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Calculating the surface potential of unionized monolayers
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A quantitative model is presented which enables contributions to the surface potential of a monolayer
at the air-water interface to be determined from known values of group dipole moments. Based on the
Lennard-Jones and Dent approach, the model shows that the head- and tail-group moments in a con-
densed, long-chain, n-alkanoic acid monolayer may be assumed to be noninteracting so long as the
monolayer-forming molecule is more than about 0.5 nm in length, thus confirming one of the main tenets
of the model by Demchak and Fort [J. Colloid Interface Sci. 46, 191 (1974)]. By the same token, it is
shown that imaging effects in the subphase are only important for the head group and negligible for the
tail group of a molecule more than about 0.5 nm long. The present model shows that the local field act-
ing on dipoles in the monolayer can be described in terms of a relative permittivity for the monolayer.
An upper bound of between 1.98 and 2.24 is established for the local relative permittivity of the hydro-
phobic chain region of alkanoic acids. The major contribution to the local field which leads to these
values is from the “layers” of methylene groups forming the hydrophobic region of the monolayer. For
the case of the distal methyl groups of an alkanoic acid, consideration of only the mutual induced depo-
larization of in-plane methyl dipoles leads to a local relative permittivity as low as 1.18. Thus, it is shown
that even though horizontally directed methylene-group moments cannot make a direct contribution to
the surface potential of a condensed monolayer, they do make a significant indirect contribution via their
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local field.

PACS number(s): 68.10.Cr, 68.18.+p, 82.65.Dp

I. INTRODUCTION

The surface potential AV of a floating monolayer,
defined as the difference in potential between a
monolayer-covered surface and a clean water surface, has
been the subject of much interest and debate since the
turn of the century. While measuring AV is relatively
simple [1] interpretation of the result is still a matter of
conjecture except perhaps when the technique is used to
investigate the Gouy-Chapman double layer [2] associat-
ed with the ionized monolayers. When the monolayer is
unionized the usual approach is to apply the Helmholtz
equation (HE) which relates the surface potential to an
average dipole moment for the monolayer-forming mole-
cules.

In its original form HE is derived by analogy between
the monolayer and a parallel-plate capacitor in vacuo
whose plates carry the positive and negative charges
forming the dipoles. From sufficiently far away these
discrete charges may be viewed as sheets of smeared out
charge of surface density 0 =nq. For a parallel-plate
capacitor in vacuo E =o /€;=AV /d thus AV=ngqd /¢,
so that HE is given by

Ky

AV=
A€y’

(1

where u, =qd is the average component of the molecular
dipole moment normal to the plane of the monolayer,
A =1/n is the average area available per molecule, and
€, is the permittivity of free space. Thus AV is seen to be
dependent upon both the packing density n and orienta-
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tion of the molecules in the monolayer.

Dipole moments calculated by substituting experimen-
tal values of AV in Eq. (1) are usually much lower than
those obtained for the same molecules in bulk. Various
reasons have been proposed for this discrepancy. Adam,
Danielli and Harding [3] suggested that the permittivity
of the monolayer may differ from that of free space. Har-
kins and Fischer [4] reject this approach primarily be-
cause of the application of a macroscopic concept to an
essentially microscopic situation. Furthermore, it was
pointed out by Macdonald and Barlow [5] that insofar as
the introduction of a relative permittivity € is at all valid
it must be n dependent hence the use of bulk relative per-
mittivity values is precluded.

Other possible explanations advanced for the
discrepancy between HE and experiment include (i) the
presence of mutual induced depolarization within the
monolayer which, as will be demonstrated herein, is tan-
tamount to assuming a local permittivity, (ii) reorienta-
tion of water molecules in such a way as to oppose the di-
pole moment of the monolayer, and (iii) the assumed
orientation of molecular dipoles in the condensed mono-
layer is incorrect [1].

The first major development of HE was by Davies and
Rideal [6], who suggested that the contributions to p,
from the hydrophylic head group, the hydrophobic tail
group, and the underlying water subphase could be treat-
ed independently so that the single homogeneous capaci-
tor model of HE may be replaced by a three-layer capaci-
tor. This model was refined further by Demchak and
Fort (DF) [7] by the assignment of a local permittivity ¢;
to each of the three layers (Fig. 1). Thus

1439 ©1994 The American Physical Society



1440 D. M. TAYLOR AND G. F. BAYES 49

hydrophobic
tails

hydrophilic
head groups

subphase

FIG. 1. The Demchak and Fort [7] three-layer-capacitor
model of a condensed monolayer at the air-water interface.
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where /€, is the contribution to AV arising from the
polarization and change in orientation of the subphase
molecules due to the presence of the monolayer and as-
sumed approximately constant for all unionized close-
packed insoluble monolayers, p,/€, the contribution
from the dipoles associated with the hydrophilic head-
group region, and u;/€; the contribution of dipoles asso-
ciated with the hydrophilic tail region of the monolayer.
Into €, and €; were incorporated all factors which caused
the dipole moments of the functional head and tail
groups within the environment of the monolayer to devi-
ate from the values they would otherwise have in the iso-
lated molecules. Based on measurements carried out on a
series of substituted difunctional p-terphenyl compounds
Demchak and Fort suggested €,=7.6 and €;=5.3. It
was shown by Oliveira et al. [8] that €,=6.4 and €;=2.8
were more appropriate values for monolayers composed
of long-chain aliphatic compounds. The DF model in-
corporating these new values together with a contribu-
tion ¥, to account for the diffuse double layer potential,
was then applied to phospholipid monolayers [9] and
used to explain the surface-potential-area (AV-A) iso-
therm of stearic acid [10]. The model was also applied to
aqueous solutions of acetic acid, chloroacetic, di-
chloroacetic, and trichloroacetic acid and alcohols by
Dynarowicz and Paluch [11].

