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Monte Carlo simulation of the unwinding of cholesteric twist
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(Received 15 July 1993)

The unwinding of cholesteric twist has been observed in liquid-crystalline DNA near the
cholesteric-hexagonal columnar phase boundary. Disclination lines are seen to bound regions of
different total twist. A Monte Carlo simulation, applying a molecular statistical model for the
cholesteric phase, is used to model this unwinding and the disclination lines. We find disclination
lines corresponding to edge y lines. We also find evidence of A~ pairs. These results are in agreement
with expectations from phenomenological Landau —de Gennes theory and homotopy. Furthermore,
the results obtained can be used to describe the terraced morphology observed in the DNA system.

PACS number(s): 61.30.Eb

I. INTRODUCTION

Cholesteric liquid crystals possess local nematic order
and a macroscopic-twist axis perpendicular to the molec-
ular long axis. This introduces a length scale for which
translational symmetry in one direction is replaced by
periodic symmetry (as indicated by the pitch p). The
less symmetric cholesteric therefore allows for structures
not found in ordinary nematics. As an example, con-
sider the Cano wedge, where linearly increasing cell thick-
ness introduces a discontinuous change in the observed
pitch while local nematic order is preserved. The dis-
continuity appears as disclination lines. Recently, Van
Winkle, Davidson, and Rill [1] observed a terraced mor-

phology imposed by pretransitional divergence of pitch as
the cholesteric approached the columnar phase in liquid—

crystalline deoxyribonucleic acid (lcDNA). The morphol-

ogy is similar to Grandjean planes seen in the Cano wedge
and seen by Kelker in a cholesteric-nematic mixture with
an imposed concentration gradient [2]. Unlike the rnix-
ture studied by Kelker, lcDNA is lyotropic and the twist
unwinds with increasing concentration of DNA in solu-
tion. It was conjectured that the terraces were uniform
planar textures of cholesteric DNA separated by discli-
nation lines of strength 2.

Using Monte Carlo (MC) methods, the terraces are
simulated. Energetically costly disclination lines are
found as expected from the phenomenological Landau-
de Gennes theory. An estimate of defect energies with
respect to the background is also obtained.

ics. The cholesteric phase of these DNA rods appears
in coexistence with the isotropic phase for DNA concen-
trations between 150 mgDNA/ml and 220 mg/ml. It is
fully cholesteric from 220 mg/ml to 400 mg/ml. Measure-
ments of the cholesteric pitch show that it increases from

p = 2.2 pm to 10 p, m as the concentration increases from
270 mg/ml to 400 mg/ml [1]. At higher concentrations a
hexagonal-columnar phase forms [3]. While morphologi-
cal changes indicative of structural rearrangements occur
at higher concentrations, the nature of the phase diagram
is unclear.

Near the cholesteric-columnar phase boundary, planar
cholesteric lcDNA textures in the presence of a concentra-
tion gradient exhibits unwinding of the twist wave vector
q = —.This behavior has been observed using optical

p
'

microscopy in controlled drying experiments [1]. A DNA
sample is placed between a coverslip and a slide. The
system is then sealed except for a small aperture through
which water is allowed to evaporate. The sample contin-
ues to dry, allowing formation of the high density phase.
The unwinding of a cholesteric twist, for concentrations
less than 400 mg/ml, is accompanied by the formation of
interfaces which translate in the direction of decreasing

Vl

II. EXPERIMEN TAL OBSERVATION

In aqueous solutions 50 nm long DNA fragments form
lyotropic liquid crystals (lcDNA). This length is longer
than typical thermotropic liquid crystals ( 2.5 nrn) and
shorter than the Tobacco Mosaic virus (TMV) (=300
nm'), which also forms a cholesteric phase in aqueous solu-

tion. The primarily electrostatic intermolecular interac-
tion is diA'erent from the largely hard rod interactions ex-
hibited by TMV and the coupled dipolar —van der Waals
interaction which governs the behavior of thermotrop-

FIG. 1. Schematic of terraced morphology for an lcDNA
sample under crossed polarizer and analyzer showing nearly

evenly spaced regions of unifolm twist.
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(discussed below) is the formation of a single disclination
line of half-integer strength between a region of mar rota-
tions and a region of (m —1)7r rotations. A succession of
these line defects should arise as the cholesteric-columnar
phase boundary is approached.

