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The quantum Liouville equation is solved in the %'igner representation using generalized Monte Carlo
techniques. For small increments of time, the solution is represented as a sequential classical ev olution

in phase space followed by a quantum "jump" distribution in momentum space, with the latter simulated

via a stochastic method. Extending the work initiated by John and Remler [Ann Phys. (N.Y.) 180, 152

(1987)] the technique is developed and validated for higher dimensions. Also, an alternative algorithm is

developed and applied to study motion of a quantum system in an anharmonic quartic potential well,

with significantly improved results.

PACS number(s): 05.30.—d

I. INTRODUCTION

The density operator formalism of quantum dynamics
[1] provides a suitable framework for the study of ther-
modynamical systems. The dynamical equation for the
density operator, given by the quantum Liouville equa-
tion, translates into ordinary functions and derivatives of
phase space coordinates in the Wigner representation
[2—5]. In a series expansion, the equation can be shown
to reduce to the classical Liouville equation and is there-
fore a very suitable representation for revealing purely
quantum effects. Also, the more familiar equations ap-
pearing in nuclear scattering theory, such as the hydro-
dynamical equations [3,6] and the Boltzmann-Vlasov
equations [7] may be extracted from the Wigner formal-
ism under certain approximations [3].

In this paper, Monte Carlo techniques are applied to
solve the quantum Liouville equation in the signer rep-
resentation [9,10]. The equation is in a noncovariant
form, and applies to single-particle dynamics only. The
time evolution is treated as a stochastic process [5,8—10].
(Does nature indeed play dice?) To simplify the problem
only first-order quantum effects will be considered, and in
this approximation the solution is applicable to quasiclas-
sical systems [9—12] that exhibit smoothly varying
momentum distribution typical of highly mixed thermo-
dynamical systems. In general, however, first-order
quantum correction may not be sufficient, and in some in-
stances it even requires the entire series summation [13].
For scattering of a highly collimated beam, for example,
higher-order terms become increasingly significant.

A generalized Monte Carlo method was introduced in
Refs. [9,10]. This paper extends the work to two and
three dimensions, and an alternative algorithm is
developed which gives improved results for the applica-
tion considered.

In Sec. II quantum dynamics in the Wigner representa-
tion is reviewed, and the stochastic techniques developed.
In Sec. III the technique is validated independently of the

classical motion by comparison with analytic solutions in
the one-, two-, and three-dimensional momentum space.
In Sec. IV an application to bound-state motion within an
anharmonic quartic potential in tw'o-dimensional phase
space is considered and the algorithm discussed. In Sec.
V results and discussions are presented.

II. THEORY

A. Quantum Liouville equation (QLE)

where I' is the probability for an ensemble element to be
in the eigenstate ~tt ). The time evolution of p is the
quantum Liouville equation,

where 8 is the Hamiltonian (A'= I} and has the formal
solution

p(t}=e ' 'p(0)e' '. (3)

The components of 8 in general being noncommuta-
tive, this form is difficult to solve in practice. An intui-
tively appealing form is obtained by taking the Wigner
transform of the QLE, which in the classical limit
reduces to the classical Liouville equation.

B. Wigner representation of the QLE

A few basic properties of the Wigner transform are
now reviewed. The Wigner transform of an operator 0 is
defined by

On(x, p, t)= J dye't' "(x—
—,'y~o('t)~x+ —,'y), (4)

The density operator p of a quantum thermodynamical
system is given by
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which is a simultaneous representation in both position
coordinates x and momentum coordinates p. The
Wigner transform for the density operator p is

fw(x, p, t)= f dye' "(x—
—,'y~p(t)~x+ —,'y),

and is called the Wigner distribution function [generally
defined with a normalization factor (2') ]. As an ex-
ample, the Wigner transform of the density operator cor-
responding to a minimum wave packet,

1 —ipo x —(x —xo) /4O.
dr(x) = 0 0

(2no )

is given by

f (x, p, t)= I dye' "Q*(x—
—,'y)g(x+-,'y}

—2O (P —
P )

——~X-- X ) /2Oo n

fw(x, p, At)=e ' e ' fw(x, p, O) .