In a recent paper Schuhmann [12] provided some
theoretical justification for the Demchak and Fort model
by showing that the surface potential of a plane array of
identical dipoles depended only on the relative permittivi-
ty € of the medium in which the dipoles were localized
and was independent of the permittivities of the semi-
infinite phases on either side of the array, i.e., Eq. (1) was
obeyed irrespective of the subphase material. Schuh-
mann interpreted this to mean that imaging effects in the
semi-infinite phases make no contribution to the mea-
sured surface potential of a monolayer and proceeded to
extend the model to a multilayer (or foliated) dipole ar-
ray, from which Eq. (2) was obtained. The major criti-
cism of Schuhmann’s work and indeed of the whole DF
approach is that it is assumed a priori that dipole layers
possess relative permittivities which are greater than uni-
ty.

In a slightly different approach, Vogel and Mobius
(VM) [13] prefer to consider the monolayer as a two-layer
capacitor in which u, is an effective dipole moment at the

monolayer-water interface and u“ the effective moment at
the monolayer-air interface. For an unionized monolayer
the DF and VM models are easily compared by the equal-
ities

Hy | Mo

___._I.__
€ €

and u®= Lack (3)

Hq €

so that instead of identifying a local permittivity, the
problem becomes one of identifying the factors that cause
the group dipole moments in a monolayer to depart from
their values in isolated molecules.

Based on the application of classical electrostatics we
develop in the following a quasimicroscopic math-
ematical model to describe the surface potential of a
monolayer. The functional group moments are described
by point charge distributions in free space. The subphase
is assumed to be a continuous dielectric medium with an
abrupt boundary to the monolayer. The model shows
that local relative permittivities greater than unity arise
naturally from a consideration of mutual, induced depo-
larization which occurs when interacting, polarizable di-
poles are assembled in a two-dimensional (2D) array. It
is also shown for such a system that (i) the calculation of
the local relative permittivity is essentially a calculation
of the local field acting on dipoles, (ii) imaging in the sub-
phase does contribute to the surface potential of a mono-
layer, contrary to the claim by Schuhmann [12], and (iii)
the DF equation is a valid description of a condensed
monolayer.

II. APPARENT RELATIVE PERMITTIVITY
OF A MONOLAYER

As a starting point for deducing an expression for the
relative permittivity of a monolayer a plane infinite array
of identical, vertically oriented, point dipoles is con-
sidered [Fig. 2(a)]. The array is assumed located in free
space so that no appeal is made, a priori, to a local per-
mittivity. The packing density n is assumed uniform and
the mode of packing hexagonal [Fig. 2(b)], which is the
configuration of maximum nearest-neighbor separation
distance and hence of minimum electrostatic interaction
energy for any given packing density. With the point di-
pole moments constrained to remain vertical, orientation-
al polarization is ruled out. The dipoles are assumed to
depolarize from a moment u for a single isolated dipole
to a value m in the environment of the array. The depo-
larizing field is calculated by removing the dipole at the
origin of the z axis to create a cavity. The field E, acting
at the origin, where the magnitude of E, is maximum, is
then calculated, thus enabling the depolarization of an
isolated dipole of moment p inserted into the cavity to be
determined. Figure 2 illustrates the relevant parameters.

For purely electronic polarization, a, we have to first
order

m=p+aE, 4)
and from HE
Av=-" =K (5)

b
Aey Aeg
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FIG. 2. (a) The model used for calculating the local field ex-
perienced by dipoles forming part of an infinite 2D array. The
“cavity” is formed by removing the shaded dipole at the origin
of the array in (b).

where € is an apparent relative permittivity accounting
for the depolarization of the dipoles from p to m and
defined by (5) as the ratio

e=£ . 6)
m
The field due to a single point dipole of moment m in the
plane z =0 is given by
m

Ey=— k, (7)
O 4reyp?

where p is the radial distance in the plane and k the unit
vector in the z direction. Summing for the infinite array,
the total field at the origin is given by

. m © © 1
Ey=— 3 > >

— 0 a3,k
drea’ , 2, 2, (uivi—uw)’?

(8)

where a is the nearest-neighbor separation distance and
u,v are integers not simultaneously zero. The double
summation has been evaluated by Topping [14] as
11.0342. If a is given in units of 47e, A¥as per Israe-
lachvili [15] and a is in A, then

11.0342«

a3

1+

=B ©)
m

Thus € is seen to be a function of a and, therefore, of n as
suggested by Macdonald and Barlow [5].

