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Dynamic critical phenomena in water-butoxyethanol mixtures studied
by viscosity and light-scattering measurements
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We have used shear viscosity and dynamic light scattering to study the critical behavior in a water-
butoxyethanol (C4E&) mixture as a function of temperature. The data of viscosity and of the relaxation
rate are analyzed in terms of the mode-coupling theory, taking into account background effects on the
transport coefficient. From experimental data we measure both the short-range correlation length go and

the Debye cutoff length qD ', whose values confirm the micellarlike structural picture proposed for such
a water-alcohol mixture. Furthermore, we find evidence for a crossover from critical to single-particle
behavior in the light-scattering data. The crossover temperature T, is found to be such that qD(( T„)= 1.
For both the measured quantities, i.e., viscosity and linewidth, the parameter qD plays the determinant
role in the critical dynamics of the system.

PACS number(s): 64.70.—p, 66.20.+d, 82.70.—y

I. INTRODUCTION

Simple monohydric alcohols (C„Eo) and alkoxy-
ethanols (C„Ei) constitute the short-chain polyoxethylene
alkyl ethers C„H2„+i(OCH2CH2) OH (C„E ) that for
large m and n are well known nonionic surfactants,
which in water solutions form a micellar phase [1]. Fur-
thermore, adding a mineral oil, they show a complex
phase behavior which includes microemulsions. Many
experimental studies, such as viscosity [2], density and
specific heat [3], mutual diffusion coefficients [4], and ul-

trasound propagation (absorption and velocity) [5,6], per-
formed in water solutions of such short-chain alcohols,
show peculiar behaviors (in many physical properties)
that can be associated with the formation of supramolec-
ular aggregates. In particular, depending on the carbon
chain length the C„EO and C„E& systems provide a se-

quence of amphiphiles ranging from those that form sim-

ply associating nonideal solutions to those that form
structured liquids, such as micelles and liquid crystals
[7,8]. On these bases, careful investigations of these sys-
tems appear to be very useful in order to clarify the effect
of amphiphilic molecule length {and in particular the re-
quirement of a minimal length) on the formation of sur-
factant structures.

Several experiments have given indications of the sur-
factantlike behavior of the simplest ethoxylated alcohols
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as C&Ei (butoxyethanol) and CsE2 [8,9); in fact, the pres-
ence of micellarlike structures in water mixtures above an
amphiphile mole fraction X of about 0.018 has been con-
jectured. The behavior of the partial molar heat capacity
[9] of a C4E, -water solution (with a well-defined max-
imum at a concentration of C4Ei of about 0.018) is simi-

lar to those observed in water solutions of known surfac-
tants (e.g. , sodium octanoate and sodium dodecyl sul-
fonate) at their critical micellar concentration (CMC) [9].
This characteristic concentration, above which aggrega-
tion phenomena are present, has been also found by ul-
trasonic experiments. For X=0.018, sound-velocity data
show well-defined peaks [10,11] and the ultrasonic ab-
sorption data point out two relaxation processes: one
connected to the amphiphilic association (relaxation fre-
quency f ( 5 MHz) and the other one to the amphiphile-
water hydrogen bonding (f -40 MHz). Such a low relax-
ation frequency was observed only in alkoxy ethanols of
hydrophobic tail length C4 or longer. The formation in

water-C4E, solutions of micellar structures is also sup-
ported by both a phase diagram and a CMC-like curve
quite similar to those observed in long C„E nonionic
surfactant solutions. As far as the phase diagram is con-
cerned, C4E, presents a closed loop of solubility analo-
gous to that of C„E compounds, with an upper critical
and a lower critical solution temperature (LCST). In
fact, upon increasing T, it shows a phase transition with a
lower critical solution temperature T& at critical concen-
tration Xc.

However, direct confirmations of the presence of micel-
lar aggregates in this mixture have been recently obtained
by small-angle neutron scattering (SANS) [12] and light-
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scattering (elastic and quasielastic) data [13]obtained as a
function of temperature ( —10~ T 45'C) in the concen-
tration range 0.015~X~0.09 (X is expressed as molar
fraction of butoxyethanol) where ultrasonic attenuation
exhibits peak values. On the other hand, viscosity [14]
and Brillouin [15] measurements performed in the same
experimental conditions, T and X, support this (structur-
al) point of view.

