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The quantum Liouville equation is solved in the Wigner representation using generalized Monte Carlo
techniques. For small increments of time, the solution is represented as a sequential classical evolution
in phase space followed by a quantum “jump” distribution in momentum space, with the latter simulated
via a stochastic method. Extending the work initiated by John and Remler [Ann Phys. (N.Y.) 180, 152
(1987)] the technique is developed and validated for higher dimensions. Also, an alternative algorithm is
developed and applied to study motion of a quantum system in an anharmonic quartic potential well,

with significantly improved results.

PACS number(s): 05.30.—d

I. INTRODUCTION

The density operator formalism of quantum dynamics
[1] provides a suitable framework for the study of ther-
modynamical systems. The dynamical equation for the
density operator, given by the quantum Liouville equa-
tion, translates into ordinary functions and derivatives of
phase space coordinates in the Wigner representation
[2-5]. In a series expansion, the equation can be shown
to reduce to the classical Liouville equation and is there-
fore a very suitable representation for revealing purely
quantum effects. Also, the more familiar equations ap-
pearing in nuclear scattering theory, such as the hydro-
dynamical equations [3,6] and the Boltzmann-Vlasov
equations [7] may be extracted from the Wigner formal-
ism under certain approximations [3].

In this paper, Monte Carlo techniques are applied to
solve the quantum Liouville equation in the Wigner rep-
resentation [9,10]. The equation is in a noncovariant
form, and applies to single-particle dynamics only. The
time evolution is treated as a stochastic process [5,8—-10].
(Does nature indeed play dice?) To simplify the problem
only first-order quantum effects will be considered, and in
this approximation the solution is applicable to quasiclas-
sical systems [9-12] that exhibit smoothly varying
momentum distribution typical of highly mixed thermo-
dynamical systems. In general, however, first-order
quantum correction may not be sufficient, and in some in-
stances it even requires the entire series summation [13].
For scattering of a highly collimated beam, for example,
higher-order terms become increasingly significant.

A generalized Monte Carlo method was introduced in
Refs. [9,10]. This paper extends the work to two and
three dimensions, and an alternative algorithm is
developed which gives improved results for the applica-
tion considered.

In Sec. IT quantum dynamics in the Wigner representa-
tion is reviewed, and the stochastic techniques developed.
In Sec. III the technique is validated independently of the
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classical motion by comparison with analytic solutions in
the one-, two-, and three-dimensional momentum space.
In Sec. IV an application to bound-state motion within an
anharmonic quartic potential in two-dimensional phase
space is considered and the algorithm discussed. In Sec.
V results and discussions are presented.

II. THEORY

A. Quantum Liouville equation (QLE)

The density operator p of a quantum thermodynamical
system is given by

p=3 Pyt YUl , (1)

where P,, is the probability for an ensemble element to be
in the eigenstate |¢,, ). The time evolution of p is the
quantum Liouville equation,

B _a A
i (A,p], )

where H is the Hamiltonian (%=1) and has the formal
solution

plty=e ~Hip0)e A 3)

The components of A in general being noncommuta-
tive, this form is difficult to solve in practice. An intui-
tively appealing form is obtained by taking the Wigner
transform of the QLE, which in the classical limit
reduces to the classical Liouville equation.

B. Wigner representation of the QLE

A few basic properties of the Wigner transform are
now reviewed. The Wigner transform of an operator O is
defined by

OW(x,p,t)=f_wwdye""'y(x——%yla(t)lx+%y) , (4)
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which is a simultaneous representation in both position
coordinates x and momentum coordinates p. The
Wigner transform for the density operator g is

fW(x,p,t)ZfaC dye®Y(x—1lylp(r)[x+1y) | (5)

and is called the Wigner distribution function [generally
defined with a normalization factor (27) *]. As an ex-
ample, the Wigner transform of the density operator cor-
responding to a minimum wave packet,

N 1 *ipo')(*()(vxo)z/é’roz .
Lb(x)“me R (6)
is given by
fW(x,p,t)’—‘fu dye"p'yw*(x—%y)d)(x+%y)
:ze—gaz(p—p”)}'ﬂx xmz/?_az‘ 7

The Wigner function has many analogs with the classi-
cal distribution function. For example,

(277)"3fdpfw(x,p,t)=(xlﬁ|x) , (8)
(277)73fdxfw(x,p,t)=(p‘ﬁlp> , 9
2m) 2 [dxdp fy(x,p,0=1, (10)

and the expectation value of an observable Ois given by
(O(1)=2m " [dxdp 0y(x,p,0)f y(x,p.1) . (n

However, f,(x,p,t), even though real, f},=fy, is not
strictly a distribution function since it can have negative
values. Therefore the Wigner function should at most be
considered an auxiliary function useful for calculating
thermodynamical averages.