Equation (8) assumes that the length of dipole m is
small compared with the separation distance a, so that
the point dipole approximation is valid about the origin.
If not, the array may be subdivided into inner and outer
domains, the exact form for E; being used near the origin
and the point dipole form elsewhere. Using the symme-
try of a hexagonal array we have then

N N 1

22

LS wi+vi—uw +(1/a)* P

m

Eoz_

4mreqga’

+ |11.0342

33 3 ——]

u=1v=0 (u2+02_

.

(10)

uv)3/2

where [ is the dipole half length and integer N is chosen
according to the degree of accuracy required, so that the
apparent relative permittivity is now also a function of
the dipolar length 21.

Assuming for the moment that the terminal methyl
groups in a long-chain fatty acid monolayer neither
affect, nor are affected by, the carboxyl head groups and
subphase, then the methyl groups may be treated as a
uniform dipole array isolated in free space and Eq. (10) is
applicable. Smyth [16] gives the dipole moment of the
methyl group as 400 mD. Within a condensed mono-
layer, in which the molecules are vertical, this moment is
inclined at an angle of 35° to the vertical, so that u=330
mD. Israelachvili [15] gives the electronic polarizability
of a C—H bond as 0.65X47e, A*. As an upper limit, o
for the CH, group may then be taken as 1.95X47e, A®
which upon substituting into Eq. (9) enables € and m to
be determined (see Fig. 3 for dipolar separations in the
range 2<a <8 A). Also shown in Fig. 3 are plots calcu-
lated from Eq. (10) for N =10000 in which the dipole
half length / is taken as (i) 0.45 A and (ii) 0.9 A, values
which are not unreasonable compared with 1.095 A, the

=330 mD

300

[N
T

Apparent relative permittivity €

(Qu) w udwow ajodip yuaieddy

Dipole separation a (nm)

FIG. 3. Effect of dipole separation on the apparent dipole
moment m and apparent relative permittivity € of a 2D array of
polarizable dipoles of initial magnitude =330 mD. It is as-
sumed that the dipoles are locased in free space. (---) point di-
pole case; (—@-) for /=0.45 A and 0.9 A, upper and lower
curves, respectively.
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length of a C—H bond. Clearly the point dipole solution
[Eq. (9)] introduces little error unless a <3 A, values
which are physically unrealizable in a condensed fatty
acid monolayer. For a =4.9 A the minimum nearest-
neighbor separation distance in such a monolayer, it is
seen that m is approximately 280 mD with a correspond-
ing value for € of about 1.18. Although this value for € is
significantly less than the 2.8 suggested by Oliviera et al.
[8] for the tail group of fatty acids, nevertheless, this sim-
ple model provides for the first time, as far as we are
aware, a theoretical justification for the inclusion of a lo-
cal relative permittivity greater than unity in the
Helmholtz equation. Since capacitance measurements
have shown [17] that the limiting value for the relative
permittivity of a compact monolayer can be taken as that
of a paraffin, i.e., approximately 2, it is clear that the
above analysis significantly underestimates the local or
“cavity” field acting on the methyl groups.

In reality the dipole p inserted into the vacancy
represents an oriented methyl group of physical extent.
Assuming a maximum radius for the group equal to the
length of a C—H bond (1.095 A) and calculating the vert-
ical field component at 1.095 A along a trigonal axis, i.e.,
along either the u or v axis, gives

11.8569m

|E0|= 3 ’

4meqa

an increase of about 6.9% on the value given by (8) which
is clearly insufficient to account for the above discrepancy
between theoretical and experimental values of €. The
task then is to ascertain whether it is reasonable to con-
sider that the methyl group array may be treated in isola-
tion as assumed above and if this is not the case, to iden-
tify those factors that contribute to the local field acting
on the methyl groups.

III. THE LOCAL POTENTIAL AND FIELD

The potential along the z axis due to a single point di-
pole of moment m located in free space in the plane z =0
at a distance p from the origin is given by

— m z
47T€0 (pZ +22>3/2

(11)

and that due to a real dipole of length 2/ by

m 1 1
dme2l | [pP+(z =122 [p*+(z+D?]?

(12)

For an infinite array Gomer [18] employs direct sum-
mation of Eq. (12) for dipoles extending to a distance
p=Na, and integration of Eq. (11) for distances greater
than Na, that is, for the outer domain

2mm_ = zpdp
= , 13)
f 4mend fNa (p*+z2)3"? (

where A is the average area per dipole. Clearly for this
procedure the outer boundary of the inner domain is hex-
agonal and the inner boundary of the outer domain circu-
lar, so that for N = 6 the outer integral begins to miss di-
poles. Modifying the method of Gomer to make the
boundaries identical, and noting the symmetry about the
reflective axes of a hexagon, then integral (13) is replaced
by