Starting from these results, and having found the mis-

cibility curve and the lower critical solution temperature,
we report here a study of the behavior of the shear viscos-
ity and of the relaxation rate of the fiuctuations I (k, t)
carried out by means of dynamic quasielastic light
scattering (QELS) in the critical region. The aim is to
point out that the amphiphilic character of the butoxy-
ethanol (C4E,), with well-defined micellar structures
(whose dimensions, as shown by SANS, increase slowly
with temperature), plays a decisive role in controlling the
critical dynamics in the whole temperature range ex-
plored. The data analysis is performed in the framework
of the mode-coupling theory of critical phenomena
[16—19], which emphasizes the effects of the background
contribution on the transport coefficient [20—24]. Fur-
thermore, according to this model, we stress that the De-
bye cutoff parameter qz, which can be measured far from
the critical region, governs in fact all the critical dynam-
ics of the water-butoxyethanol (C4E, ) mixture, as it
represents the significant parameter for both the diver-
gence of the viscosity and the order-parameter correla-
tion time.

In addition, considering the obtained value of qz and
the presence of micellar structures, we clarify the
behavior already pointed out by ultrasound data [15,25]
which, differently from molecular LCST binary mixtures
(where the critical divergence manifests at 15—20'C
below Tc), in our solution this anomaly emerges at a few

degrees (-5 'C) from Tc. Usually, for a pure fiuid or in a
binary molecular mixture the short-range correlation
length go and the Debye cutoff length qn ', governing the
critical behavior of the shear viscosity, have the same or-
der of magnitude (a few angstroms) comparable to the
range of the intermolecular potential [26,27]. Instead, it
has been shown that in microemulsions [28] and in micel-
lar solutions [29] go can be fairly large (some tens of
angstroms) and qD ', according to the Fisher theoretical
model [30],should be of the order of the size of the micel-
lar droplets. In fact, in this model the Debye cutoff
length is closely linked to the diameter of the micelles (for
our system -20 A; a value obtained from SANS data
[12] far from the critical region). As in the case of a criti-
cal binary mixture, qDg can be deduced from viscosity
data by extrapolating to the critical region data obtained
in the noncritical one [26,31]. In a critical system
(binary, such as an ordinary mixture or a micellar system,
or ternary, such as a three-component microemulsion)
close to the critical point, the long-range correlation
length g diverges like g= joe, where e=

~
T Tc ~ /Tcis-

the reduced temperature and v is the critical exponent
(for microemulsions v is replaced by v*, a renormalized
exponent). In particular, in a critical micellar suspension,
when g is such that gqD ))1, the system should behave

like an ordinary critical liquid mixture close to a plait
point, with x = kg the relevant scaling variable, where k
is the wave number of the order-parameter fluctuations.
When the system is far from the critical temperature, g
and qD

' may acquire the same order of magnitude, and
thus the critical phenomenon ceases to exist. In this re-
gime, the system (microemulsions or micellar solutions)
behaves like a disperse solution consisting of interacting
droplets whose dynamics is driven by Brownian motion.
In agreement with the result obtained for ternary systems
(microemulsions) this can be named the "crossover
phenomenon. " For temperatures around and below this
crossover, x will no longer play the role of a scaling vari-
able, temperature being the most important parameter,
and the dynamic behavior of the system can be represent-
ed by an ordinary colloidal suspension. Close to the criti-
cal region, above the crossover, the transport coefficient
can be written as a sum of the regular background contri-
bution, which the system shows far from the critical re-
gion, and a nonlocal frequency-dependent critical contri-
bution. In order to specify the micellar picture proposed
for our system from the above experimental results, we
explore a large temperature domain (more than 30'C
below Tc) with the idea that the observation of this cross-
over from a single particle to a cooperative critical
behavior can constitute a definitive confirmation that the
simplest ethoxylated alcohols have a surfactant behavior.

II. EXPERIMENT

The butoxyethanol used in this experiment was of
high-purity grade (99.99%) and was purchased from
Jannsen Chemical. Triply distilled deionized gas-free wa-
ter was used and the samples were prepared by weight in
the proper quantity. Great care was taken to avoid con-
tamination. All the samples were filtered before the mea-
surements. Immediately after preparation, the samples
were put into a cylindrical optical cell or in the viscome-
ter. To avoid unwanted stray-light contributions at small
forward angles we used a 27-mm-diam high-precision op-
tical round glass cell; we also used a refractive-index-
matching bath continuously Altered in order to have
flare-free measurements. In these conditions the mea-
sured optical background In the scattered light was negli-
gible. The scattering cell and the viscometer were ther-
mostated, within +2 mK, in the range 0-49'C, using a
proportional temperature controller monitored by a cali-
brated platinum resistor connected to a high-precision
resistance bridge. The measurements were performed
after a suitable time in order to ensure the thermodynam-
ical equilibrium of the samples.