The Wigner transform of the quantum Liouville equa-
tion becomes
AW s p)=—2H, sin (%

(x,p, 1), (12)
o1 Sfw(x,p

where Hy, is the Wigner transformed Hamiltonian, and
A is the Poisson bracket operator,

A=V, V, =7,V (13)

the arrows indicating the direction of action of the opera-
tor. Expanding the sine term, the following series expan-
sion is obtained:

f w
o (x,p,)=[—HyA+LHyA*
—wHw A+ - Ufw(x,p,1)
=—(L +L)fwix,p,1), (14)
where L. =Hy A is the classical Liouville operator and
AL, (= all higher-order terms) is the quantum jump
operator. The solution to Eq. (14) is given by
fw(x,p,t):eﬁM‘*l"”fW(x,p,O) . (15)

For small increments of time, to O(Az?),

=L At —L At o
fw(x,p,At)=e "9 e " fupix,p,0). (16)
Hence infinitesimal time motion can be described in
terms of successive classical and quantum evolutions,
where the classical operator transforms the function to

S x,p,At)=e [‘Alfw(x,p,O) . (17

and the quantum jump operator acts on fy,, giving
. LA
[wix,p,At)=¢ 7 [fwc(x,p,At) . (18)

Explicit expressions for the operators .£, and L, for a
Hamiltonian operator of the form

~2

aA=P 1y (19
2m

with Wigner transform

Hy(x,p)=2— +vix), 20)
2m
where x and p are now variables and not operators, are
obtained as

L=Pv vV, 1)
m
L= VIOV TP+ (22)

The expressions (17) and (18) are difficult to evaluate
analytically for arbitrary functions. Hence Monte Carlo
techniques are applied which have the advantage that the
only analytic evaluation required is that for the action of
the operators on a & function.

C. Monte Carlo method

In a Monte Carlo procedure an importance sample set
of test points is selected to represent the initial positive-
valued Wigner function

where o; =1 is the sign of the test point, since, as noted
above, f(x,p,t) may be positive or negative and the fac-
tor (277)* is included to satisfy the normalization given by
Eq. (10). It must be emphasized that in quantum
mechanics the Wigner distribution function f,(x,p,0) it-
self cannot be a 8 function due to the inherent uncertain-
ty relations [14]. In applications considered here, the ini-
tial distribution function satisfies the uncertainty rela-
tions AxAp = 1, see Eq. (65). The decomposition of the
initial state into 6 functions as given by Eq. (23) is merely
a mathematical convenience, with equality defined by the
general representation

g(x)=fg(x’)6(x —x")dx" .

The classical propagation is a canonical contact trans-
formation, which transports the & functions to new posi-
tions along deterministic trajectories,
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3 _
ch(x,p,At)=(—2;—) S oe i‘AIS(x—x,- )8(p—p;)
3
=£2]—V71)—20,-8(x—xc,-)8(p—-pc,~), (24)

where x,; and p,; are evaluated via Hamilton’s equations
of motion,

4% _3H
dt dp;’
(25)
dpi __3H
dt )
The quantum correction is given by
3
—L
Fuxp,a=7TC 5 50 eM(x—x,)8(p—p)
i
(26)

The action of L, on the § function is now evaluated ex-
plicitly in the quasiclassical limit for a central potential
V(r) with r =|x—x;| and
L,=%V(V, V) (27)
Expanding L, in terms of the radial component p,,
and perpendicular components p,p, (Appendix A), gives
(10]

L,=L,+L,,
where
L,=L3 +4,9 8 28
ql_T P ar PP, (28)
L,=LP +4,9 8
927 5 %y T 41%%, > (29)
with
_ 193V
aL_24 ar3 ) (30)
19 (19F
TR r | 7 or |- (31)

Consider first the action of L, on the & function.
(Similar arguments hold for £,,.) It acts on the p, and
P components only, giving

Hp—p;)=e —L"‘t8(p—p,-)
=58(p,—pae " "8(po—po8(pi—py) . (32)

A change of variables to vy=py,+vyp, and v, =py—7¥p;,
with

3a, 172

Y= 51: (33)
transforms £, into

Lq1=a630+a831 , (34)

where
a
a:—2£'+aT'}/2=2,aL (35)
and Eq. (32) transforms into
—ard?
Hp—p)—2y8(p—pyde "
—ata?}]
X8(vg—wvy, e olv,—vy;), (36)

where 2y is the Jacobian of the transformation for the §
functions.

