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Scattering fram internal interfaces in microemulsion and sponge phases
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The scattering intensity due to thermal Buctuations of the amphiphile density in microemulsion
and sponge phases is calculated for a Cinzburg-Landau model with two scalar order parameters.
The amphiphile correlations are found to be strongly inBuenced by the oil-water correlation function
in the former and the water-water correlation function in the latter. We take these correlations
to oscillate with wave vector k. Not only does this reproduce the known 1/q dependence of the
scattering intensity for the small wave vector q, it also gives rise at q = 2k to an experimentally
observed peak. The calculated scattering intensities agree very well with experimental results over
the whole range of wave vectors.

PACS nuinber(s): 61.20.Gy, 05.40.+j, 82.70.—y

Two isotropic, homogeneous phases with a complex in-
ternal structure have been observed in amphiphilic sys-
tems [1]. One is the microemulsion, a bicontinuous mix-
ture of oil, water, and arnphiphile, found at low am-
phiphile concentrations, intermediate between that of the
lamellar phase and of the coexisting water- and oil-rich
phases. The other is the L3, or sponge phase, observed
in systems of water and amphiphile, at low amphiphile
concentrations, intermediate between that of the lamellar
phase and of the water-rich phase. The structure of these
phases has been studied experimentally by both freeze-
fracture microscopy [2,3] and neutron scattering [4,5].
From these experiments, the following picture emerges
of the structure characterizing these phases. The mi-
croemulsion consists of coherent regions of oil and water,
which are separated by an amphiphilic monolayer. The
sponge phase has a similar structure, but the amphiphilic
monolayer is replaced by a bilayer which separates two
regions of water. In microemulsions, this structure leads
to a scattering peak at finite wave vector in bulk con-
trast (i.e. , when the scattering contrast is chosen between
oil and water). This characteristic peak has been repro-
duced by several theoretical models, and can be traced
to the structure of the fluid induced by the presence of
the amphiphile, a structure described by an oscillatory
water-water correlation function [4,5].

Scattering from the amphiphile film itself (fitm con-

trast) is found to be quite similar in the microemulsion
and sponge phases [6]. It is a particularly important sig-

nal in the latter phase because there is no bulk contrast
scattering due to the fact that the regions of water on
either side of the bilayer are chemically identical. The
signal typically consists of two peaks; the larger one at
wave vector q = 0, and a much smaller one at a nonzero
q. In the rnccoemmusSon, this value of q is twice the char-
acteristic wave vector k of the bulk contrast scattering.
This reflects the location of the amphiphile at the in-
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terfaces between oil and water and that there are two
such interfaces in each period of the bulk fluid. In spite
of the importance of the film contrast scattering in the
sponge phase, it has not received a completely satisfac-
tory theoretical explanation. Roux et al. [7] argued that
a successful calculation of the film contrast signal would
require that the coupling of the amphiphile bilayer to the
two regions on either side of it be included, because the
location of the bilayer was so intimately tied to these wa-

ter regions. Therefore they employed a Ginzburg-Landau
theory with two scalar order parameters; p(r) represent-
ing the local deviation of the amphiphile concentration
from its average value p, and C'(r), the difference in con-
centrations of the two regions of water. In their theory,
the fluctuations of the water regions produce a water-
water correlation with a monotonic exponential decay.
Although not directly observable, these fluctuations cou-
ple to those of the amphiphile and produce a scattering
intensity from the bilayer which peaks at q = 0, and
decays as 1/q for small wave vector q. This is in good
agreement with experimental observations [7—9]. How-

ever, their theory yields a film scattering intensity which
decreases monotonically with q, and therefore fails to re-
produce the smaller second peak whose presence is a very
direct indication of the fluid structure.