Hence infinitesimal time motion can be described in
terms of successive classical and quantum evolutions,
where the classical operator transforms the function to

I w, , jx,p, kt)=e fw{x,p, O)

and the quantum jump operator acts on fw„giving
Atj w{x,p', At)=e ' fw, (x, p, dt) .

Explicit expressions for the operators 2, and I for a
Hamiltonian operator of the form

IX=-- „-+V(x)
M P1

with Wigner transform

The Wigner function has many analogs with the classi-
cal distribution function. For example,

(2m) 'f dp fw(x, p, t)=&xlp~x), (8)

(2~) f dx fw(x, p, t)= (piplp~ (9}

(2~) 'f dxdp fw(x, p, t)=1,

r}fw . A-(x, p, t)= 2Hw sin ——fw(x, p, t),
Bt

I

where 8& is the Wigner transformed Hamiltonian, and
A is the Poisson bracket operator,

A=V .V —V V
p x x p ~ (13}

the arrows indicating the direction of action of the opera-
tor. Expanding the sine term, the following series expan-
sion is obtained:

~fw
( x, p, t ) = [ Hw A+ ,', H w

A-—
Bt

'oHwA + ' ' ]fw(x p t)

= —(I,+I )fw(x, p, t},
where L, =H~A is the classical Liouville operator and

(= all higher-order terms) is the quantum jump
operator. The solution to Eq. (14) is given by

—(L. : X ]f
fw(x, p, t)=e ' ' fw(x, p, O) .

For small increments of time, to O(ht },

and the expectation value of an observable 0 is given by

{O(t})=(2m. ) f dxdpOw(x, p, t)fw(x, p, t) .

However, fw(x, p, t), even though real, fw
=fw, is not

strictly a distribution function since it can have negative
values. Therefore the Wigner function should at most be
considered an auxiliary function useful for calculating
thermodynamical averages.

The Wigner transform of the quantum Liouville equa-
tion becomes

(21)

I., =-
—,', V(x}(V„V)'+

The expressions (17) and (18) are dillicult to evaluate
analytically for arbitrary functions. Hence Monte Carlo
techniques are applied which have the advantage that the
only analytic evaluation required is that for the action of
the operators on a 6 function.

C. Monte Carlo method

In a Monte Carlo procedure an importance sample set
of test points is selected to represent the initial positive-
valued Wigner function

fw(x, p, O)= g o;5(x—x;)6(p —p;),
(2~}-'

i -=1
(23)

where 0.; =1 is the sign of the test point, since, as noted
above, fw(x, p, t) may be positive or negative and the fac-
tor (2vr) is included to satisfy the normalization given by
Eq. (10). It must be emphasized that in quantum
mechanics the Wigner distribution function fw(x, p, 0) it-
self cannot be a 6 function due to the inherent uncertain-
ty relations [14]. In applications considered here, the ini-
tial distribution function satisfies the uncertainty rela-
tions Axhp ~

—,', see Eq. (65). The decomposition of the
initial state into 5 functions as given by Eq. (23) is merely
a mathematical convenience, with equality defined by the
general representation

g (x)= fg (x')6(x —x')dx' .

The classical propagation is a canonical contact trans-
formation, which transports the 6 functions to new posi-
tions along deterministic trajectories,

H~(x, p) = + V(x)
2p/

where x and p are now variables and not operators, are
obtained as
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(2'�)'
f~, (x,p, ht)= ger;e ' 5(x—x;)5(p —p, )

g o;5(x—x„.)5(p —p„),(2m. )
(24)

where

QL
a = +QTy =2a

and Eq. (32) transforms into

(3&)

where x„andp„areevaluated via Hamilton's equations
of motion,

+(p p ) 2'Y5(p2 p2 )e

—QEB

X5(vo —vo;)e "'B(v& —v„), (36)

dt

dpi

dt
aa
clx;

(25)
where 2y is the Jacobian of the transformation for the 5
functions.