The expressions to be evaluated are of the typical one-
dimensional form. With the factor ¢ integrated into a,

—ad?
Aila;p —p;)=e a"8(17—‘0,-)

_ 1 re iay3+i

=5 dyet, (37

where Al is recognized as the Airy function. Depending
on the sign of a, the function decreases exponentially
along one direction and is oscillatory along the other,
with a slow decay in amplitude and increasing frequency.
Hence the quantum jump operator gives a nonlocal
momentum dependence to the § function, and the con-
cept of deterministic motion becomes untenable.

To incorporate the quantum correction into a Monte
Carlo scheme, a faster damping rate for the Airy func-
tions is useful to speed simulation. (Details for only the
one-dimensional quantum correction are discussed here.
For higher dimensions see Sec. II1.) Now the phase space
assumes a graininess due to the 8 function representation;
the larger the number of representative points, the finer
the grain structure. For a coarse-grained analysis of the
quantum correction, the increasing rapidity of the oscilla-
tion of the Airy function at large momentum distances
implies an average cancellation. Hence a grain size is in-
troduced into the 8(p —p;), producing a faster damping
rate for the function. This is achieved by approximating
the 8 function by a narrow-width Gaussian function,
which modifies the Airy function to

2
dla;p—p;)=e a"80[(13 —pi), (38)

where 6,(p —p;) is the Gaussian function of width a.
The expressions for the modified Airy functions &, are
given in Appendix B.

The corresponding quantum jump function is defined
as

Jola;p —p;)=d(a;p —p;)—8,p—p;) . 39

Figure 1(a) illustrates a typical Gaussian modified Airy
function and Fig. 1(b) the corresponding quantum jump
function.

The jump function is implemented as a stochastic pro-
cess. To this end, let J, correspond to the positive and
negative segments of the function J,. It can be easily
shown by partial integration,

fJa(a ;p —p;)dp =0, (40)

which indicates that the areas under the positive and neg-
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ative segments are equal. Defining the area 4,
A= [1J.ldp, (41)

and rewriting

ol -
Jla;p—p;)=A _——
«a;p—p;) y y,
=A[F,—F_], (42)
defines the jump ‘‘probability” functions, F.(a;p

The stochastic process is based on the following proba-
bilistic interpretation. For two random variables X and Y
the joint probability P (X, Y) is given by

P(X,Y)=P(X|Y)P(Y), (43)
where P(Y) is the probability for the event Y and P(X|Y)
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FIG. 1. (a) Damped Airy functions, &,(a;p) for a =0.05, 0.1;
a=0.3. (b) The jump function J,(a;p) corresponding to Fig.
(a).

]
~

FIG. 2. Jump function J,(a;p) for very small increments of
time, a =0.001, «=0.3.

is the conditional probability for the event X, provided
event Y has occurred. Compare now with Eq. (42). If
A <1, interpret P(Y)= A as the probability for the quan-
tum event, or the creation probability. In other words,
not all test points undergo quantum events during each
time interval, but only those selected randomly with
probability P(Y). Generally, a is small enough (see Fig.
2) to ensure that A <1, so that at most one quantum
event occurs per time step.

The conditional probability P(X|Y)=F_, —F
represents the momentum jump probability functions
corresponding to the random variable X =p. A pair of
values Ap. is selected randomly using the cumulative
distributions for F,. In the Monte Carlo representation,
this becomes a test pair with coordinates,

8(p —(p,; +Ap. ))b(x —x o0, , (44)

where o, = =1 for the positive and negative points. The
newly created points are appended to the initial set to un-
dergo subsequent classical and quantum motions. If
A << 1, a factor M is introduced to enhance the creation
probability to M A, with a normalization factor 1/M for
the new pairs.

Clearly, in the absence of the classical motion, the sto-
chastic process is a Markoff process. That is, with
1, <t

Fip(t,)=p,lp(,t=t, \J=F{pt,)=p,lp(t, »}.

