and y in this model other than the re-
quirement that they must lie in the positive real qua-
drant. We will take A = 1 and keep B general; from (3.20)
there is then a limit cycle for B)2.

Substituting (2.14) in (3.18) we obtain

1 2 3 2
2 Q+Cy 2 aa&cy 8 z y

(3.15)

A (0)=Pa —a„a —
—,'c„c

ReA~(1)= —,'[ —a c„+Pc —a„c +b co],

ImA~(1)= —,'[ Pb +a„b +c to]—.

Taking a„=x,=p and c„=O leads to a simple solution:

a =0.3, ay 0 266405

6 =0, j7 =0.197693,

c„=0.291 194, c =0,
C0=0.392404 .

(3.16)

FIG. 2. Limit cycle for the modified Lotka-Volterra model.
Curve a is a numerical solution of (3.12) with a=2. 5 and
P=O. 3, curve b is the first-order approximation given by (3.17).
The system is constrained to lie in the reaction simplex shown.
The arrows indicate the direction in which the limit cycle is
traversed.
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A„(0)=—1+a (1+B)—[+a a„, + —,'a, c„+a,c„c,],
ReA, (1)=—,'c, (1+B)—[+a,a c, + —,'a, c + —c„c„,],
ImA (1)=[Ia by+ 8byc ]+ ~c co

A (0)= —Ba, +[+a„a + —,'a c,'+a, c„c ],
ReA, (l)= —

,'Bc —+,'b c—o

+[+a,a c, + —,'a„c + —,'c„c ],
ImA (1)= —,'c ~—

[ ,'a,'b —+,'b c„'—) .

{3.21)

8

The solution of (3.21) is simplified by noting that on
forming

A„(0)+A~(0) = —1+a, =0,
Re[A„(1)+Ay(1)]= —,'c„+ ,'b„co—=O,

Im[A, (2)+ A (2}]=—,'c„co+—,'c co=0,

one has immediately (for general B)

ax —1, cx by co& cy ~y co

(3.22}

I,'3.23)

FIG. 3. Limit cycle for the Brusselator. Curve a is a numeri-

cal solution of (3.18) with A =1 and 8 =3 while curve b is the
first-order approximation using the parameters of (3.26). The
arrows indicate the direction in which the limit cycle is

traversed.

We recall that we also have, in general, b, =0 from the
initial condition of (2.3). One then readily obtains the
general solution of the first-order approximation for this
model,

Q. =2+5—=E + ' '
'(

b, =o,

a = 9+2B++ 47+20B+—4B /8,

(b co)'=-'(a —1 —
—,'B ),

co =+1+-,'(byrd)' .

For example, at B =3 one has

Q~ =1 a =24

(3.24) 2
c,. =-- -- — &e(1 ——', e+

2
g( 1 g+e ~ ~

V 7

cu —1+—'e ——", e +2
6 72

I3.27)

C„= C

b„=O, b, =+4, We note that all of the amplitude terms increase as the
square root of e.

The extreme values of x [see (2.3)] are given by

Note that a W3, the steady-state value of y when B =3
and A = 1. In Fig. 3 curve a gives the numerical solution
of (3.18) for A =1 and B =3 while curve b gives the
first-order approximation as determined by the parame-
ters in (3.25). The numerical solution gives co=0.879 as

compared with co=1.080 in the first-order approxima-
tion. In this case the first-order approximation is a very
poor representation of the actual limit cycle. To under-
stand more about the accuracy of this approximation we

examine the behavior of the first-order approximation in
more detail near the bifurcation point.

For A = 1 the critical value (bifurcation point) is

B =2. Introducing a variable that measures the distance
from the critical point

(3.26)

Eqs. {3.24) then yield the following expansions in e about
a=0:

In Fig. 4 we plot x,„and x;„,the extreme values of x
on the limit cycle as a function of e [or B; see (3.26)] as

given by the first-order approximation and as determined

by the numerical solution of (3.18). One sees that for B
close to two (e=O) the first-order approximation esti-
mates the amplitude of the limit cycle accurately but as B
increases the approximate value levels off while the value
obtained from the numerical solution keeps increasing.
Figure 4 also shows ~, determined from the first-order
approximation and from numerical solution of (3.18). As
B~2, ~~1; as 8 is increased above 2 the value of ~ ob-
tained from the first-order approximation becomes
greater than one while the value obtained from the nu-

merica1 solution shows the opposite trend. We also show
an estimate of co obtained from the kinetic equations
linearized near the steady state. The dynamics near the
steady state are given by exp(A, r) where the A. 's are the ei-

genvalues obtained from the linearized equations which
in this case are Ifor 3 = 1 and e=B —2)
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A, =—'e+Q 1 (3.29) proves the solution we go on to N =2 for the Brusselator.
In this case one has

Equation (3.29) shows that for e&0 (8 &2) the system
moves exponentially away from the steady state (the real
part of A, is positive) with the quantity

1 ——'e2
4 (3.30)

giving the rate of rotation as the system moves away from
the steady state. One sees in Fig. 4 that co' is a fair esti-
mate of co for the limit cycle as @~0; at B =4 one has
co'=0 which simply means that the system does not ini-
tially oscillate as it moves away from the steady state to-
ward the limit cycle.