Since many different works [32—35] report critical con-
centrations ranging between 0.04&XC &0.07, we have
accurately studied the phase diagram of the mixture,
from the shape of the coexistence curve obtained from
light-scattering data. The transition temperature T~, for
each concentration, is assumed to be the temperature for
which the scattered intensity has the maximum value.
We found that the critical concentration is
Xc=0.0525+0.0020, with a critical solution temperature
Tc =49.21 C [14]. These values agree with the findings
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of recent ultrasound and hypersound measurements
[11,15,25]; in particular, the ultrasound absorption X
has a maximum at Xc. In the inset of Fig. 1 is represent-
ed the phase diagram of the mixture. The solutions stud-
ied in this work have the following concentrations:
X=0.035, 0.048, 0.052, 0.07, and 0.09.

The viscosity is measured for the concentration Xc us-

ing a standard Ubbelohde viscometer with the reduced
temperature ranging from e=9.061 X 10 up to
@=6.204X 10 . In this temperature range the measured
viscosity shows a Newtonian behavior representing the
zero-frequency viscosity value il(0). In this respect, we
tested the system using viscometers with difFerent shear
rates (100—500 sec '). Because the measured viscosity is
nearly constant in such a shear rate range, and having in-
dication, from ultrasound absorption [11,15] data, that
the relaxation frequency is located at higher values ( —4
MHz), we may assume that the obtained data represent
il(0). The dynamic viscosity rt is obtained from the kine-
matic viscosity data by multiplying by the density of the
studied sample. The density is measured with a high-
precision densimeter that gives an absolute uncertainty
lower than 10 g jcm . The resulting relative uncertain-
ty in the shear viscosity g can be estimated to be lower
than 0.005 cP.

The quasielastic light-scattering measurement was
made in the homodyne technique (by photon correlation
spectroscopy) by using a 256-channel Malvern 4700 full
correlator. As a light source, a 10-mW unimode He-Ne

50-

0
laser operating at 6328 A was used. A cooled photomul-
tiplier was used in order to obtain negligible dark counts.
The optical alignment of our scattering setup was previ-
ously tested on standard latex particle water solutions.
At the studied concentrations, multiple-scattering effects
were not present, as was previously verified by attenua-
tion and polarization tests. We measured the correlation
function of the fluctuations (Is(r)I&(0) ) of the relative
total scattering intensity Is(r), this function being related
to the correlation function of the density Auctuations g' "
(k, r)=(bp(r)bp(0))/(bp ), where r is the delay time
and k the exchanged wave vector. The background con-
tribution to the Is(r) correlation function was measured
in each run by delaying the last few channels of the corre-
lator by a suitable time. In this way a reliable estimate of
the uncorrelated contribution was obtained. We derived
g'" (k, r) after the subtraction of this "background" and
the normalization of its value at ~=0. The first cumulant
in the obtained first-order density correlation function
gave us the linewidth or the relaxation rate I, . A hetero-
dyne technique was also used in order to test the Gauss-
ian shape of the scattered field, and the results were in
agreement with those obtained using the homodyne tech-
nique. Measurements have been performed from scatter-
ing angles 0=90', 50', 30', 25', which corresponds to
values of the scattering wave vector k=1.979, 1.183,
0.7247, and 0.606X10 cm

In the full temperature domain that we studied, even
very close to the phase-separation temperature and for all
concentrations, the obtained correlation functions were
always fitted with very good accuracy and without sys-
tematic deviations to a single exponential curve. We also
verified that the relaxation rates I have the proper k
dependence (I =Dk, where D is the mass diffusion
coefficient).
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FIG. 1. Shear viscosity as a function of the reduced tempera-
ture e. Continuous line is the best fit with Eq. (2) that takes into
account the background contribution. In the inset is represent-
ed the phase diagram of the mixture.

We shall first address the nature of the viscosity
behavior in order to obtain definitive insight on its diver-
gence near Tc, and on the quantity gqD coming from the
background contribution. This latter quantity is impor-
tant for the following discussion of the light-scattering
linewidth data, because the background contribution in
the viscosity is related, as pointed out by the mode-
mode —coupling theories, to the background of f'(k, t)
through the Debye cutoff wave number qD. For both
viscosity and linewidth data our analysis is performed in
terms of the mode-mode —coupling theory whose com-
plete treatment has been reported by many authors
[16—19] and, as recently shown, is well suited to study
the critical behavior of supramolecular aggregates such
as micelles and microemulsions. In particular, it is possi-
ble to have deeper insight both into effects of the back-
ground contribution coming from the finite extent (tens
of angstroms) of the dispersed particle size in these "col-
loidal suspensions" and into the dominant role of the De-
bye cutoff wave number in their critical behavior. As
shown for microemulsions, this quantity is the significant
parameter for both the divergence of the viscosity and
the order-parameter correlation time.
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A. Viscosity