The jump probability for each test point is thus indepen-
dent of its past histories, and depends only on its present
location in momentum space.

III. VALIDATION OF STOCHASTIC
QUANTUM JUMP MOTION

The validity of the technique developed in the previous
section is established by comparing stochastic quantum
time development in momentum space with analytic solu-
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tions. This is easily done when the initial function is a
Gaussian.

A. One-dimensional momentum space

The quantum time development for the interval ¢ in the
quasiclassical approximation is given by

_ 3
flp,0=e “%f(p,0). (45)
With the initial function
f(p,0)= \/‘21— e P (46)
TTa

the analytic solution is the Gaussian modified Airy func-
tion given in Appendix B.

For the stochastic evolution a representative set of
points for the initial function is chosen as follows. A pair
of values (p;,f;) is selected randomly within a specified
boundary for f and p such that the function f lies well
within the defined area. f varies from 0 to
Smax=1/(V2ma). If f(p;)<f;, then p; is selected; oth-
erwise it is discarded. Hence

N
Fp.0~L 3 8.0 —p), 47
N 2

where the test Gaussian functions have width ', with
a' <<a. Dividing the total time ¢ into K discrete time in-
tervals (At =t /K), the time development is written as

—a 3
fipn=le ““?Kf(p,0). (48)

During each time step, statistical test points are selected
with probability 4 [see discussion following Eq. (42)] and
new test pairs created at p; +Ap ., where Ap are select-
ed with conditional probability F., which get appended
to the main set. The updated set is propagated in the
subsequent time interval.

In the actual algorithm, the momentum space is divid-
ed into grids, and the test points assigned on it. With
at =0.1 and aAt=0.001, 100 time steps are executed,
and at the end of the run the function is reconstructed
from the test points using harmonic-oscillator functions
[9]. If 4 <<1, the creation probability is enhanced by an
arbitrary factor M set at M =10000/N. Thus for 100 in-
itial points the creation probability is increased 100
times. Each representative pair for J,(aAt;p —p;) is
therefore given by

ﬁ[ap —(p+Ap s N—8(p —(p;+Ap_N].  (49)

For a density k on the grids, the process is repeated k
times.

Figures 3(a) and 3(b) compare the results with the ana-
lytic solutions for various grid size, initial number of test
points N, and for various Gaussian widths a’ for the test
points. The results show good agreement with the ana-
lytic solutions and appear to be independent of the vari-
ables.
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N = 10000
o'=0.3
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FIG. 3. Stochastic evolution of jump function after 100 time
steps compared with analytic solution (solid line), J,(a;p),
a =0.1, a=1, for varying grid sizes, 0.1, 0.2, 0.3, 0.4. Initial
number of test points (a) N =100, (b) 10000, with width
a’'=0.3.

B. Two-dimensional momentum space

The two-dimensional quantum jump motion is given by

f(PO’Ppt):e—thf(PoaPpO) ’ (50)

where p,,p, are the radial and perpendicular components
and L, is given by Eq. (28) with a; /2 replaced by a; .
The initial function is chosen to be

1 . —(p2+p}1/2a%

f(pg,p1,0)= (51)

2ma?

To obtain the analytic solution, change variables to
Vo=PotP1,V1=Po—P1»
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_ 1 “atd 2 a0 get the analytic solution.
flug,v,0)= - [e oo 07T For the stochastic evolution, consider the action of £,
Ta ‘ on a test point during the subinterval At given by
—atd’ 2 2
v -v7/4a” -4 A
X[e te T, (520 HaAt;p—p)=e ¢ 8(py—po)8p,—pi) - (53)

which is recognized as a product of one-dimensional  Transforming to variables v, and v, as before, together
forms. The inverse transformation is then computed to with a Gaussian width a' for the transformed test points,

J

'-aAlai aAm:
FlalAt;p—p;)—2[e 08 vy —vg ) ][ e 'S lvy v ]
=2[J (g —vg; ) T8 vy — Vo) [ vy —v )00, —v) ], (54)
which to O (At) gives
~and} ad1d’
dlalt;p—p;)—2[e 8, (vg —vg)]le B vy vy ]
~2[J (09 =V 00y =V 1)+ T o (V) =008 (0o v ) 84 (vg 0 W8 (v —v )], (55)

since J,, is of O (At). The pair selection for each J, is done as before and the newly created representative test pairs
are