The expressions to be evaluated are of the typical one-
dimensional form. With the factor t integrated into a,

The quantum correction is given by

(2~)' J,ti-
frr(x, p, ht)= g cr;e ' 5(x—x„)5(p—p„).

I

—aB3

Ai(a;p —
p,. ) =e '5(p —

p, )

y e "~ +'~~
277 oo

(37)

(26)

The action of 2 on the 5 function is now evaluated ex-

plicitly in the quasiclassical limit for a central potential
V(r) with r = ~x

—x; ~
and

Lq =
—,', V(r)(V„Vp) (27)

Expanding X in terms of the radial component po,
and perpendicular components p, ,p2 (Appendix A), gives

[10]

X =X,+X,2,
where

(28)

(29)

with

1 8 V

24 r3

1 a lav
QT=

8 Br r Br
(31)

Consider first the action of X
&

on the 5 function.
(Similar arguments hold for X 2. ) It acts on the po and

p & components only, giving

QB8 (a;p —p;)=e '5 (p —p;), (38)

where 5 (p —
p, ) is the Gaussian function of width a.

The expressions for the modified Airy functions 8 are
given in Appendix B.

The corresponding quantum jump function is defined

where Ai is recognized as the Airy function. Depending
on the sign of a, the function decreases exponentially
along one direction and is oscillatory along the other,
with a slow decay in amplitude and increasing frequency.
Hence the quantum jump operator gives a nonlocal
momentum dependence to the 5 function, and the con-
cept of deterministic motion becomes untenable.

To incorporate the quantum correction into a Monte
Carlo scheme, a faster damping rate for the Airy func-
tions is useful to speed simulation. (Details for only the
one-dimensional quantum correction are discussed here.
For higher dimensions see Sec. III.) Now the phase space
assumes a graininess due to the 5 function representation;
the larger the number of representative points, the finer
the grain structure. For a coarse-grained analysis of the
quantum correction, the increasing rapidity of the oscilla-
tion of the Airy function at large momentum distances

implies an average cancellation. Hence a grain size is in-
troduced into the 5(p —

p, ), producing a faster damping
rate for the function. This is achieved by approximating
the 5 function by a narrow-width Gaussian function,
which modifies the Airy function to

+(p —p;)=e "5(p—p;) J (a;p —
p, )=8 (a;p —

p, ) —5 (p —
p, ) . (39)

1/2
QL

2QT
(33)

=5(p2 p2 )e ' 5(po po;)5(pl pl;) .

A change of variables to Uo=po+yp] and U& =po —
yp&,

with

Figure 1(a) illustrates a typical Gaussian modified Airy
function and Fig. 1(b) the corresponding quantum jump
function.

The jump function is irnplernented as a stochastic pro-
cess. To this end, let J+ correspond to the positive and
negative segments of the function J . It can be easily
shown by partial integration,

transforms Xq& into J a;p —p; dp=O, (40)

X &=QB„+QB, (34) which indicates that the areas under the positive and neg-
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ative segments are equal. Defining the area 3,
w = f IJ+jdp,

and rewriting

J (a;p —
p, )=A

=A [F+ F—j, (42)

defines the jump "probability" functions, F+(a;p

The stochastic process is based on the following proba-
bilistic interpretation. For two random variables X and Y'

the joint probability P (X, Y) is given by

P(X, Y) =P(XI Y)P(Y),

where P ( Y) is the probability for the event Y and P (Xj Y)
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FIG. 2. Jurnp function J„(a;p)for very small increments of
time, a =0.001, @=0.3.

is the conditional probability for the event X, provided
event Y has occurred. Compare now with Eq. (42). If
A & 1, interpret P ( Y) = A as the probability for the quan-
tum event, or the creation probability. In other words,
not all test points undergo quantum events during each
time interval, but only those selected randomly with
probability P( Y). Generally, a is small enough (see Fig.
2) to ensure that A &1, so that at most one quantum
event occurs per time step.