Clearly we see from Fig. 4 that the first-order approxi-
mation is adequate only for values of B up to about
B =2. 1. To see how the next stage of the process im-

x =a (0)+b„(1)sin(cot )+c„(1)cos(cot)

+b„(2)sin(2cot )+c„(2)cos(2cor),
y =a (0)+b (1)sin(cot)+c (1)cos(cot)

+b~(2)sin(2cot)+c~(2)cos(2cot) .

The condition (dx Idt), 0=0 now gives

b„(1)+2b„(2)=0.

(3.31)

(3.32}

We will not give the complete resulting equations in this
case, but simply point out that the analogs of (3.22) for
general B are

a„(0)=1,
c„(1)= co[b, (1—)+b~(1)],

b„(1 =}co[c„(1)+c (1)],
c„(2)= —2' [b„(2)+b~(2) ],
b„(2)=2co[c,(2)+c~(2)] .

(3.33)

1.2

1.0

0.8-

I

2

We note that (3.29} contains 11 parameters (including co}.
Equations (3.32) and (3.33) allow us to eliminate six of the
variables, giving five nonlinear equations in five un-
knowns to solve [the equations are A„(0)=0, ReA (1)
=0, ReA (2)=0, ImA (1)=0, and ImA~(2)=0] or the
corresponding A„equations, but not both sets since the
results of (3.33) are the consequence of adding the A„
and A equations [see (3.22)]. An iterative scheme
whereby one starts by solving the A (0) and A~(1) equa-
tions (assuming that the second-order parameters are
zero), and then solving the A (2) equations for the
second-order parameters (keeping the first-order parame-
ters constant), and so on, works well; the convergence to
a solution is slow, but steady.

As an example we compare the results for the case
where B =2. 1 for N = 1 and 2 which are shown below.

N=1:
0.6-

0.4-

02-

x =1—0.344cos(cot),

y =2.094+0.329 sin(cot)+0. 344 cos(cot)

N=2:

(3.34)

(co=1.015) .

00

FIG. 4. Parameters for the Brusselator limit cycle as a func-
tion of the distance from the bifurcation point, e=B—B„
where here A =1 and B,=2. The upper graph shows the max-
imum and minimum amplitudes of x. The open squares (curve a
gives x,„) are obtained by numerical solution of (3.18), while
the solid squares (curve b give x;„)are the results of the first-
order approximation given by (3.25). The lower graph gives the
frequency as a function of e: curve a is the numerical solution
of (3.18); curve b is the first-order approximation of (3.25); and
curve c uses (3.31) obtained from the linearized rate equations.

x = 1+0.108 sin(cot) —0.352 cos(cot)

—0.054 sin(2cot) +0.076 cos( 2'

t�),
y =2.102+0.245 sin(cot)+0. 460 cos(cot)

+0.016 sin( 2cot) —0. 103 cos(2'

t�
)

(3.35)

(co=0.996) .

We note that in the (N =2) approximation the frequency
is now slightly less than one, and is in excellent agree-
ment with that obtained from numerical solution
(co=0.995+1). In Fig. 5 we compare the numerical solu-
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&= —, I(f.+-g, )+V (f, +g, )' 4—(f„g, f—,g„)I .

If the quantity in the square root is negative, then a Hopf
bifurcation occurs when the real part of A, goes through
zero and the nature of the steady state changes from
stable to unstable (leading to a limit cycle). From (4.4)
one sees that the condition for the bifurcation point is
[which is equivalent to setting the trace of the matrix of
(4.3) equal to zeroj

f , +g '=. 0,
in which case the eigenvalues are

h, —- + i ')If g ~ f~g» —1 td o

(4.SI

(4.6)

Applying our first-order approximation to (4.1) we use
(2.3) and (2.9),

1 5

FIG. 5. Limit cycle for the Brusselator. Curve a is the nu-

merical solution of (3.18) with A =1 and 8 =2. 1 curve b is the
first-order approximation of (3.35), and curve c is the second-

order approximation of (3.36).

tion of (3.18) for B =2. 1 (curve a) with the first-order
(curve b) and second-order (curve c) approximations.
Thus for e=O. 1 the second-order approximation gives an
excellent representation of the limit cycle (which con-
trasts with the poor results obtained in first order for
@= 1 as shown in Fig. 3).

IV. CONNECTION
WITH LINEAR STABILITY ANALYSIS

In Fig. 4 we show that for the example treated the fre-

quency of the limit cycle, both as determined by the nu-

merical solution of the differential equations and by using

the first-order approximation, approaches the value ob-

tained from the linearized rate equations as the distance
from the bifurcation point goes to zero. Here we show

that this is so in general and hence that there is a connec-
tion between the present method and linear stability
analysis.