_ 12mn
4menA
X = y—*—x/\/'} zdy
X _ ——5 (d
fle\/3/2wa {fy:() (x2+ypr+2z2)32 ] ¥

(14)

giving, for z 2/ for an infinite hexagonally packed array
with the dipole at the origin included,

 m 1 3 2 EVZ 1 _ 1
4re, zz—l2 S | ur vt —uw [z =D /e (utui—uwv +[(z—1) /a2
" va P11
Va2 m—2arctan {3 |1+ za ] ] (15)

where the first two terms account for the discrete dipoles and the third term is the solution to Eq. (14). Clearly, since N
is finite, in the limit z— oo the first term and the double summation vanish and remembering that the area per molecule
is given by 4 =V 3a /2 then

m
Aeg,

AV=(V|,—V|_,)=

and form (5) of HE is recovered. Differentiating (15) for the local field gives

2z
(z2—12)2 2

z+1
{ur+v2—uv +[(z +1)/a)*})?"?

z—1 .
{u?4+v2—uv+[(z =1 /al*}??

6N2
16
2][(Na)2+22]1/2 J ] (16)

m
4mey

[[%(Na)z-Fz
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so that E, vanishes as z— .

Figure 4 shows plots of normalized V, =V,(2A4¢,/m)
computed from Eq. (15) for N =10 and 100. The corre-
sponding plots for N =1000 and 10000 were indistin-
guishable from that for N =100. It is seen that V, tends
to m /2 A€, as z— oo, which, in view of the symmetry of
the problem is consistent with HE. Computation of E,
from Eq. (16) gives results critically dependent upon the
value of N regardless of which integral term, (13) or (14),
is used. It is concluded that this is a computational error
arising from the integration, which ignores the discrete
nature of the dipoles. Hence for more accurate calcula-
tions a computational method which retains the discrete
nature of the array is required.

Summations of the kind encountered above, while con-
ditionally convergent, converge in a manner that is ex-
tremely slow. [For example, computation of Eq. (16)
with N =10000 took in excess of 24 h using FORTRAN77
in double precision on a 486DX personal computer].
However, such summations may be made rapidly conver-
gent by means of the Poisson summation formula [19].
Lennard-Jones and Dent [20] derive, for an infinite regu-
lar array of point charges whose net charge is zero, the
general equation

—lk, ,llzl
4 l[ku pr(r—=r)]

1 27 e
2 2 qx |k I e ’ ’
k u,v u,v

47, |a,a,

Vir)=

where
k“,u =27T(ub1+vb2) y

b, and b, are reciprocal vectors given by

T Y
* lamyl” Y Jagay] ]
—ayy a1x
b2x_ =

T aml’ P lagayl

where |a,a,|=a,a,,—a,.a,,, and r; is the vector locat-

1.00

095} |

0_90L . 1 1 L I
0

2 4 6

Height above array z (nm)

FIG. 4. Normalized potential, V; =V,(2 A€,/m), plotted as a
function of height z above an infinite 2D array of dipoles of mo-
ment m. The calculation is based on Gomer [18]. For distances
from the origin that are greater than p=Na, where a =4.9 Ais
the assumed dipole separation, the dipole array is assumed to be
an infinite continuum (see text for details).

ing charge g, with reference to some point within a unit
cell, the charge distribution being doubly periodic with
respect to the vectors a;,a,.

For the case in hand the unit cell is a thombus, a,; in
the direction of x and a, along the trigonal axis v, so that
a,=(a,0) and a,=(—a /2,aV'3/2). For a sheet of posi-
tive charges g with each charge located at the origin of a
unit cell so that r, =0, the real part of the potential is
given by

—_9 _4rm
V(q) 477'60 \/30 2

2 e —Xz
X cos
u,v X

(u +2v)y
x+———‘/§

+C™,

where

_ 4T a2, 2 172
V3a (u“+v°+tuv)
and constant C ™ accounts for the fact that the net charge
per unit cell is not zero. Locating a sheet of charges ¢ *
at z=/ and a further sheet of charges ¢~ at z=—1/ an
infinite dipolar array symmetric about z =0 is simulated,
and for vertical orientation we have

m 27
| 4 = =
(m) 47T€0 \/3(12[
e—Xz
X3 2 sinh(X1)
u,v
Xcos | — x+(u—+20—)l +C
V3

in which the constant C is established by the condition
that V,(z— o0 )=m /2 A€, giving, for z > I,

m e X
= 1
V(im) 2de, ME; Xi sinh(X7)
Xcos 27 ux _+_(u_+_2__v_))i +1
V'3
(17)
and
_ m 27
E,(m)= 4meq vV3a2l
X3 e “*22 sinh(X1)
u,v
x cos | 2T x+—(l$—%’ﬂ k. (18)