The conditional probability P (Xj Y) =F+ F—
represents the momentum jump probability functions
corresponding to the random variable X=—p. A pair of
values Ap+ is selected randomly using the cumulative
distributions for I'+. In the Monte Carlo representation,
this becomes a test pair with coordinates,

5(p —(p„+bp, ) )5(x —x, , )cr, o, ,

0.647—

0.412— ]I

0.176

I (.I" . ~. I I) j

-0.294 ( f)
't Ii'

~ (I

-0.529—

(b)

Q Q5

~a~e~ 0 ) Q

where o. + =+1 for the positive and negative points. The
newly created points are appended to the initial set to un-

dergo subsequent classical and quantum motions. If
3 && l„afactor M is introduced to enhance the creation
probability to MA, with a normalization factor 1/M for
the new pairs.

Clearly, in the absence of the classical motion, the sto-
chastic process is a Markoff process. That is, with
I,,

F jp(r. }.p. ip(r), r. r. , j=F Ip(t. ) p. lp(t. )}j—-
The jump probability for each test point is thus indepen-
dent of its past histories, and depends only on its present
location in momentum space.

I I I I I I I I I I I I I I I I I

-8 -6 -4 -2 0 2 4 6 8 III. VALIDATION OF STOCHASTIC
QUANTUM JUMP MOTION

FIG. 1. (a) Damped Airy functions, 8 (a;p) for a =0.05, 0.1;
a=0.3. (b) The jump function J (a;p) corresponding to Fig.
(a).

The validity of the technique developed in the previous
section is established by comparing stochastic quantum
time development in momentum space with analytic solu-
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tions. This is easily done when the initial function is a
Gaussian.

A. One-dimensional momentum space

The quantum time development for the interval t in the
quasiclassical approximation is given by

0.10

0.05

N =100
u'= 0.3

(a)

0.1
0.2
0.3
0.4

f(p, t)=e f(p, 0) .

With the initial function
0

f (p 0)— e
—P /2a

v'2m. a
(46)

-0.05

N

f(p, 0)=—g 5 (p —p;),
i=1

(47)

where the test Gaussian functions have width a', with
a' &(a. Dividing the total time t into E discrete time in-
tervals (b, t =t/K), the time development is written as

the analytic solution is the Gaussian modified Airy func-
tion given in Appendix B.

For the stochastic evolution a representative set of
points for the initial function is chosen as follows. A pair

b
of values (p;,f, ) is selected randomly within a spec'fi d

oundary for f and p such that the function f lies well
within the defined area. f varies from 0 to
f~,„=i/(v'2~~). If f(p;) &f, , then p, is selected; oth-
erwise it is discarded. Hence

-0.10
-6

0.10

0.05

0

-3

N = 10000
u' = 0.3 "'"'"""'"0.1

0.2
0.3*-- --- 0.4

f (p, r) =[e "'pl f (p, o) . (48)

During each time step, statistical test points are selected
with probability A [see discussion following Eq. (42)] and
new test pairs created at p, +hp+, where hp+ are select-
ed with conditional probability F+, which get appended
to the main set. The updated set is propagated in the
subsequent time interval.

In the actual algorithm, the momentum space is divid-
ed into grids, and the test points assigned on it. With
at =0. 1 and an't =0.001, 100 time steps are executed,
and at the end of the run the function is reconstructed
from the test points using harmonic-oscillator functions
[9]. If A «1, the creation probability is enhanced by an
arbitrary factor M set at M =10000/N. Thus for 100 in-
itia points the creation probability is increased 100
times. Each representative pair for J .(an't; —,. )

'
JP P. 1S

therefore given by

-0.05

-0.10
-6 -4 -2

B. Two-dimensional momentum space

FIG. 3. Stochastic evolution of jump function after 100 time
steps compared with analytic solution (solid line), J (a' )a ~sP~
a =0.1, a=1, for varying grid sizes, 0.1, 0.2, 0.3, 0.4. Initial
number of test points (a) N=100, (b) 10000, with width
a'=0. 3.