We assume that the reason for this failure is that, in
the description of Roux et al. , the sponge phase is not
sufBciently structured, as evidenced by the monotoni-
cally decreasing water-water correlation function which
they calculate. In the microemulsion, where one can ob-
serve the bulk contrast scattering which is related to the
Fourier transform of this function, we know that the cor-
relation function oscillates. Therefore we will generalize
the model of Refs. [7,9] to allow for an oscillating corre-
lation function, and use this model to calculate the scat-
tering intensity in film contrast for both microernulsion
and sponge phases. In doing so, we find not only the
same good fit at small wave vectors to a 1/q decay ob-
tained previously, but also a great improvement at larger

q, including the description of the small peak at the ap-
propriate wave vector. For suKciently large q, we find
that the scattering decays as 1/q as is observed experi-
mentally [6].
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Our analysis is based on the free-energy functional

&(@ P) = &o(@)+&i(P)+&'-t(@'P)

where

&o(e) = f d ~ ~(& e) +do(ve)'+d, e'(&e)'

+od, 4' + od44'+ ods4', (2)

and

E,(p) = f d~r a(Vp) +{)p'

In this form it is seen that the three combinations 4,
O'V' 4), and (V'4)2 all act as chemical potentials for the
amphiphile. Provided that p2 ( 0, the third term fa-
vors larger than average amphiphile concentrations at an
interface. If pq & 0, the Grst term favors smaller than
average amphiphile concentrations in the bulk phases.
Similarly, if 2p2+ p3 ( 0, the second term favors smaller
than average amphiphile concentrations on both sides of
a planar interface. For curved interfaces, the role of this
term is more complex because V' 4 contains contribu-
tions proportional to the mean curvature of the interface.

The average concentration of amphiphile, p, enters the
model via the parameters go and u2. For small am-
phiphile concentrations, go is large and positive. With in-
creasing p, go decreases and eventually becomes negative.
Were the density p in the above two-component Landau
theory integrated out, and the expression remaining ex-
panded in powers of 4 and its gradients, the result would
be a one-component Landau theory of the form which has
been much used in the study of amphiphilic systems [12].

In order to obtain the scattering intensity in 61m con-
trast, we must calculate the structure function

Gpp(~) = (p(q) p( —q)). (6)

E;.,(e, p) = f d'r ~ape'+~a{%'p)e'+ape(v'e)

(4)

for the two scalar order parameter fields 4(r) and p(r).
In the microemulsion case, 4) is identified with the local
concentration difference between oil and water, while in
the case of the sponge phase 4 distinguishes water on
one side ("inside") from water on the other side ("out-
side") of the amphiphilic bilayer. In both cases, p is the
difference of local amphiphile concentration &om the av-
erage amphiphile concentration p, so that (p) = 0. We
have included in (4) all independent terms which are lin-
ear in p, quadratic in 4, and contain no more than two
derivatives [10,11]. Interpretation of these interactions is
facilitated by integrating the second term by parts twice
so that the f'ree energy of interaction between the two
order parameters becomes

E;,{e,p) = f d~r p '))e + (2p~ + )~)ev e

+2p, (V'4)' .

where ()i denotes the averages with a free-energy func-
tional (3), and ( = P/a is the correlation length of the
p fluctuations. Similarly, the structure function

G~~(~) —= (4'(~)4'(-q))
in the same approximation is

G~~(~) = (O(~)@(-q))o =—
2 cq4 + goq2 + ~2

where ()o denotes the averages with a &ee-energy func-
tional (2), with g2 ——0 and od4 ——ops ——0. Its Fourier
transform, which is the correlation function in this ap-
proximation, is [4]

G~~)(r) = (4(r)4(0))() ———e "~~ sin(kr), (10)

where

(—2 1

2

1go 2 1 u2 1 go—+ ——k
c 4c' 2 c 4c

A=
16' ck

The above form which displays the nonmonotic oscilla-
tory behavior characteristic of the complex fluid is valid
for go ( 4ca2. The wave vector k characterizes the oscil-
lations in the concentration of oil in the microemulsion,
or of one of the two regions of water in the sponge phase.
In contrast, Refs. [7,9] assume that c = 0 and go is posi-

tive, in which case G+@ decays monotonically.
The effect of the fluctuations of the order parameter

O(r) on G~~ can be calculated in an expansion in the
interaction T,„t. This leads to a series of Feynman dia-
grams with three different vertices and two different prop-
agators. To lowest order in the coupling constants pq, p2,
and p3, we obtain the diagrams shown in Fig. 1. Details
of the calculation of these diagrams are given in the Ap-

Y] Y3

Y3

FIG. 1. The seven different Feynman diagrams, which con-
tribute to the correlation function (p(k) p( —k)) to lowest non-
trivial order in the coupling constants pI, p2, and p3. Here,
a full line denotes the bare propagator G@@, a dashed line

the bare propagator Gpp Bars at the end of a line denote
derivatives.