We start with (1.1) and linearize the rate equations
about a steady state (x„y,. ) giving

x =x, +c,.cos(tot),.

y =y, + b, sin(cot)+c, cos(tot ),
which results in the relations

Re A„(1)=c„f„+c,f,
1m'„(1}=bf„+ „co,l

Re 3, ( 1)=c„g„+c,g„,
—b, co,

Imd, , (1)=b,g, +c,~ .

(4.8)

Using the first two equations we can eliminate c and b„
c,.

= —C„(f, If„), '.
(4.9)

b, = —c„oi(1/f. „, ) .

)If»gv fvg» coo ~ (4.10)

which is the result obtained from the eigenvalues for the
linearized equations, (4.6). Near the bifurcation point the
limit cycle has the form

.x =x, +c cos(co&t),

~o . f»
v =y, c„' sin(coot) c» cos(coot)

(4. 1 1)

Using (4.5) and (4.9) the fourth equation becomes an iden-

tity and does not give any useful information. The third
equation, however, yields the relation

dAx =f,bx+ f by,

de =g hx+g hy,
dt

where

Ax =x —x„5y=y —y, .

(4.1)

As with the case of the Lotka-Volterra model, we cannot
obtain a unique value of the amplitudes (all depend on c„)
from (4.8) since in the neighborhood of the bifurcation
point the orbits are metastable. What (4.11) tells us is
that as one approaches the bifurcation point marking the
onset of a limit cycle one has in general for a two-variable
model

ax. ~X~, Qp ~y~, CO~A)p

The matrix of derivatives (evaluated at the steady state)
{4.12)

gx gy

has the eigenvalues

(4.3)
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Thus in the neighborhood of the bifurcation point the
magnitude of c„ is the only unknown quantity. To start a
numerical search for the parameters the relations in
(4.12) can be used to eliminate all of the variables except
c . The full nonlinear form of the first-order approxirna-
tion equations [the nonlinear analog of (4.8)] of course
does yield values of all of the parameters including c„.
The present approach thus can be seen as a method by
which one can go beyond the limits of linear stability
analysis (which tells one that there is an instability lead-
ing to a limit cycle) and actually construct the limit cycle.

V. DISCUSSION

We have applied Delamotte's method for obtaining a
hierarchy of approximations to the locus of a limit cycle
for a second-order difFerential equation in one variable to
the case of a set of coupled first-order differential equa-
tions in two or more variables. The method quickly leads
to a set of coupled nonlinear equations in the unknown
parameters required by the method. The solution of
these equations is the main technical problem involved
with the method. For our examples in two variables the
first-order approximation requires the determination of
six unknown parameters while the second-order approxi-
mation requires ten [this includes the frequency co and
the use of the initial condition (2.3)]. We have noted in

general that the constant a„(0) in (1.4) cannot always be
assumed to be identical with the steady state value of x
(or y as the case may be); in all of Delamotte's examples

[1]the limit cycle is assumed to be centered at x =0.
Delamotte makes the point that this method does not

rely on the smallness of a critical parameter (such as is
the case in perturbation expansions). While it is true that
one can use the first order and higher orders of approxi-
mation for any values of the parameters involved (it is
possible that no solution of the equations can be found in

real numbers for certain extreme values of a parameter,

but we have not found this to be the case for any of the
models we have treated here) it is also clear from our
analysis of the Brusselator that the first-order approxima-
tion works better the closer one is to the bifurcation
point. In Fig. 4 one see that the x amplitude obtained
from the first-order approximation levels ofF' with e
(measuring the distance from the bifurcation point), while
the actual amplitude keeps on increasing. Thus in a sense
this is an asymptotic method, improving at low order as
one approaches the onset of the limit cycle (bifurcation
point}. We note again that all of the coefficients change
at each level of approximation, and that this is not an ap-
proximation that gives a fixed contribution at first order,
and so on.

The method we have outlined here for first-order equa-
tions in several variables is a useful complement to linear
stability analysis. Linear stability analysis can predict the
onset of limit cycles and it can give the limiting value of
their frequencies at the bifurcation point, but it cannot
actually describe the limit cycle. The present method al-
lows one to find a simple analytic expression for the limit
cycle that is accurate near the bifurcation point.

Finally we point out that the loci of limit cycles (at
least stable limit cycles} are easy to determine by numeri-
cal solution of the differential equations involved (the sys-
tem is literally pulled toward the correct locus}. Thus if
one wants a mathematical expression that will represent
the numerical results one can take a set of (x,y) points
around the cycle together with the numerical value of the
frequency and use (1.2) to fit the data. The a' s, b's, and
c's in (1.2) are then unknowns to be determined, but the
numerical problem is one of solving simultaneous linear
equations, which is easy to accomplish (and unique) no
matter how many points are used. One could use this ap-
proach to see how many terms are required to represent
the limit cycle to any required degree of accuracy. Of
course the goal here is to obtain an approximate analytic
form directly from the difFerential equations without
resorting to numerical solutions.
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