8w, — v )8(vy—(vy; +Avgy Mo Lo +8(vy—vy)0(v, — (v, +Av,. ))o .o, . (56)
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FIG. 5. (a) Stochastic evolution of jump function J ,(a;pg,p,)
FIG. 4. (a) Analytic two-dimensional jump function with (b) contours for @ =0.1, a=1, in two dimensions using 100
J.la;py,p,) with (b) contours fora =0.1, a=1. time steps, with N = 10000, grid size =0.2, a’=0.4.
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Note that two pairs are created for each event as expressed by the summation. Transforming back to the original coor-

dinates, the representative test pairs are

AvO:t
2

Avoi

+
) Dii 2

5

Po— |Poi T P~ g.0;+8

Figures 4 and 5 compare the analytic results with the
stochastic simulation, showing very good agreement. As
before, 100 time steps were executed, and the pair
creation probability was enhanced by a factor of 20 using
an initial number of 10000 points.

C. Three-dimensional momentum space
The three-dimensional jump motion is given by
-L
fp,0=e "7f(p,0). (58)

The initial Gaussian function may be written in terms of
parallel and perpendicular components,

F(p,0)= 1 —(p2+ph /20 '

(V2ma)? 59
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FIG. 6. (a) Stochastic evolution of jump function J,(a;p)
with (b) contours for a =0.1, =1 in three dimensions using ten
time steps. The plot is for the py,p, plane. N =10000; grid size
= 0.4; a'=0.3.

Po—

Av Av
Poi T =2k Pr1— |Pui— = 040, . 57
2 2
—
Similarly, from Appendix A,
L,=a;3}+ardpyd’p, - (60)

Hence the analytic solution is similar to the two-
dimensional case on a plane defined by p, and p,. For
the stochastic time development, consider .£ q acting on a
test point during time interval A¢,

~L At —L
2% qlAtS(Po—Po;')

X8(p;—p1;)8(py—pa) (61)

where L, and L, are given by Egs. (28) and (29). To
O (A1), the sample set generated by L ; and L, acting
simultaneously on the test point creates four new pairs.
L, generates two sets of pairs as in the two-
dimensional case, and is written succinctly as

Hp—pi)=e

2
2 8(p0—poj )5(p| _Plj )8(p2 —Pai )aioji . (62)
jEi=1

Similarly, £, acting on 8(p—p;) generates the set

2
2 5([’0_1701 )5(p2 _pzj')a(pl—p“ )O'iaji . (63)
jEi=1
Figure 6 shows the results for the p,,p; plane. The com-
parison with analytic solutions is remarkably good even
with 10000 initial points. Also by choosing a At =0.01,
only 10 time steps are required.

IV. APPLICATION IN TWO-DIMENSIONAL
PHASE SPACE

The full quantum motion, namely, the classical evolu-
tion followed by the quantum jumps, is applied to an ar-
bitrary initial state in an anharmonic quartic potential,

V(x)=1(x2+kx*) . (64)

Note that this potential provides an exact description of
the quantum effects within the quasiclassical approxima-
tion as all higher-order terms vanish. The problem is first
studied in two-dimensional phase space to validate the
technique with exact solutions calculable by standard nu-
merical techniques. The power of the technique
developed herein lies in its direct applicability to higher
dimensions and to many-particle systems.

The initial Wigner functions are chosen from a class of
functions represented by

f(x,p,0)=2e A(x —x¢)*—(p —po)?], (65)

such that fj,=Bf, where the parameter 8 defines arbi-
trary admixtures of states. For examples considered here
x,=0 and p,=1. See Figs. 7(a) and 7(b) for f=0.25.
With B=1, the Wigner function corresponds to a
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FIG. 7. Typical initial function f with (b) contours at levels
0.5,1.0,1.5 for B=0.25.

minimum wave packet which is a pure state [see Eq. (7)].
For <1 the function therefore describes a mixture of
states. Obviously 8> 1 is not allowed because of the un-
certainty relations Ax Ap > 1.

The Monte Carlo algorithm

The algorithm is based on the following complex of
procedures. The initial set of & functions is assigned to a
fine mesh of phase-space grids. Using C-Language capa-
bilities, a list of structures is constructed, each structure
containing the data corresponding to the coordinates of
the grid, the density, and the sign of the test points. Only
the nonempty grids form the list. For the classical
motion, with mass m =1, the coordinate data are updat-
ed using a two-step second-order Runge-Kutta method.
This computation can be as accurate as desired, and does
not involve a grid approximation. A high degree of accu-
racy is essential for the classical motion.