In the absence of interaction between the two order pa-
rameter fields, (i.e., for pi ——p2 ——ps ——0), this function
is easily calculated in the Ornstein-Zernike approxima-
tion and reads

—1

G',',)(V) —= (p(q) p( —~))i = 2,
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pendix. The result of the calculation to second order in the couplings can be written

G„(q) = Gl',)(q) + Gl)(q)r(q(, k()Gl)( {12)

where

—I'(z, y) = (pi —p2z ) A (x, y) + 2'(pi —f2x ) (1 —y )A (z, y) —y=(x, y)]
20!

+p (2y [A+(x, y) —A (x, y)] + (1 —y ) A (x, y) —2y(1 —y ):-(x,y) + y ) {13)

with

1 x
Ay (z, y) = —2 arctan

4x 2

( 4z
+arctan

~ ~

+ n7r
l 4+ 4y' —z2 )

(14)

(4+ (z+ 2y)'i
4 "~4+( (15)

Here, n = 0 for 0 & x ( 4+ 4y2 and n = 1 for x )
4 + 4y . The dimensionless coupling constants are p~ ——

pi A(p /(4m. ()/n, p2 ——p2A( 2(p /(4x() /n, and ps ——

PsA( 2(pg(4vr()/n.
The asymptotic behavior of a typical vertex function

I'(q(, k() for 1 « k( and either q( « k( or q( » k( can
be derived straightforwardly from Eq. (13). For q( « k(,

——~ I'(q(, k() = —ps(q() arctan
~

—
~ (k()

t'q(l 4

2A 2 (2)
7 2+ ...' "("—+"-"(q()') (-q()-'

x arctan
]
—

~ (k() + O(k().
/q()
E2) (16)

A numerical comparison of this result with Eq. (13)
shows that I'(q(, k() is described very well by Eq. (16) for

q( & k(. Note that for q( much less than unity, I'(q(, k()
is almost constant at its peak q = 0 value, while for q( of
order unity or greater, it decreases as 1/q. For small q,

G~l) (q) is constant, so that the behavior of the scattering
intensity G~~ is, from Eq. (12), a decrease like 1/q.

In the opposite limit, q( » k( » 1,

the structure of the film as in the interpretation of Ref.
[6], but rather from the bulk density of amphiphile.

Two selected scattering intensities are shown in Figs.
2 and 3. In Fig. 2, the parameters are chosen such
as to make the scattering intensity show all essential
features observed in neutron scattering experiments on
the ternary system D20—C8D~S—n-alkyl polyglycol ether
(CsEs), measured in film contrast by Schubert and Strey
[13]. In Fig. 3, a difFerent choice yields a scattering in-
tensity which agrees quantitatively with that observed
in the quasibinary system Aerosol OT (AOT) —brine, as
given by Skouri et at [14]. T. he agreement with the ex-
periments could be improved further by attempting to
fit the data. It would be very interesting to examine the
bulk and film scattering from the same microemulsion
using for the bulk contrast the Teubner-Strey form, Eq.
(9) and for the film contrast our Eqs. (12) and (13). The
bulk contrast would yield the values of ( and k needed
for the film contrast. A good fit would confirm that the
clear physical connection between the amphiphiles and
the bulk regions they divide causes the bulk and film
scattering to be intimately related.
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ful discussions. M.S. is grateful to Herbert Wagner for
his hospitality at the Ludwig-Maximilians Universitat
Munchen, and to the Alexander von Humboldt-Stiftung
for financial support. This work was supported in part
by the Deutsche Forschungsgemeinschaft through Son-
derforschungsbereich 266, and by the National Science
Foundation under Grant No. DMR9220733.
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A numerical comparison of this result with Eq. (13)
shows that I'(q(, k() is described very well by Eq. {17)
for q( ) 3k(. As I'(q(, k() approaches a constant in this

limit, and Gp~ (q) falls as 1/q, we see from the first term
of Eq. (12) that the film scattering also falls as 1/q . This
is in agreement with experiment, but does not arise from