Figure 5(a) shows the plots for ¥V, computed from Eq.
(17). For the z axis passing through a dipole (P,) it is
seen that V, neither falls below unity nor oscillates in the
manner predicted by the Gomer method. Interestingly,
when the integral term in Eq. (15) is ignored so that the
potential of a finite array is computed then as seen in Fig.
5(b) the solution tends towards that obtained from the
Lennard-Jones and Dent (LJD) approach as the size of
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the array increases. (It should be noted though that for
large z the potential must fall to zero in the case of a
finite array.) For the z axis passing through points P,
and P, Eq. (17) predicts that V, is always less than unity
but tends asymptotically to unity with increasing z.
Figure 6 shows a 3D plot of the normalized field
E!=E, (4mey A3/m) at z=1.2615 A over a square of
side a containing three dipoles m. Very large positive
fields exist above each dipole but these fall quickly to
small negative values on moving away from the dipole.
In Fig. 7 are given semilogarithmic plots of the dimen-
sionless field E, versus z for three cases (a) above a dipole,
Py, (b) midway between two dipoles, P,, and (c) equidis-
tant from three dipoles, P;. Clearly for curves P, and
P,, E, is negative hence log,o|E,| is shown. These plots
illustrate the very steep field gradients in the neighbor-

b,
5 /;/ 3
/p,
// Pa
/ P,
05 7 / P
//’/ *
! / [ S
-
¥
\
| L 1 I 1 1 L |
0 2 4 O 8
Height above array z (nm)
\R I
o (b)
|
1 {l\\[JD
100 A= e e - e e
! N = 10000
=TT N=1000
N =100
| N=10
i
|
osol L i L L _
0 2 4 6

Height above array z (nm)

FIG. 5. (a) Normalized potential, V;=V,(2 A€,/m), plotted
as a function of height z above an infinite 2D array of dipoles of
moment m, based on the Lennard-Jones and Dent [19] ap-
proach (a =4.9 A). P,, P,, and P, were calculated for the z
axis immediately above a dipole, midway between two dipoles
and equidistant from three dipoles as shown in the inset dia-
gram. (b) Normalized potential, V,=V,(2 A€,/m), plotted as a
function of height z above a finite, N X N array of discrete di-
poles of moment m. Also shown for comparison (LJD) is plot
P, from (a). In both cases a =4.9 A.

FIG. 6. normalized electric field

3D plot of the
E!;=E,4rme, Al/mata height z =1.2615 A above a hexagonal
array of dipoles of moment m. Note the field reversal between
the dipoles.

hood of the dipole sheet indicating that only near-
neighbor effects will influence the cavity field and hence
m.

For example, from Eq. (8) the normalized cavity field,
arising from in-plane methyl dipoles is 9.306X 1072, If
now a second, parallel array of dipoles of similar magni-
tude is brought within 3 A of the first, its contribution to
the normalized cavity field will be almost negligible, be-
ing only about 0.1% of that arising from the in-plane
methyl dipoles of the first array. For a fatty acid, the
second array is composed of COOH groups and depend-
ing on the conformation of this moiety, the vertical com-
ponent of the dipole moment will lie between —640 and
+ 3560 mD [7], with values of +820 [21] or 990 mD [8,9]
being the most likely. Thus it is concluded that interac-
tion between the distal moieties of an n-alkanoic acid will

|
|
|
|

0 04 0.8 12

Height above array z (nm)

FIG. 7. Decrease in the normalized field E; =E . 4re¢, A3/m
with height z above an infinite 2D array of dipoles of moment
m. Note that for curves P, and P, the fields are negative.
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be negligible if the head and tail groups are separated by
more than about four or five methylene units.

This rapid attenuation of the field normal to the plane
of a dipolar array provides strong support for the DF
model which assumes that the contributions of head- and
tail-group dipoles are independent and noninteracting.

IV. DIPOLE ARRAY ABOVE A SUBPHASE

Contrary to the conclusion of Schuhmann [12], it is to
be expected that the presence of an adjacent subphase (or
solid substrate) will contribute to AV because polariza-
tion of the subphase or, equivalently, imaging of the dipo-
lar array within the subphase must change the depolariz-
ing field in the cavity. Furthermore, the potentials above
and below the subphase interface will include some com-
ponent due to the imaging. Schuhmann [12] assumed
that the dipolar array was immersed in a region of local
permittivity €, sandwiched between two semi-infinite re-
gions of permittivity €; and €; with abrupt interfacial
boundaries. These boundaries, acting as mirrors, lead to
a first-order infinity of images per dipole. Since we make
no appeal in this analysis to a macroscopic permittivity in
the vicinity of the array, the system presented here is
equivalent to setting €,=€;=1 which, removing one
boundary, produces only one image per dipole. The sys-
tem with the relevant parameters is illustrated in Fig.
8(a).

Using the Fourier-Bessel transform of inverse distance,
then for the positive charge at z,=d +1

— o k k(z—z4) k <
V; —9—47760 fo F(k)Jy(kp)e dk , z<0
and
+__ 49 ® —klz =z
V= e fo Jolkp)e dk
+ [ " GUotkple " dk f, 220,

where F and G are functions of k, an eigenvalue of the
Laplacian. The boundary conditions are V=V, and
€,0V,/3z=03V, /dz evaluated at z =0.

As shown by Smyth [16], these conditions are satisfied
if equalities are written for the integrands, from which

1445

(@
,,1r_'n_ *?e—fﬁm
V%@ ‘
z=0 ——— z= —
d V,(2)
“*%ﬁm
(b)
8=1TdTTHH?H?
€ l d subphase o
T R B R B P

(c)

FIG. 8. (a) Dipole of moment m located in free space at a
height d above a subspace of relative permittivity €,. The po-
tentials ¥ (z) in the subphase and V,(z) above the subphase
arising from this dipole may be determined using the system of
dipoles shown in (b). The local field acting on dipoles in an
infinite 2D array above a subphase is calculated using the two
arrays in (c).