To implement the quantum event, all test points within
a particular region in position space having all possible

momentum values are identified by sorting. (To facilitate
sorting, the list is constructed at two levels. The first lev-
el consists of structures for a coarse x grid and forms the
main trunk. From each unit on the trunk a branch con-
taining all the structures that fall within that unit is at-
tached. The second-level structures contain the actual
data.) The selected set is then allowed to undergo one-
dimensional quantum jumps (see Sec. III A). The cumu-
lative distribution for F.(a;p) is tabulated for various
values of a. The required value of a is computed at the
coarse x-grid location, via @ =V'"(x)At/24. The net
sum of newly formed test points are attached to the main
list. The entire x space is spanned in this manner. With
low creation probabilities and annihilation of pairs of op-
posite signs within the assigned grid spacing (annihilation
distance) for the quantum motion, the main list does not
increase exponentially and remains tractable.

With N =20000 the initial list size is ~4000 growing
to a size of ~ 15000 at the end of t =41, where each time
unit 7 was subdivided into 30 time steps. The enhance-
ment factor was chosen as M =5 and the grid size (an-
nihilation distance) set at 0.3. The test points were given
Gaussian width a’=0.4. The function is reconstructed
from the test points at the required time intervals using a
suitable set of orthonormal harmonic-oscillator functions.
On a micro VAX 4000 series the run time for the O-7
time segment was typically 5 min and approximately 40
min for 0—47 due to the increasing list size.

An earlier version of the algorithm was written in PL/1
language. One complicated feature of the algorithm was
to keep track of four nearest neighbors of a moving sam-
ple test point in order to facilitate sorting and annihila-
tions of the newly created pairs, with their nearest neigh-
bors having opposite signs. The algorithm developed
here has proven to be faster and more accurate.

V. RESULTS AND DISCUSSIONS

Snapshots of the motion at time intervals in units of 7
are shown in Figs. 8-10 for various initial Wigner func-
tions and for various strengths of the potential. The re-
sults are compared with the exact solution and also with
the solutions of the classical Liouville equation.

The following observations can be made regarding the
classical versus quantum motions. For the classical
motion, the volume of phase space occupied by the sys-
tem, an integral invariant of Poincaré, remains constant
[15], but streams out into all phase-space regions allowed
by energy conservation, developing whorls and tendrils
[see Fig. 10(a)]. After long intervals of time this spread
gives the appearance of a uniform distribution over a
coarse grid, though finer grids would reveal the fine detail
of the contour levels as shown in Figs. 8(a)-10(a). For
the quantum motion, however, the system maintains a
cohesiveness as the unit oscillates within the potential
well. This cohesion may be the result of quantum in-
terference effects arising from the oscillations of the Airy
functions, causing cancellations and reinforcements over
the classical motion.

Quantitative differences between pure-state (3=1) and
mixed-state (f<1) quantum motions are also evident.
For the pure-state motion, it may be observed that the



maximum height of the Wigner function remains un-
changed. However, the mixed-state motion shows a
“quantum focusing” effect as the Wigner function peaks
beyond its initial maximum. Clearly, classical motion
does not allow for such effects due to the Liouville
theorem, which states that the density of systems in the
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3 ] | ] ]

FIG. 8. Evolution of the Wigner function, fy /B, in an
anharmonic-quartic potential, ¥ (x)=1(x?+kx*), where k =1,
B=1 for a pure state. a’=0.3; grid size =0.3. The contour lev-
els at 0.5,1.0,1.5,..., are at time ¢t =2m. (a) Evolution via the
classical Liouville equation. (b) Exact solution of the quantum
Liouville equation. (c) Approximate evolution via the quantum
Liouville equation.
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neighborhood of some given system in phase space
remains constant in time [15]. For more examples see
Ref. [16].