Near the critical temperature the anomaly of the shear
viscosity is experimentally known to be weak (the accessi-
ble enhancement is of the order of 10—20%), and is
characterized by an exponent y according to the law

rl(&) =rig(»(Qpg) (2)

where Qp is a fluid-dependent wave vector; in particular,
as shown by Bhattacharjee, Ferrell, and Sengers (BFS)
[23] it is given in terms of two different contributions, the
Debye cutoff q~, and a contribution related to the
diffusivity background q&, as

1

Qo

4/3

(3)

Both the viscosity and linewidth data must be analyzed
considering this contribution.

The Debye cutoff qD was proposed for the first time by
Perl and Ferrell [20], whereas qc was studied by Oxtoby
and Gelbart (OG) [21]. This latter wave vector is written
by BFS [23] as qc =n /$2a 0 (where ao is the OG parame-

Many experimental observations give values for the criti-
cal index y that span the range 0.032&y &0.042. This
large uncertainty (+15%) is presumably due to the fact
that the dynamical properties of critical systems (such as
diffusion, thermal conductivity, and viscosity) are more
difficult to study than static ones. Universality classes
defined for static exponents are well accounted from the
experimental results; for example, the exponent v,
describing the critical divergence in the fluctuation corre-
lation length g, is known with very little uncertainty
(v=0. 63) is a universal exponent [19]).

The mode-coupling approach [16—19] to critical phe-
nomena, considering that the relevant variables of a criti-
cal system vary slowly in space and time, employs the
idea that hydrodynamic equations can be used to study
the decay of fluctuations, accounting for nonlinear in-
teractions between relevant dynamical modes. For a crit-
ical mixture, such critical modes are both determined by
the local concentration (order parameter) and the trans-
verse velocity field with respect to the wave vector k,
with the concentration conductivity a and the shear
viscosity g as corresponding transport coefficients. The
static susceptibility y of the order parameter (the osmotic
compressibility), the number density p, and a determine
the mass diffusion coefficient D as D=a/py. Close to
the critical point, the transport coefficients a and g can
be written in terms of a regular part (background) as and

g~ and a nonlocal (k-dependent) critical part ac and gc.
One has a set of coupled integral equations which relate
ac and qc to the wave vector k through the k-dependent
osmotic susceptibility y(k). According to many theoreti-
cal results [16,20 —24], the shear viscosity can be put in an
exponential form, giving the temperature dependence of
g near Tc as the product of the background viscosity
gs( T) with a power-law divergence:

ter, a 0 =(8nri.sang)/[ks Tz(0)] [21]), while, by OG [21]
is written as qD=C/gap (2C/7T)qc (where C is a con-
stant of order unity that is found to be 0.9 [21]). Usually
the viscosity data are studied in terms of a more general
function H(Qpg, qD/qc). The best agreement with the
experimental data is obtained for qD/qc -—1, in the case
of gas-liquid critical points (nitrogen and steam analyses
by Bhattacharjee et al. of Ref. [23]; also ethylene and
ethane from Basu and Sengers of Ref. [23]). This value
was also adopted by Burstyn et al. of Ref. [23] for the
liquid-liquid critical point. Although recently others
found qD/qc =3 for xenon and higher for COz [36], we

assume qc =qD i e Qo =e qD =0.26qD
=0.26q&. Such a choice is consistent with the idea of a
cutoff wave vector in the linewidth data numerically coin-
cident with q&. Kawasaki equations of mode coupling
yield /=8/15m . Several authors attempted to obtain a
refined theoretical estimate of this exponent [19,23], ob-
taining values that lie in the range / =0.062+0.005; how-
ever, the theoretical value currently adopted is /=0. 054
[23]. This value is obtained by expanding the mode-
coupling equations for critical dynamics up to the second
order in x =4—d, where d is the dimensionality of the
system [19]. The exponent P is related to the dynamic
scaling exponent z =3+P, which characterizes the
asymptotic behavior of the decay rate of the order-
parameter fluctuations; P can be written in terms of the
critical index y and v as P=y/v. Considering the diver-
gence in the correlation length g, the measured viscosity
can be written as

&(7')=[98(7')«040)~]e "~=[98(»(Qoko)~]e " (4)

In this equation the quantity within square brackets in-
cludes the fluid-dependent quantities gs(T) Qp and gp.
This form is useful because it specifies how to treat the
noncritical background viscosity contribution. In partic-
ular, in this equation the critical divergence is multiplied
by gz,'this is confirmed by a previous accurate analysis
performed for critical systems [37,38], and represents a
well established procedure in order to describe the experi-
mental data [38,27].