For the negative charge, g and [ are replaced by —g and
—1 yielding by inspection for z <0

q 2
477'60 €1 + 1

1
[p*+(z —d —17]"2

V1(2)=

1 ]
- (19)
— 2 _ 21172
F= 2 and G=~el_ le—zk(d+1)‘ [p"+(z=d +1)]
€+1 €+1 and forz=>0
J
V)= 4 1 _ 1 La-l 1 _ 1
2 4mey | [p*+(z—d —1*1V2  [p*H(z—d +D*]V? &+ | [pPH(z+d —D*]V? [p?+(z+d +1)?*]?
(20
-

The charge distributions represented by Egs. (19) and (20)
are sketched in Fig. 8(b).

Clearly V,(z) is negative and it is interesting to note
that the presence of the subphase increases the potential
V,(z) for z > d above that which it would otherwise be if
the dipole were located in free space. Expanding the

bracketed terms and proceeding to the point dipole limit
Eqgs. (19) and (20) reduce to

-m 2 |z —d|

V =
1(2) dmey €+ 1 [p2+(z —d)?]*"?

(21)
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for z <<0, and

m z—d
V,(z)=
P ey | [pP+(z —d)?)
€1 z+d
+ (22)
€]+1 [p2+(z +d)2]3/2
for z >>d.

Integrating over the plane z =d containing the array of
uniformly distributed point dipoles, the total potential is
given by

-m 2 « |z—d|pdp
V =
Y P fo (p2+]z —d|2)7
_ —m 2
C 2de, €,+1 23
Similarly
2¢
m 1
V,(z)= 2
Y P 24

Equations (23) and (24) are independent of both z and d
and constant for a given packing density. It should be
stressed though, that the expressions are only valid for
large z and for infinite arrays. If the upper limits of the
radial integrals are made finite then, as expected, the po-
tentials vanish as the magnitude of z tends to infinity.

For the potential difference across the monolayer we
have then

m

AV=V,(z2)—V,(z)= de, (25)

and form (S5) of HE is recovered, confirming the solution
given by Schuhmann [17]. This result apparently indi-
cates that the presence of the subphase does not affect the
potential difference across the array. However, as seen
from the second term of Eq. [19], the subphase image of
dipole m is a component of V,(z). Hence the cavity field
will be modified from that of an array located in free
space. Thus, contrary to the conclusion arrived at by
Schuhmann [17], the moment m and hence the apparent
relative permittivity € will also be modified.

Since potentials are additive it is clear that as many ar-
rays as wished may be incorporated in the model so that
for monolayers of molecules possessing two or more func-
tional polar groups Eq. (25) may be generalized to give

1 K

AV = Ae(,}i"m"’ with mp=_. (26)

i

Equation (26) is, of course, the DF equation since it de-
scribes the potential across a foliated array where the di-
poles representing the functional groups lie in planes or
layers one above the other.

According to Demchak and Fort [7] the quantity u, /€,
describes the contribution to AV from polarization of the
subphase due to the presence of the monolayer. As seen
above, Eq. (20) includes the effect on the monolayer of
subphase polarization due to the presence of the mono-
layer, and Eq. (19) accounts for the effect within the sub-

phase whence, upon subtraction, the overall effect of im-
aging should already be incorporated within AV. If this
is the case then w,/€, is redundant except insofar as a
spontaneous reorganization of water molecules may
occur in the presence of the monolayer thus effectively
producing a change in the reference potential. In other
words, even after accounting for imaging effects the po-
tential of a water surface below a monolayer may differ
from that of pure water owing to a change in the organi-
zation of the water molecules at or near the surface.

To calculate the contribution made by imaging effects
to the apparent dipole moment m in Eq. (25) we must cal-
culate the local cavity field in the presence of the sub-
phase. This is composed of two terms (i) from the array
of real dipoles, m, and (ii) from the array of image dipoles
m(e,—1)/(e;+1) in the subphase [Fig. 8(c)]. These con-
tributions may be determined from Eqgs. (10) and (18), re-
spectively. In Table I the magnitudes of these contribu-
tions to the cavity field are shown in normalized form for
an array of vertically oriented methyl-group dipoles lo-
cated at different heights above a water surface (e, =80).

Apart from the factor (¢,—1)/(¢;+1) the contribu-
tions of the image dipoles are identical to those in Fig. 7
for d =2z. Noting that the vertical distance between the
methylene groups in a condensed fatty acid monolayer is
1.2615 13;, it is obvious that even when only four
methylene moieties separate the head and tail groups the
contribution of the image dipole is negligible. Thus im-
aging is only important for dipoles in, or immediately ad-
jacent to the head group. It should be noted, also, that
the image contribution is of opposite sign to that from
the real dipoles and acts so as to increase the cavity field
and hence to decrease the apparent permittivity of the
monolayer.