FIG. 2. Amphiphile-amphiphile scattering intensity S (un-
normalized) in the microemulsiou phase of the ternary system
Dqo-C8D18-CSE3. The full line is the theoretical result for
the dimeusionless quantity {n/( )G~~ calculated with param-
eters (~/( = 0.05, k( = 5.0, pi = 8.0, p2 ———0.10, aud

p3 ———0.12. Data points are taken from Ref. I13]. The ex-
perimental correlation length is assumed to be ( 100 A.
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and similarly

&'qq'Gqq(r) = 4 '~r 1 —(k()' ' —4(kg)' j4444

x sin(kr) —4k( (1 —(k() ) cos(kr)

2k
+4vrA —b(r). (A3)

I

25 50 ( 75 The evaluation of the integrals (Al) is then straightfor-
ward, and yields

&0'- Ig(q) = 4+2 (A (q(, k(), (A4)

ioo I2(q) = 4~2'( ') (1 —(k()'j A (q(, k()

&0-'-
—k5=-(q( k() (A5)

too &o' 10 10

FIG. 3. Amphiphile-amphiphiie scattering intensity S (un-
normalized) in the Lz phase of the system (AOT)-brine.
The full line is the theoretical result for the dimensionless
quantity (a/(k'~)G~~ calculated with parameters (~/( = 0.03,
k( = 12.0, pk ——0.0, p2 ———0.014, and ps ———0.021. Data
points are taken from Ref. [14] for ampbiphile volume frac-
tion p = 0.0675. (a) Linear axes. (b) Double-logarithmic
plot. The 1/q behavior for q ) 2k is clearly visible. The
experimental correlation length is assumed to be ( 1350 jk .

APPENDIX: FEYNMAN DIAGRAMS

Four different integrals have to be evaluated in order
to calculate the various Feynman diagrams:

qr(q) = f d'"

Ir(q) = f drr

14(q) =fd r

q4(q) = f d'r

iqr

e*~'
G@@~(r)

V'
G@~@~(r),

iq r &'Gee (&)

e'~' G (r)(k7''k7'G '
(F).

(Al)

With the correlation function G@@(r), Eq. (10), we easily
obtain«..() = ~„,G ()+-„~„G ()(o) (o) 2 0 (o)

e "~~ [1 —(k$) j sin(kr)
A

Is(q) = 4+A ( (+4(k() A+(q(, k()

+ 1 —(k() A (q(, k()
—2k( 1 —(k()' =-(q(, k0) (A6)

I4(q) = 4+A f ( 4(k() A—(qf, k()
+[1—(k() ] A (q(, k()
—2k([1 —(k() ]:-(q(,k() + 2(k() ),

k»(r4, rr) = qr f d 44 f d rrG44 (r4 —rr)

x+ ' G444(rl r2)+ ' G444'( 1 r2)
(o) I I 2 (o) I I

x G (r2 —r2). (A8)

In Fourier space, the same contribution reads

- 2

k'»(q) = qrG,')(q) fd'«*" qr,'Gqq(r) &,')(q),

(A9)

here ~ = ~~ —r2. Thus

(A10)

where the functions Ay(q(, k() and:-(q(, k() have been
defined in Eqs. (14) and (15).

To illustrate the calculation of the Feynman diagrams
shown in Fig. 1, we want to give here some details of the
calculation of one of the diagrams with two p3 vertices.
In position space, it is

—2k( car (k r) ) (A2) where Is(q) has been calculated above. The other Feyn-
man diagrams can be calculated along the same lines.
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