An estimate for the energy of disclination lines in ne-

matics and cholesterics can be obtained by minimizing
the distortion free energy [8, 9]. In the one constant ap-
proximation, the total distortion energy per unit length
of line, ignoring core contributions, follows from integrat-
ing the local distortion energy,
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FIG. 2. Schematic representation of unwinding twist lead-
ing to the cholesteric to columnar transition. A KF~—
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where n is the strength of the disclination, p is the ra-
dial distance from the line, and ~ is an average elastic
constant for distortion free energy. Thus, integrating
over polar coordinates, the total distortion &ee energy
between a core limit a and some distance p away from
the disclination is

DNA concentration. The translational velocity of the in-
terface motion is extremely small with an upper bound
of approximately 0.1 pm/s. It is therefore appropriate to
treat the interfaces as quasiequilibrium structures. Op-
tically, these interfaces appear as dark lines separating
uniform bire&ingent regions. Each uniform domain ex-
hibits distinct, concentration dependent shades of blue
when observed between crossed polarizer and analyzer.
Figure 1 shows a schematic illustrating these distinct re-
gions. The schematic was obtained by scanning a photo-
graph. The photograph itself is not shown since journal
reproduction of the photo does not clearly display the
boundaries between terraces that is evident in the orig-
inal photomicrograph. Figure 2 is a representation of
twist unwinding near the cholesteric-columnar boundary.

~2 ln (3)

By definition, this is also the line tension of the discli-
nation. Using Eq. (3), with distances between defects p
on the order of 10 a, and n =

2 disclinations, a rough
estimate for the energy of defects in lcDNA terraces is
8]c.

A calculation for cholesterics that assumes small differ-
ences between elastic constants (a weakly "anisotropic"
material) gives equivalent results to leading order with I-

redefined asIII. CHOLESTERIC PHENOMENOLOG Y

r = [(Kgg + K33)K2z]', (4)A cholesteric liquid crystal is characterized by a twist.
In the presence of physical boundaries, defects in uniform
twist occur. The Landau —de Gennes continuum theory
provides a basis for understanding cholesterics with de-
fects.

Taking the z axis as the twist axis, the angular depen-
dence of the molecular orientation for planar textures can
be modeled as

where Eqq, %22, and %33 are splay, twist, and bend elas-
tic constants, respectively [10]. This introduces a correc-
tion that depends on the intrinsic twist qo of the form

I" „=)AC(qp) ln(2qpa) .

The difference between splay and bend elastic constants
is introduced through C(qp) with C(qp) given by

P = qz + Pp.

C(qp) = —( ) [13 —2cos(4qph)),
2 16 Kgg + K33Since the DNA binds strongly to glass surfaces, Pp is in

general fixed, therefore the domains are characterized by
quantized jumps in q (Fig. 2). That q is quantized for
fixed boundaries can be shown by expressing the Frank
free energy as a function of the polar and azimuthal an-
gles. The associated Euler-Lagrange equations can be
integrated numerically for planar textures to yield quan-
tized wave number [4].

Since the terraces are stable over long times, they
appear to be in equilibrium. Assuming that they are
in equilibrium, homotopy argues that, in general, only
disclination lines and point defects are stable [5—7]. In
the absence of external fields, a simple argument offered
by de Gennes shows that sheet disclinations and Bloch-
like walls are unstable [8]. Given strong anchoring of the
DNA at the slide and coverslip, the quantized wave num-
ber can only change discontinuously. A possibility that
is consistent with homotopy and energy considerations

where h, is the height of the line along the cholesteric
axis. For weak anisotropy, C(q) 10 s. Then for a pitch
on the order of 10 a, which is about the length scale in
cholesteric DNA, the correction to the defect energy is
less than 0.ltd.

In cholesterics, the simplest disclinations can be
thought of as rotations of the director about one of three
mutually perpendicular axes. A 2nvr rotation (where n is
an integer or half-integer) of the director about an axis
parallel to the twist axis will generate a y line. This rota-
tion is identical to a dislocation given by Burger's vector
of magnitude np, where p is the pitch, along the twist
axis. Assuming the local director of the undistorted ma-
terial is perpendicular to the twist axis, a 2nvr rotation
about an axis parallel to the director will generate a A

line, while a 2nvr rotation about an axis perpendicular to

MONTE CARLO SIMULATION OF THE UNWINDING OF. . .
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the director will generate a 7 line.
For cholesterics, integer y lines are not stable since

these can be continuously transformed into structures
without a core energy by some type of escape of the
orientation field (e.g. , into the third dimension). Un-
like integer y lines, half-integer y lines cannot be trans-
formed into structures without singular core while retain-
ing the same strength. However, they can dissociate into
Ar pairs. In undissociated y lines the molecules remain
primarily perpendicular to the local twist axis. Integer
lines have been observed, optically in the Cano wedge as
thick threads. In the lcDNA terraces, only thin threads
(characteristic of half-integer lines) were observed.