The two-dimensional quantum jump motion is given by

f(p, ,p„r)=e ' f(p, ,p, ,0),(49)
(50)

1

M [&(P (P;+~P+))—~(P (P;+~P ))]— —

For a density k on the grids, the process is repeated k
times.

1 tic
Figures 3(a) and 3(b) compare the results with th

y ic solutions for various grid size, initial number of test
points N, and for various Gaussian widths a' for the test
points. The results show good agreement with the ana-
ytic solutions and appear to be independent of the vari-

a es.

where po,p, are the radial and perpendicular components
and X is given by Eq. (28) with aL /2 replaced by ai.
The initial function is chosen to be

f ( 0 )
1 (p 0 +p

&
)I2a

2'fT'a
(51)

To obtain the analytic solution, change variables to
UO $0+71& U1 JO 5 1&
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d3

27TQ

X[e
3at 0 2 g)

1

which is recognized as a product of one-dimensional
forms. The inverse transformation is then computed to

get the analytic solution.
For the stochastic evolution, consider the action of L

on a test point during the subinterval At given by

b, t
ri'(a At; p

—
p, ) =e ' 5(pp —

pp; )5(p, —p „).
Transforming to variables U0 and U, as before, together
with a Gaussian width a' for the transformed test points,

—ab, tB,, 0610
8(an't;p —p;)~2[e '5, (up —up;)][e '5„(u,—u~;)]

=2[J, (up —
up, )+5 (vp —u„,)][J,„(v,—u„)+5 (u, —u„)],

which to O(ht) gives

-- ah(3,

8(an't;p —
p, )~2[e '5 (up —

up, )][e
aAti3',

'5„(u,—v„!]
-2[J, (vp Up

—)5 (U~ V~& )+J«(v, U~& )5&(Up Up& )+5&(Up Up& )5&'(U, U]& )] (55)

since J ~ is of O(b, t). The pair selection for each J„is done as before and the newly created representative test pairs
are

5(v& v~& )5(vp (Up&+coup+ ))o'+o'& +5(Up Up& )5(u~ (U&, +AU ~., ))o g(T,: (S6)

0.015 pp~p
~

0.010-

0.005,

0.005

-o.oo5 I-

-0.005

-0.010 t

-0.015 ~4~~
2 -.

0
2-2~ ~ 0

4 4

-0.010,

005

0.01

0.010--
0.005—

--0.010
-0.005

I'1 0
P1 0

3-3 -2 0

P0

FICi. 4. (a) Analytic two-dimensional jump function
I (a;po, pl) with (b) contours for a =0.1, cx= l.

FIG. 5. (a) Stochastic: evolution of jurnp function J (a;p„,p, }
with (b) contours for a =0.1, o.= 1, in two dimensions using 100
time steps, with X =10000, grid size =0.2, a'=0. 4.
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Note that two pairs are created for each event as expressed by the summation. Transforming back to the original coor-
dinates, the representative test pairs are

EUp+
5 jjo jjoi +

2

~Uo+
5 p& p&i+ ~+OI+& Po 5'oi+

2
(57)

Figures 4 and 5 compare the analytic results with the
stochastic simulation, showing very good agreement. As
before, 100 time steps were executed, and the pair
creation probability was enhanced by a factor of 20 using
an initial number of 10000 points.