Finally, as an example of computation of an observ-
able, the averages for x and p are shown in Fig. 11, where

(x)=@m)~" [dxdp fyix,p,0x , (66)
(p)=@m~" [dxdp fy(x,p,tlp . (67)

Averages are plotted for the purely classical and the ap-
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FIG. 9. Same as in Fig. 8 with k =0.5, for a mixed state
B=0.5, at t =47.
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proximate quantum motion. For the classical motion the
system distributes uniformly around the equilibrium
point, consistent with energy conservation, and the first
moments of the distribution tend to zero. For the quan-
tum motion, however, these moments are oscillatory with
finite amplitude, indicating a preservation of structural

4 Classical

(a)
3
2
1
P o
-1
p 5
) \'E
3
| L1
1 2 3 4

4 3 2 1 0

4 — Exact b

I
——\:_‘. o
<
w
w

P o =Y
0o \)
s \
2 1.0\’
-3 [—
4 | 11 | | 1 J
-4 -3 2 1 0 1 2 3 4
X
4 [~ Approx (©)
3 B =025,
k=05
2 t=23n

25
(./go

P o E

)

1 2 3 4

n
I
?O
x O

FIG. 10. Same as in Fig. 8 with k =0.5, for a mixed state
B=0.25,at t =37.
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FIG. 11. First moments of the Wigner distribution function
(x),{p), with k =0.5, B=0.5, over a period of time 0-4.
Dashed line is for classical, solid line for approximate motion,
with + marks at equal intervals of time.

unity over long intervals of time.

Note added. A recent publication [17] applies the sto-
chastic technique to low-energy heavy-ion collisions. Ap-
parently, in that paper, extension to higher dimensions
involves additional numerical computation. The tech-
nique detailed in this paper uses a simpler method to ex-
tend to higher dimensions which is fully applicable to the
problem treated in Ref. [17].
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APPENDIX A

To evaluate
Q=V(r)|(V,-V, )’ s(p)

1
2

=V(r) 7V yreay

in terms of || and 1" components,

[

y=(&,y,ey,) .
Using the relations

9y, =y, 9y, =y,
gives

(Vey)\V(n=VvVy,,

v
(Vx-y)zV(r): V”yﬁ + “r—'yf s

V' bl
(Voy)PVirn=v"y}+33, {T ]y:yi ;
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therefore,
1 © 3 V’ 2 iD-
= V'y:+39, | — Rl
0 (27)} f_w Y r‘ . yyie y
= |ra +30, | |3, 82 |s(p)
P "lr [ P1RL ’
APPENDIX B

The expression to be evaluated is

—ad?
dla;p)=e ?8,(p),
where
2 2
8 p)=—==—e P2
P \/21Tae

The results are presented [9].
1. Series expansion fora < <1

. . . —ad} .
Using the series expansion for e “» and applying the
Rodrigues formula,

o

Fla;p)=8,p) 3

n=0 N

an

1(V2a)"

p
V2a

3n

b

where H is the Hermite polynomial.
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2. Asymptotic evaluation for p — o

The expression is rewritten using the integral represen-
tation for a Gaussian function,

-1 © V2py /a—y?
Sup)=—m— [ dy e!VIPr/a=r"
p=5—[" d

Vv
This gives
V2lp'l = . y?
; =R d 11372 13
Fa;p)=Re p fo ly exp | |p’|*/? |ia'y il
tiy ,
where
_ — 13
2], .-]a],
P p b, p .

The integral is evaluated by the method of steepest des-
cent in the complex plane. Defining
2
¥4

Vip’l
where z is a complex number, the saddle points occur at
—2i

6a'V|p’|
The integral is evaluated independently for the following
cases, along different paths of constant phase, and the re-
sulting expressions are

f(z)=ia'z3— +iz ,

z, [1+(14+3a’p")'?] .

J
1 1pP%r) & (ia’)"T[(3n +1)/2]
Re = € ror|(3n+1)/47
V2ra nso n!1+3a’p’|

Fla;p)=

V2 1 P2f ) +insa
Re—e 0

(ia'e>™*)"T[(3n +1)/2]

14+3a’p'>0

Ta n!|1+3

n even=0

1+3a'p’'<0.

’

aop:|(3n+l)/4

In the region (1+3a’p’)~0, with 3a’p’ <0, the expressions are

V2 PRz tinse
Re—=e¢ 0

[—(1+4+3a’p’

)I/Zei‘n'/S]nr[(zn +1)/3]

)

3ra =

, 1+3a’p’'>0

nlg'@n+1)/3

3ra n=0 n'a

V2 1P fzg) & (143a’p’)"/*T[(2n +1) /3]
€ e > 2n+1)/3

[ei(n+l/2)1r/3+ei(n+1/2)1r], 1+3alpl<0 .
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