IV. SIMULATION

Using Eq. (7) to model the interaction yields a
cholesteric with uniform twist. Since J and K are effec-
tively constant this expression did not allow for the pitch
to vary with the appropriate thermodynamic variable.
Tlnis van der Meer and Vertogen [15] included fourth
order terms from symmetry considerations

—1(a, . a~) + M(a, . a~) [(a, x a~) . u ~].

Experimental evidence requires that I J and that
M K while series convergence requires I &( J and
M « K. Thus those parameters must be understood as
purely phenomenological in order to use this fourth order
interaction. Minimizing the average free energy density
for this interaction, the helical wave number q can be
shown to be

A. Microscopic model for cholesteric
1 (7K —3M) —4M+2

(r) (14J + 12L) + 161x (1O)

V = —J(a, a~) —K(a, a )[(a x a ) u ]. (7)

The vector a, represents the long axis of the rod and
u„q is the unit vector directed from the center of mass of
rod r to rod t [15]. The values of J and K depend on
the details of the interaction. This model was originally
derived for thermotropics. Models for lyotropic chiral
macromolecules have been derived using dispersion forces
by Osipov and others [18—21]. These are equivalent to
the interaction of Eq. (7) if shape effects and solvent
properties are ignored.

The term involving J reduces the free energy by align-
ing the molecules. The term involving K reduces the free

energy when there is a twist perpendicular to u„&between
neighboring molecules. Minimizing the average free en-

ergy density the preferred helical wave number q =-
po

where po is the preferred pitch, is found to be

K
2J(r) ' {8)

where (r) is the average center of mass separation. It,

should be noted that Eq. (7) leads to a one constant
Frank elastic energy when solved in the mean field. In
order to obtain differences between twist, bend, and
splay elastic constants, additional terms (discussed be-
low) must be included.

The basic physics governing the interactions between
rodlike DNA molecules in solution with 1:1electrolyte is
best described in terms of an ionic double layer theory as
discussed for DNA by Schellman and Stitger [11,12]. A
discussion of some of the complications in understanding
the interaction leading to twist and also to a change in
twist with concentration is included in a previous paper
[13]. For the purposes of these simulations, the details of
the primarily screened Coulomb interaction are ignored
and a nearest neighbor model expressing both the ne-
matic alignment and the cholesteric twist is used. In a
series of papers, van der Meer et al. [14-16] general-
ized a model by Goosens [17] for the cholesteric phase.
Using a multipole expansion followed by second order
perturbation theory they derived an interaction that is

thermodynamically equivalent to

where x = ~~&'~~ is the ratio of the thermally averaged
(&2 )

fourth and second Legendre polynomials. The introduc-
tion of these higher order terms leads to differences be-
tween twist, bend, and splay elastic constants through
quantities that depend on the relative values of the in-

teraction constants as well as I&'I [15].(P2)

B. Monte Carlo

A number of researchers have used Monte Carlo tech-
niques to study liquid-crystalline systems. Stroobants et
at. have used hard core repulsion among spherocylinders
to obtain nematic, smectic, hexagonal, and crystalline
phases [22]. Numerous simulations using the Lebwohl-
Lasher interaction have been conducted to study the
isotropic to nematic transition [23]. Recently, Monte
Carlo simulations have been used to study disclination
cores in hard rods [24]. These simulations have verified
earlier mean-field results [25] as well as indicated the ex-
istence of a microscopically escaped structure.

A review of Monte Carlo methods can be found in a col-
lection of books and articles by Binder [26]. The topic of
Monte E,arlo simulations as applied to liquid-crystalline
systems has been discussed by Zannoiu [27] and Frenkel
[28].

The results reported here were obtained using simu-
lated annealing. In addition to the standard Metropolis
algorithm and a uniform random number generator, a
cooling parameter was used to accelerate convergence. A

desrription of this procedure can be found in a series of
papers by Kirkpatrick [29]. A series of Monte Carlo sim-
ulations were performed to model defects in cholesterics
using modifications of Eq. (7). The use of simulated an-
nealing in general improved convergence times and led
to well defined cholesteric structures.

C. Calculation

The MC simulation employed a two dimensional lattice
of rods with centers of mass fixed at the I, x I lattice
sites to represent a cholesteric liquid crystal. The axis
parallel to the twist axis was chosen as the z axis while
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an axis perpendicular to the twist was chosen as the z
axis. Experimentally, the molecular alignment is planar
at the glass surfaces and therefore perpendicular to the z
axis. For this geometry, the interaction [Eq. (7)] can be
cast in terms of a single angle bP;z ——!t!;—Pz and takes
the form

E;~ = —. Jcos (b!t!;$)+ K cos(b!t;~) sin(bP;~)u;z,

Since strong anchoring of the DNA on the glass is as-
sumed [30], rod orientations at upper and lower bound-
aries were usually fixed to P(z = 0) = P(z = L,) = 0.