C. Three-dimensional momentum space

The three-dimensional jump motion is given by

f(p, &)=e ' f(p, O) . (58)

—( +p )/2

(&2m.a )'
(59)

The initial Gaussian function may be written in terms of
parallel and perpendicular components,

Similarly, from Appendix A,

2 =al B'o+aTBpoB'p, . (60)

X 5(p )
—p ), )5(p2 —

p2; ), (61)

where X
&

and X 2 are given by Eqs. (28) and (29). To
0(ht), the sample set generated by X, and X 2 acting
simultaneously on the test point creates four new pairs.

generates two sets of pairs as in the two-
dimensional case, and is written succinctly as

Hence the analytic solution is similar to the two-
dimensional case on a plane defined by po and p~. For
the stochastic time development, consider X acting on a
test point during time interval ht,

—X 2ht —X &Et
cP(p —p; ) =e " e " 5(po —

po; )

0.03 0 (a)
2

5(PO POJ )5(Pl P1j )5(P2 P2 )~ +ja' (62)

0.005 Similarly, X z acting on 5(p —
p, ) generates the set

2

5(po poj )5(p2 p2j )5(p 1 p 1
' )~ '+jk (63)

-0.005

-0.010

-0.015

Figure 6 shows the results for the po,p, plane. The com-
parison with analytic solutions is remarkably good even
with 10000 initial points. Also by choosing ab, t =0.01,
only 10 time steps are required.

IV. APPLICATION IN TWO-DIMENSIONAL
PHASE SPACE

-4 4 P0

The full quantum motion, namely, the classical evolu-
tion followed by the quantum jumps, is applied to an ar-
bitrary initial state in an anharmonic quartic potential,

V(x)= —,'(x +kx ) . (64)

P) 0

0.005

-0.010

-0.005

Note that this potential provides an exact description of
the quantum e8'ects within the quasiclassical approxima-
tion as all higher-order terms vanish. The problem is first
studied in two-dimensional phase space to validate the
technique with exact solutions calculable by standard nu-
merical techniques. The power of the technique
developed herein lies in its direct applicability to higher
dimensions and to many-particle systems.

The initial signer functions are chosen from a class of
functions represented by

3-3
l

-2 0
P0

f(x,p, O)=2e ~[(x —xo) —(p —po) ], (65)

FIG. 6. (a) Stochastic evolution of jump function J (a;p)
with (b) contours for a =0.1, a= 1 in three dimensions using ten
time steps. The plot is for the po,p, plane. N =10000;grid size
= 0.4; a'=0. 3.

such that fz =pf, where the parameter p defines arbi-
trary admixtures of states. For examples considered here
xo=O and go=1. See Figs. 7(a) and 7(b) for P=0.25.
With p= 1, the Wigner function corresponds to a
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Classical (a)

maximum height of the Wigner function remains un-

changed. However, the mixed-state motion shows a
"quantum focusing" effect as the Wigner function peaks
beyond its initial maximum. Clearly, classical motion
does not allow for such effects due to the Liouville
theorem, which states that the density of systems in the

(x ) =(2m. )
' Jdx dp fa,(x,p, t)x,

(p ) =(2m) '
J dx dp f~(x,p, t)p .

(66)

(67)

Averages are plotted for the purely classical and the ap-

neighborhood of some given system in phase space
remains constant in time [15]. For more examples see
Ref. [16].

Finally, as an example of computation of an observ-
able, the averages for x and p are shown in Fig. 11,where

3 — Classical (a)

P Q

-2—
P p

-3
-3 -2

-2

Exact -3
-3 -2 -1 0 1

3 Exact

0.5

-3 I

-3 -2

P 0

-2—

P p

Approx

(=1,
k=1,
t=27t

(c) I I

-3 -2

Approx (c)

P = 0.5,
k = 0.5,
t= 4'

-2—

I I-3
-3 -2 -1

FIG. 8. Evolution of the Wigner function, fs, /g, in an
anharmonic-quartic potential, V(x) =

2
(x'+kx ), where k =1,

P= I for a pure state. a'=0. 3; grid size =0.3. The contour lev-
els at 0.5, 1.0, 1.5, ..., are at time t =2m. (a) Evolution via the
classical Liouville equation. (b) Exact solution of the quantum
Liouville equation. (c) Approximate evolution via the quantum
Liouville equation.