V. THE POLARIZING EFFECT
OF THE HYDROCARBON CHAIN

No consideration has been given thus far to the polar-
izing effect of the methylene groups which constitute the
hydrocarbon chain. It is generally assumed that within-a
fully condensed monolayer the methylene groups are hor-
izontally directed so that their dipole moments make no
contribution to the experimentally measured surface po-
tential. However, these dipoles will contribute to a local
potential and thus to a local field which must have a po-
larizing effect on the distal methyl and carboxyl groups.
To calculate the magnitude of the field arising from this

TABLE I. Contributions to the normalized cavity field calcu-
lated for the in-plane methyl dipoles and for their images in the
subphase. Values are given for the methyl array located at three
different heights above a water surface.

Height above

subphase Normalized cavity field
(nm) From CHj; layer From images
0.5 —9.31X107? 3.88x10° 13
1.0 —9.31X1072 1.44X10°1°
1.5 —9.31X107? 5.35X107%
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source, we assume that in a fully condensed monolayer
the molecules are highly organized [Fig. 9(a)] so that for
each CH, array the resolved horizontal moments are uni-
directional and coplanar with the resolved vertical mo-
ments of the CH; groups as shown in Fig. 9(b). The mod-
el thus supposes that every molecule is stationary and
possesses no rotation, vibration, or random orientation
about its long axis. Within these constraints, the vertical
component of the field acting at the cavity in the array of
methyl groups due to each layer of methylene groups was
calculated using the Lennard-Jones and Dent approach
[Eq. (18) with C =0 in the expression for potential]. Fig-
ure 9(b) shows the relevant parameters. For the odd-
numbered layers N =2n —1 and, neglecting reaction
effects, the polarizing field E, at the vacancy is given by

cavity
CHs (a) Q CHs

\ \ \
CH2 CHz — Hz —%

~— H:C P Hz/ - Hz/

\ \
CH2z —» CHz —» CHz —

- H2C

\Hz —
<—sz

\OOH

e
ol /
Mo oo

subphase

} 'T’
.
(= ——+(3)

FIG. 9. (a) Regular array of long-chain alkanoic acid mole-
cules at the air-water interface. (b) This sketch gives the
relevant parameters used for calculating the contribution of the
CH, groups to the local field experienced by the distal CH,
groups in the array.

Hcn,
E,.= e—X[1+s(2n—1)]
P 47760 \/3a2L §1§
X {cos —zal[u(x—L)]
—cos —zi(ux) (27)
a
and for even-numbered layers N =2n,
HcH, X
—X[l+s(2n)]
Ep= 4me, \/3azL 21%
X |cos 2—”T(ux)
a
—cos —zl[u(x —L)]
a
(28)

The sum of Eqgs. (27) and (28) then gives the total cavity
field arising from N methylene layers, neglecting reaction
effects, so that Eq. (4) now becomes

m=p+ayEy+Ep) . (29)

For n-alkanes s=1.2615 A, [=0.4485 A, and
H—C—H bond angle is 110°. Assuming that the
methylene group may be considered as two C—H bonds
of moment 400 mD and length 1.095 A symmetrically lo-
cated about the x axis then the projection onto this axis
gives L =0.6281 A, KcH, =460 mD and x =—0.8833 A

(N odd) and x =L (n even) Table II gives the normalized
contribution E,[(47e, A3 V/pcn, ] to the vertical com-

ponent of the local field acting on the methyl groups from
each of the first eight layers of CH, groups. It appears
that only the first four layers make a significant contribu-
tion. Therefore, taking Ccn, =1.95X4me, A3 as before,

then
m =pcy,—1.95(9.30X107*m +0.1482ucy ) (30)

from which it is seen that the dominating depolarization
effect comes from the methylene groups rather than the
mutual depolarization of the methyl groups. Inserting

TABLE II. Contributions to the normalized cavity field from
each of the methylene “layers” immediately below the distal
methyl groups.

=z

B
—0.1376
—0.008 402
—0.002 891
0.000174 6
—0.000068 26
—0.000004 134
—0.000001 627
—0.000 000098 57

0 NNV A WN -
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the appropriate dipole moments ,uCH3=33O mD and
#cu, =460 mD in Eq. (30) we have

m =167 mD
whence by Eq. (6)
e=ucﬂ3/m =1.98 .

This latter value is in excellent agreement with the mac-
roscopic relative permittivity of a paraffin but it should
be noted that reaction effects, which would further modi-
fy the depolarization field, have been ignored.