For this interaction, since the coeflicients are treated
phenomenologically, the ratio R = ~ is the only mean-
ingful parameter. Hence the interaction was recast in
terms of R as

= —icos (b!t!,~) + cos(bP;~) sin(b!t!;~)u;~, .

The range of values for R is lattice size dependent. The
interaction ~ used for the simulation was in general nor-
malized by the number of nearest neighbors used. Phys-
ically, the value chosen for R sets the preferred twist be-
tween neighboring molecules. The preferred twist is that
bP;~ = bg„,which is found by minimizing the orienta-
tional free energy.

The cooling parameter was varied between upper
bounds of 100, 10, and 1 and lower bounds of 0.1, 0.001,
1 x 10, and 1 x 10 . The &eezing value of the cooling
parameter was found to be 0.017+0.005. In most simula-
tions the cooling parameter was lowered exponentially as
a function of the number of iterations &om 1.0 to 0.001.
The number of lattice configurations (passes) attempted
for each value of the cooling parameter varied between
500 and 1000. Sampling was done every five passes and
a correlation function comparing current values of P on
the lattice with those of the previous sampling was used
to monitor statistical independence of samples [33).

Simulations were conducted on IBM and Silicon
Graphics Personal Iris workstation computers using 20 x
20, 20 x 40, 50 x 50, 50 x 100, and 100 x 100 site lattices.
The configuration space was viewed using Personal Iris
graphics routines. A dithering algorithm which uses lin-
ear interpolation between lattice sites was used to estab-
lish a two-tone shaded image of the configuration space.
Orientation parallel to the x axis was assigned the color
black while orientation perpendicular to the plane of the
lattice was assigned the color red. The resulting image
was used to acertain the type of defects formed. Figure 3
shows a black and white postscript rendition of one such
image, where red has been replaced with white.

D. Results

Various simulations were attempted to model the ter-
raced structure shown in Fig. 1. The disclination lines
seen in the experiment appear to be regularly spaced and
of strength 2. The initial goal of the simulation was to
develop a better understanding of the microscopic inter-
action giving rise to the unwinding of twist prior to the
formation of the columnar phase and to model this un-
winding via a balance of the intermolecular forces and
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FIG. 3. An m = 4 to m = 2 unwinding showing two edge
y line disclinations on a 50 x 100 lattice. The image is a
postscript rendition of a dithered color image generated using
Silicon Graphics Personal Iris graphics routines.

the boundary conditions. It was found that building a
simple spatial gradient into the phenomenological energy
was not sufhcient to accurately describe the experimen-
tally observed stability of defect position and spacing.
Thus the goals for the project evolved into developing
a model which yielded, for fixed boundary conditions,
spatially separated, positionally stable disclination lines
between cholesteric regions of different total pitch. With
this evolution of goals, it was found that the functional
form used for the variable R determined the important
physics of the problem. Hence the results are separated
into three sections based on the choice of this functional
form.

Considering the lattice sizes used, finite size effects may
be important. However, the observed textures were in
qualitative agreement with expectations from the phe-
nomenological Landau —de Gennes theory and are con-
sistent with experimental observations. Thus finite size
effects, if significant, did not give rise to unphysical re-
sults.

Constant R

The Monte Carlo algorithm was first employed using
the interaction from Eq. (12), with constant 8 through-
out the lattice. Fully periodic boundary conditions (in
both x and z) were used to obtain a uniform constant
twist throughout the lattice. The observed twist was de-
terrnined both by the size of the lattice and by the value
of R. Periodic boundary conditions in z are equivalent to
putting the lattice on a torus and thus require that the
molecular orientation twists through a quantized num-
ber of m rotations &om z = 0 to z = L . The choice of
R selects the relative azimuthal orientation difference be-
tween nearest neighbors in the z direction, bP„,for which
the orientational energy is a minimum. Thus the number
of vr rotations of the director which occur from z = 0 to
z = L, is the integer closest to L, '. This is the mani-
festation of Eq. (1) representing the quantization of the
twist wave vector q =

& in the z direction.
z

Since the orientation of DNA fragments on glass sur-
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4m
I»

Lattice size

20 x 40
50 x 100
100 x 100

Mean-field R

0.79
1.99
3.98

Simulation R

& 1.0
1.5 & R & 2.125

3.75 & R & 4.125

Simulations on a 50 x 50 lattice with AR = 0.125 was
used to obtain an estimate of valid R values for differ-
ent twist. These values were compared with mean-field
results. In the table below, n equals the number of ~
rotations.