I I

-2

FIG. 9. Same as in Fig. 8 with k =0.5, for a mixed state
@=0.5, at t=4m. .
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proximate quantum motion. For the classical motion the
system distributes uniformly around the equilibrium
point, consistent with energy conservation, and the first
moments of the distribution tend to zero. For the quan-
turn motion, however, these moments are oscillatory with
6nite amplitude, indicating a preservation of structural

4 — Classic

(x&

FIG. 11. First moments of the Wigner distribution function
(x l, (p ), with k =0.5, P=0.5, over a period of time 0—4tr.
Dashed line is for classical, solid line for approximate motion,
with + marks at equal intervals of time.

3—

I I I I

-4 -3 -2 -1 0 1 2 3 4

4 — Exact

unity over 1ong intervals of time.
Rote added. A recent publication [17] applies the sto-

chastic technique to low-energy heavy-ion collisions. Ap-
parently, in that paper, extension to higher dimensions
involves additional numerical computation. The tech-
nique detailed in this paper uses a simpler method to ex-
tend to higher dimensions which is fully applicable to the
problem treated in Ref. [17].
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APPENDIX A

To evaluate

I I I I I I I

-4 -3 -2 -1 Q 1 2 3 4

4 Approx (c)

Q= V(r)(V„Vp)5(p)

= V(r) 3J (V—y) e'~'"dy
(2')

in terms of ll' and l" components,

V„:=e„B„,e,—
r

P o

y = &e 5, egypt& .

Using the relations

~pl.
,
=y]

4~ l

-4 -3 -2

(V„y)V(r)=V'y„,

FIG. 10. Same as in Fig. 8 with k =0.5, for a mixed state
@=0.25, at t =37r.

(V„.y) V(r)= V"'y,'+30„
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therefore,

3 f I'"'yII+».
V'

2. Asymptotic evaluation for p ~ Oo

The expression is rewritten using the integral represen-
tation for a Gaussian function,

APPENDIX B

The expression to be evaluated is

—aB8,(a;p) =e '5 (p),

where

& (p)= dy e I 2Pglcx

v'2n. a
This gives

V'2 p'4 (a;p)= Re f "dy exp Ip'I / ia'y
na o &Ip'I

+I'y

where

(p) — e p /2a]
v'K.a

p =
'3

V2v'2
p, a'=

Q a
a.

The results are presented [9].

i. Series expansion for a & &1

—aB3

Using the series expansion for e ' and applying the
Rodrigues formula,

8 (a;p)=5,(p) g 83„
o n!( 2a) " 2a

where H is the Hermite polynomial.

The integral is evaluated by the method of steepest des-
cent in the complex plane. Defining

~ 3
z'f (z) =ia'z —+iz,

v'Ip'I

where z is a complex number, the saddle points occur at

zo= [1+(1+3a'p')'/ ] .«'v'Ip'I

The integral is evaluated independently for the following
cases, along different paths of constant phase, and the re-
sulting expressions are

8 (a;p)= '

1 Ip'I f( ) (ia')"I'[(3n + 1)/2]Re — e 1+3a'p') 0
v'2~a „=on!Il+3a p I"""'"'
V2 Ip'I f(zo)+i~/4 (ia'e '"/ )"I [(3n + 1)/2]Re e 1+3a'p'&0 .~a „,„,„=o n! I

1+3a'p'I""+"

In the region (1+3a'p') -0, with 3a'p' & 0, the expressions are

d" (a;p)= '

v'2 Ip'I'/'f(, )+ /s "
[—(1+3a'p')' e' ]"I [(2n +1)/3] 1+3a'p' & 0

37TQ' n=0 n fa'[

2 Ip'I' f( ) (1+3a'p')" I [(2n+1)/3], '( +i/2) /3~ '( +i)/21+3 ()Re e Z p(2n + 1)/337TCX n=0 n!a'
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