Departure from the assumed idealized dipole align-
ments would also modify the depolarizing field. In the
limiting case it may be assumed that each molecule is
orientated about its long axis in such a way that the mo-
ments of the methylene groups within each array statisti-
cally cancel. For such a case, each methyl group would
experience only the depolarizing effect of the CH, groups
of its own molecule. Thus the contribution to the local
field acting at the methyl groups would be given by

_,UCH2 1 z
P 4mey L | [224+(x —L/2)*P7

Z
- K, 31
[z224+(x +L /2)]"? B0

where z =1 +s(2n —1) for N odd and z =[ +2ns for N
even. The computed contributions for the first four
methylene groups are given in Table III. The effect of
randomizing the methylene contribution but retaining
that from the methyl-group dipoles (these are vertical so
rotating the molecule does not change the array contribu-
tion) is to depolarize the methyl group from 330 to 147
mD which corresponds to a local relative permittivity,
€=2.24. Assuming that the inclusion of reaction fields
would lower the permittivity, then for a fully condensed
fatty acid monolayer (¢ =4.9 A) of chain length greater
than about eight methylene units approximate upper
bounds for the apparent relative permittivity of the
methyl-group array are found to be 1.98 and 2.24 depend-
ing on the individual organization of the molecules
within the hexagonal lattice.

VI. CONCLUSIONS

It has been shown that the surface potential of a con-
densed monolayer at the air-water interface may be de-

TABLE III. Contributions to the normalized cavity field for
the first four methylene units bonded to a methyl group. It is
assumed here that contributions from the methylene groups of
neighboring molecules cancel (see text).

N Ep

1 —0.1528
2 —0.0114
3 —0.0091
4 —0.0010

scribed in terms of interacting dipolar arrays. The model
shows that the multilayer-capacitor model of Demchak
and Fort is a valid description of the monolayer but the
most important feature of the model is that it establishes
that the origin of the local relative permittivity of a con-
densed monolayer is the induced depolarization of di-
poles in the electric fields of their neighbors. For the case
of the distal methyl groups of a fatty acid monolayer we
have derived explicit expressions for this local field based
on the Lennard-Jones and Dent approach. Calculations
based on the theory show that the major contribution to
the local field is from the dipoles associated with the first
four layers of methylene groups despite the fact that
these are horizontally directed. Mutual depolarization of
the methyl groups makes a further small contribution.
Since we have neglected reaction fields, we have estab-
lished that the upper bound for the relative permittivity
of the hydrophobic chain region lies between 1.98 and
2.24, an eminently satisfactory value—the relative per-
mittivities of n-alkanes from Cs to C,, increase from
1.844 to 1.991. Further increase in chain length to C,,
increases the relative permittivity by only 1.2% to 2.015
[22].

So long as other polar groups, e.g., the COOH head
groups in a fatty acid monolayer, are more than about 5
A away, their contribution to the local field experienced
by the methyl groups is negligible. A corollary of this is
that imaging effects in the subphase are also negligible
unless dipole arrays are close to the subphase surface.
This has been confirmed experimentally by Mobius and
Vogel [13], who showed that the surface potential of con-
densed monolayers formed from long-chain n-alkanoic
acids was independent of chain length (within about 10
mV) for the series Cy4 to C,,. In contrast, Evans and Ul-
man [23] interpreted their results as showing an increase
in surface potential from about 500 to about 700 mV for
the series of n-alkalyl thiols from C, to C,, chemisorbed
onto a gold substrate. Interestingly, the error bars in
their work are so wide that the surface potential for the
C,; to C,, thiols could be considered independent of
chain length and equal to 650+70 mV. If the data for the
C, and C,, thiols are ignored then the surface potential
appears to saturate at about 620+40 mV for thiols longer
than C,;. According to the model developed here, no
change in surface potential should have been observed for
compounds with more than about eight methylene units.
(This would provide four methylenes to interact with
each distal group and would ensure that reaction effects
on the methylene groups at one end of the molecule
would not influence the groups at the other.) It should be
noted also that the contribution of the methylene chains
to the local cavity field at the ends of the molecule will
depend sensitively on their exact positions and orienta-
tion in the array relative to the terminal groups. It is
possible, therefore, that the large error bars in the work
of Evans and Ulman may indicate differences in film qual-
ity or differences in the molecular packing from sample
to sample.

Further development of the present model is now un-
der way. First, the assumption regarding the polarization
of the methyl group is an oversimplification. Any im-
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provements must consider the tensorial nature of this pa-
rameter. Account should also be taken of the reaction
fields set up when the methylene groups depolarize the
methyl groups. Finally, and most importantly, it will be
necessary to deal with the more complex problem of the
head-group—water interface. This will require a model to
be developed which describes the hydrogen bonding in-

teractions between the carboxyl head group of the fatty
acid and the underlying subphase molecules.
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FIG. 1. The Demchak and Fort [7] three-layer-capacitor
model of a condensed monolayer at the air-water interface.
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FIG. 2. (a) The model used for calculating the local field ex-
perienced by dipoles forming part of an infinite 2D array. The
“cavity” is formed by removing the shaded dipole at the origin
of the array in (b).



FIG. 6. 3D plot of the normalized electric field
E;=E.4rme, A’/mata height z =1.2615 A above a hexagonal
array of dipoles of moment m. Note the field reversal between
the dipoles.
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FIG. 8. (a) Dipole of moment m located in free space at a
height d above a subspace of relative permittivity €. The po-
tentials ¥,(z) in the subphase and ¥,(z) above the subphase
arising from this dipole may be determined using the system of
dipoles shown in (b). The local field acting on dipoles in an
infinite 2D array above a subphase is calculated using the two
arrays in (c).