Mean-field R

1.59
1.99
2.65
3.98

Simulation R

1.375 & R & 1.625
1.5 & R & 2.125
2.0 & R & 2.875
2.75 & R ( 5.25

A few simulations were performed with other bound-
ary values (with the difference in angle between top and
bottom surfaces Po as large as 2) to check for stability
and edge effects. These simulations resulted in a total
twist of P = mar + Po, exactly the form of Eq. (1).

The first attempts to simulate stable disclination struc-
tures were to fix the molecular orientations at the x = 0
and the x = L boundaries with diferent twist wave vec-

tors while keeping R constant. For example, q =
&

was
z

chosen at x = 0 while q =
& was chosen at x = L . The

X

resulting simulations yielded 4vr or 57r rotations (depend-
ing on the choice of R) everywhere except very close to
the x = 0 or x = L boundaries, where a disclination was

pinned. To test further whether boundary conditions or
the intermolecular interaction dominated the morphol-

ogy, the boundaries were set to q = m7t rotations while

an A was chosen which minimized the free energy for., as
an example, (m, —2)n rotations. Distortions in a uniform
twist structure were observed only very close to the x

faces is fixed by the anchoring conditions, a more realis-
tic simulation would fix the top and bottom boundaries.
The orientation was fixed at z = 0 and at z = L, (z
boundaries) to P = 0. Periodic boundary conditions were
maintained in the x direction. Again, the total change
in orientation along the z direction was P = qz with

q = &, but the orientation everywhere was determined
z

by the boundary conditions.
Using these fixed boundaries, R was parametrized to

find the range over which a particular total twist was
stable. For example, on a 50 x 50 lattice a choice of
1.375 ( R ( 1.625 yielded a structure with a 5' rota-
tion of the molecular long axis. R determines the ener-
getically most favorable angle between nearest neighbors
independent of lattice size. Thus for simulations on dif-
ferent lattices, R must scale with the inverse lattice size
to obtain the same number of rotations. This scaling is
observed. For 50 x L and 100 x L lattices the range
of values for R and corresponding twists were explored
using a a step size of AR = 0.125. A comparison of R
as obtained from the mean-field result of Eq. (8) and
those obtained for simulations using fixed z boundaries
are shown for different lattice sizes for the case of q =

&
is as follows.

boundaries, while in the bulk (m —2)vr rotations formed.
This implied that (i) the choice of R is the primary de-
terminant of the resulting twist and (ii) the penetration
depth associated with surface alignment was at most a
few lattice sites for this nearest neighbor interaction. It
was therefore expected that if B were allowed to vary
with position, simulations would yield uniform twist re-

gions seperated by disclination lines.

2. Linear' R

In order to simulate the physical terraced system in
which there exists a horizontal concentration gradient, a
corresponding gradient in R was imposed,

The boundary values of R(z = 0) and R(2: = L ) were
chosen such that different twist wave vectors q were pre-
ferred at x = 0 and x = L, respectively. For example,
R could be chosen such that the distortion free energy
would be mimimized for mm rotations at x = 0 and for

(m —l)m rotations at z = L . Correspondingly, the x
boundaries were fixed with the appropriate q. As before,
the z boundaries were fixed to P = 0.

Disclination lines away from the x boundaries were ob-
tained using the basic interaction of Eq. (12) and the
linear variation in B. However, these defects were found
to be mobile in the sense that multiple simulations re-
sulted in a distribution of locations for the disclination
lines. This distribution was quantified by measuring the
standard deviations of the x location of the disclination
lines to be as large as 15% of L . Imposition of difFerent

twists at the boundaries and a linear variation of R was

therefore insufhcient to model spatially stable defects.
Since a disclination implies local symmetry breaking

of the uniform phase, various attempts were made to re-
strict defect mobility by imposing a symmetry breaking
term in the interaction. The fourth order terms of Eq.
(9) were added to Eq. (12) since their presence would

lead to a competition between P2 and P4, the second
and fourth order, order parameters. Neither the stability
of the defects nor their structure as significantly affected.
Next, the fourth order terms were replaced by a molecular
field of the form (P4(6$;~)) (not including nearest neigh-

bors). The inclusion of this term simulates a competition
between order parameters as well as a net contribution
from the remainder of the lattice. Again, no significant
changes were found. These simulations revealed that the
x dependence of the energy could not be accounted for

by competition between order parameters. A more coui-
plicated spatial dependence of R was therefore necessary
to account for the changes in the strain energy due to
the concentration gradient. Further, while fourth order
terms are necessary to account for differences between
Frank elastic constants, the one constant approximation
is implicitly assumed in using Eq. (7). These results in-

dicated that even if changes in Kqi and K22, which can
be expected far from the transition, were accounted for iii
the simulation, the defect structure and stability would
not be substantially altered.
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3. Series R

Physically, although the concentration is a linear func-
tion of x the orientational &ee energy is not. Within a
terrace, corresponding to mar rotations, there will exist
one x location where biz(x) = bg;~, which satisfies mar

rotations. For both smaller and larger x SPY, will not
equal 6P;~ and the orientational free energy will not be
an absolute minimum. Additionally, the energy of an mar

region should increase as the (m —1)x boundary is ap-
proached. In Fig. 1, as an example, this would mean that
the energy should increase as region v is approached &om
region iv. This corresponds to the additional strain en-

ergy due to strong anchoring at the boundaries. As a re-
sult, the defect energy is given by the difference between
the relative maximum and minimum in the strain energy
near the defect. The defect position is therefore selected
by the location of these extrema in the sample. In the
simulation, the use of 6xed boundary conditions alone
does not de6ne the locations of these extrema. A similar
result is seen for the Ising model with an interface. The
interface is found to be unstable unless a surface tension
term is included in the interaction [31]. While a surface
tension is not an appropriate description of the bound-
ary between two regions of different twist, an analogous
behavior appears in the spatial dependence of the strain
energy. An appropriate term which casts the line tension
of the disclination in terms of the strain energy between
two neighboring regions of different twist is therefore in-
troduced.

In order to account for the additional contribution from
the strain, 8 must have the physics of the interfaces built
into its spatial dependence. We do not attempt to de-
rive the functional form for the strain from a microscopic
perspective. Rather, we employ an ansatz that provides
spatially stable defects for the purposes of the simulation.
The following form uses a hyperbolic tangent in analogy
with Freedericks interfaces [32]:

R = R(0) + ) (A;{1+tanh[C(z) —C;]}

Average Energy in X
I I I I I I I

-4.00—

-4.50—
A

-5.00
LU
v -550
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0 0
0 0 0

0

0
0

0 0
0

0

-6.50 I I I I I
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0.40
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I
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ll

ll
ll
l1

lt
I ~

I ~

~t
1

-0.05 I I I I I I I I I

0 10 20 30 40 50 60 70 80 90 100
x [lattice site]

in Fig. 3 with A, = 0.375. The series is truncated to two
terms.

A few simulations in which the molecular orientations
were allowed to vary in three dimensions were also con-
ducted. These showed that the influence of boundary
conditions on the selection of twist persisted over a length
varying from 5 to 15 lattice sites &om the sides in 50 x 50
and 50 x 100 site simulations. In these systems, for
distances larger than this length from the boundary, a

—B;+,{1+tanh[C(z) —(C, + &)]}), (14)
1-E(x)/E(x)

Defect Energy
(c)

where the quantity A, should be approximately as large
as the energy of the ith defect, B,+z is an indication of
the maximum strain contribution in the (i + 1)th region

(B;+t ( A;), [C(x) —C;] selects the location of the de-

fect and the associated concentration, and b indicates the
width of the minimum established by the two hyperbolic
tangents of Eq. (14). Figure 4(a) shows the energy as a
function of position in x averaged over z. We note that
other forms for the strain contribution are certainly pos-
sible, so long as the general behavior is preserved. The
time dependence as seen in the experiments on slowly
drying samples can also be included in this model by let-
ting C(x) m C(x, t) Defects obtain. ed from simulations
using Eq. (13) provided an estimate for A; in Eq. (14).
A choice of B2 —— 3' and B3 —— 3' + 0.1 was used to ob-
tain the conformation shown in Fig. 3. In this manner,
the defect's position is stabilized and the DNA terraces
are reproduced. An m = 4 to m = 2 unwinding is shown

0.30-
0.25-
0.20-
0.15-

x tcoiU~&s) Sp gp

FIG. 4. (a) Energy as a function of position in x aver-
aged over all rows. (b) Energy as a function of position
in x showing two defects on a 50 x 100 lattice using series
R(A, = 0.375, B2 = ~~, B3 ——~~ + 0.1). (c) Energy as a
function of position in x and z [same parameters as in (b)].
The average energy is calculated using a 1000 site sublattice
not including the defects.
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cholesteric conformation was not obtained. However, for
the smaller systems mentioned (20 x I ), a well defined
cholesteric was obtained. These simulations showed that
alignment out of the cholesteric plane occurs near the de-
fect core. While in some cases this out of plane alignment
was consistent with y lines [Fig. 5(a)], in other instances
the out of plane alignment indicated Ar pairs [Figs. 5(b)
and 5(c)].

Simulated defects

—
I I H .'' y

Y

I— I
— + I—

.
~. &

I—

Disclination lines were obtained in all of the simula-
tions mentioned. In order to obtain the size, and energy
cost associated with these structures, the energy devia-
tions from the background was used. The structure of
the defect was obtained using the dithered imaging men-
tioned in Sec. IV C, as well as the values of P, .

A defect width was de6ned for simulations involving
Eq. (14). This was established as the number of lattice
sites in x over which the energy per lattice site deviates
from the background [Fig. 4(b)]. This deviation was cal-

culated by dividing ~ for the row containing the defect

by ~i*) [where E(x)/K is an average over a sublattice
that does not contain the defects] and subtracting the
result from unity. Namely,

(E(*)~ E(~)
(15)

Figure 4(b) shows the energy per site, scaled according to
Eq. (15), for a lattice row in a 50 x 100 lattice containing
two defects. Figure 4(c) shows defect energies in a three
dimensional format.

For 20 x 20 and 20 x 40 site simulations, defect widths
were observed between three and four lattice sites, while
for 50 x 50 and 50 x 100 site systems widths were ob-
served between Ave and ten sites. By varying B as in Eq.
(14), the increase in energy for the presence of a single
defect was found to be between 20% and 40% above the
background.

In order to compare the defect energy obtained from
the MC simulations to that obtained from the continuum
theory, the twist elastic constants must be resolved in
terms of K and R. It has been shown that the interaction
of Eq. (7), in the mean-field approach, is equivalent to the
Frank elastic energy with a one-constant approximation
[1.5). The elastic constants are given by

1 /'N
K$$ —K22 —K33 —

~ (P2)
2 qV

dr, r „J(r,,),
(16)

where N is the number of molecules in volume V. If K is
assumed to be a constant, then J = KB(r,~ ). Further,
away from the defect core R(r;~ ) changes weakly with
r,~ . Therefore, as a erst approximation we take J to
be a constant and evaluate the integral. Identifying K of
Eq. (2) with the elastic constants and using Eq. (15) to
obtain the defect energy in terms of K leads to a form
for the defect energy per unit length in terms of z,

E(z)
3'R(P2) 2 K

/'E(2:) i
I max

(b)

I I I

I— I— I— I—

FIG. 5. (a) An edge y line disciination showing the pres-
ence of an extra half-pitch region in a perfect cholesteric ma-
terial. (h) A A r+ disclination pair. (c) A A+r pair.

where 8( ~i*) ) is the peak value of the defect energy.

The resulting energy goes as & K for (Pq)2 = 0.25. This
means that in general, the energy is considerably less
than the continuum result for most thermotropics as well
as lyotropics. The discrepancy results from the fact that
the continuum theory assumes the defect interaction to
be in6nite in range while the MC simulation considers
only nearest neighbors.

The disclination lines obtained from this model imply
the collapse of a single half-pitch. These defects corre-
spond to edge y line disclinations [Fig. 5(a)] [34, 8]. In
the Grandjean-Cano system, where the twist is required
to change in a direction perpendicular to the twist axis
due to a continuous change in cell thickness, the edge

y line is a likely structure [34, 8]. In the physical sys-
tem, y(2) lines may dissociate into Ar disclination pairs.
However, this need not lead to a reduction in the defect
energy, since the presence of a v line introduces a finite
core contribution. Results from simulations where both
azimuthal and polar angles were varied imply that, for
this model, AT pairs are also possible, since orientation
out of the cholesteric plane in a manner consistent with
Aw pairs is observed. The extent of out of plane alignment
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appears to depend on initial conditions. While in some
cases y lines are observed, in others the results indicate

r+ [Fig. 5(b)] or A+a disclination pairs [Fig. 5(c)]
[34,8]. Our results do not indicate a substantial reduction
in the energy for out of plane alignment. However, since
these structures were obtained only with small system
sizes (20 x 20 and 20 x 40 lattices), where the coarseness
of the lattice is of concern, conclusive remarks cannot be
made at this point.

In conclusion, using the nearest neighbor interaction
of Eq. (7) to model cholesteric defects, the disclination
lines observed in lcDNA have been reproduced. We 6nd
that for lcDNA, the defect position is stabilized by the
existence of a local minimum between strain energy barri-
ers. The defects obtained from this model are y(2) lines,

implying that in the physical system a single half-pitch
region collapses. Allowing escape along the twist axis re-
veals that for small lattices (20 x I, ), Ar pairs are also
possible. The simulations which yielded stable structures
did not depend on the details of the lcDNA interaction.
These results therefore also con6rm previous interpreta-
tions of the structure of cholesterics in the Cano wedge
and in cholesteric-nematic mixtures.

ACKNOW'LEDC MENTS

We are indebted to J. Vinals and G. Frichter for advice
on Monte Carlo simulations and A. Dalke for writing the
Personal Iris graphics routine.

[1] D. H. Van Winkle, M. W. Davidson, and R. L. Rill, J.
Chem. Phys. 97, 5641 (1992).

[2] H. Kelker, Mol. Cryst. Liq. Cryst. 15, 347 (1972).
[3] F. Livolant, A. M. Levelut, J. Doucet, and J. P. Benoit,

Nature 339, 724 (1989).
[4] D. W. Berreman and W. R. Heffner, J. Appl. Phys. 52,

3032 (1981).
[5] G. Toulouse and M. Kleman, J. Phys. Lett. B 37, L149

(1976).
[6] G. E. Volovik and V. P. Mineev, Zh. Eksp. Teor. Fiz. 72,

2256 (1977) [Sov. Phys. JETP 45, 1186 (1977)].
[7] L. Michel, Rev. Mod. Phys. 51, 591 (1980).
[8] P. G. de Gennes, The Physics of Liquid Crystals (Oxford

Press, London 1974).
[9] P. G. de Gennes, C. R. Acad. Sci. 266, 571 (1968).

[10] C. Caroli and E. Dubois-Violette, Solid State Commun.
7, 799 (1969).

[11] J. A. Schellman and D. Stitger, Biopolymers 16, 1415
(1977).

[12] D. Stitger, Biopolymers 16, 1435 (1977).
[13] D. H. Van Winkle, M. W. Davidson, W. X. Chen, and

R. L. Rill, Macromolecules 23, 4140 (1990).
[14] B. W. van der Meer, G. Vertogen, A. J. Dekker, and J.

G. J. Ypma, J. Chem. Phys. 65, 3935 (1976).
[15] B. W. van der Meer and G. Vertogen, in The Molecular

Physics of Liquid Crystals, edited by G. R. Luckhurst,
and G. W. Gray (Academic, New York, 1979).

[16] B. W. van der Meer and G. Vertogen, Phys. Lett. 59A,
279 (1976).

[17] W. J. A. Goosens, Mol. Cryst. Liq. Cryst. 12, 237 (1970).
[18] M. A. Osipov, Chem. Phys. 96, 259 (1985).
[19] M. A. Osipov, Nuovo Cimento D 10, 1249 (1988).

[20] T. V. Samulski and E. T. Samulski, J. Chem. Phys. 67,
824 (1977).

[21] H. Imura and K. Okano, J. Chem. Phys. 58, 2763 (1973).
[22] A. Stroobants, H. N. W. Lekkerkerker, and D. Frenkel,

Phys. Rev. A 36, 2929 (1987).
[23] For instance, see C. Chicolli, P. Pasini, and C. Zannoni,

Physica A 148, 298 (1988); S. Romano, Nuovo Cimento
D 7, 717 (1986); C. Zannoni, J. Chem. Phys. 84, 424
(1986); U. Fabri and C. Zannoni, Mol. Phys. 58, 763
(1986).

[24] S. D. Hudson and R. G. Larson, Phys. Rev. Lett. 70,
2916 (1993).

[25] N. Schopohl and T. J. Sluckin, Phys. Rev. Lett. 59, 2582
(1987).

[26] Monte Carlo Methods in Statistical Physics, edited by K.
Binder (Springer-Verlag, Berlin, 1986).

[27] C. Zannoni, in The Molecular Physics of Liquid Crystals,
edited by G. R. Luckhurst, and G. W. Gray (Academic,
New York, 1979).

[28] D. Frenkel, Mol. Phys. 60, 1 (1987).
[29] S. Kirkpatrick, J. Stat. Phys. 34, 975 (1984).
[30] A. Klug, L. C. Lutter, and D. Rhodes, Cold Spring Har-

bor Symp. /nant. Biol. 47, 285 (1983).
[31] D. Jasnow, Rep. Prog. Phys. 47, 1435 (1983).
[32] F. Sagues and M. San Miguel, Phys. Rev. A 39, 6567

(1989).
[33] D. Chandler, Modern Statistical Mechanics (Oxford Uni-

versity Press, Oxford, 1987).
[34] M. Kleman, in Liquid Crystals and Plastic Crystals VoL1,

edited by G. W. Gray and P. A. Windsor (Hortwood,
Chichester, 1974).