It is important to consider, at this point, that near Tz
shear can affect the measured viscosity [39,40]. For the
present measurements the experimental shear rate of the
used viscometer is sufficiently smail to avoid this prob-
lem. Using the Oxtoby calculation [39], we estimate, for
e= 6.2 X 10,a "shear thinning" of about 2%.

The temperature dependence of the background viscos-
ity cannot be ignored in the data analysis. Usually, this
contribution can be evaluated by performing an extrapo-
lation of gz(T) from the noncritical region into the criti-
cal region, or by fitting the measured viscosity to a prod-
uct of a simple analytic function and a divergent term
[34,20,41,42]. For our data we used a well established
procedure based on the consideration that far from the
critical region the viscosity is assumed to be entirely due
to the background contribution that follows the Ar-
rhenius law [31,27,37,41]:
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Eg~(T)=A expt
1 —e

(5)

After the evaluation of A and E, by means of Eq. (5)
(3 =1.421+0.05X10 cP and E=6.7934+0. 04) the
scaling index y and (qD(o) will be obtained using Eq. (4).
The result of such an analysis for the critical concentra-
tion X& =0.052 is shown in Fig. 1. In particular, using
/=0. 054, we obtained y =0.0414+0.001 (a part of the
uncertainty in y is due to the effect of the "shear thin-
ning" in g) and Qogo=(9. 2+0.06) X 10 . The difference
in the present value of the critical index y and the previ-
ous one, reported in Ref. [14], is due to an incorrect eval-
uation of the background contribution. The 3 and E
values are in good agreement with previous experimental
studies [33—35] in the same samples. As far as the criti-
cal index y is concerned, we have a good agreement with
other studies which use Eq. (4) [33,35], while y is larger
than the result of Ref. [34] (y =0.036), where P is 0.063.
As pointed out by Berg and Moldover [35] the value
y=0.0414 can be considered a universal one for the
viscosity exponent in pure fluids and binary liquid mix-
tures. For Qogo we obtain a value that is in agreement
with Ref. [34]. The differences obtained in these quanti-
ties from the different studies can be related to a
difference in the BE samples (i.e., purity, chemical degree,
preparation, etc.); in fact, the measured Xc and Tc lie in
the intervals 0.05 —0.062 and 47. 3—49.25 'C, respectively.

As far as background effects (the temperature behavior
of Qog) are concerned, and in particular for the calculat-
ed values, it is important to consider the structural pic-
ture suggested above for our system by several investiga-
tions. The obtained viscosity data obeys an Arrhenius
law [Eq. (5)] in the temperature range 20 —40 'C
(9.061X10 &@~2.8569X10 ). As discussed in apre-
vious paper [14], this is due to the presence of micellar
structures. In fact, we can explain the shear viscosity of a
water-butoxyethanol mixture as a function of concentra-
tion and temperature (in particular, in the region
—10 ~ T ~ 40'C) by only taking into account the physical
picture proposed to explain the data of different experi-
mental techniques, such as SANS and quasielastic and
elastic light scattering that give confirmation of the am-
phiphilic character of the alcohol molecules (C4E, ) and
show how the butoxyethanol molecules give rise to a well
defined micellar structure. The presence of such
supramolecular aggregates affects the physical properties
of the solution. In particular, using these concepts we
can explain why critical e6'ects emerge in the system only
at a few degrees from the critical temperature, while far
from T& the viscosity behavior is the same for a micellar
solution. In fact, for ultrasound the dimensions of such
structures (large if compared with those of binary critical
molecular systems) determine a short-range correlation
length go, which in turn reduces the characteristic relaxa-
tion frequency and the amplitude of critical ultrasound
attenuation. Usually, in pure fluids or in binary molecu-
lar mixtures the short-range correlation length $0 and the
Debye cutoA length qa

' are of the same order of
magnitude —a few angstroms —comparable to the range

of the intermolecular potential [26]. In a micellar solu-
tion the short-range correlation length can be fairly large
((o-10 A) and, as shown by Fisher [30], qL,

' should be
of the order of the size of the micelles (in our case,
around some tens of angstroms). Therefore, in a critical
micellar or microemulsion system, when g is such that
gqD))1, the system should behave like an ordinary
liquid mixture, with qDg the relevant scaling variable,
and qD the wave number of the order-parameter Auctua-

tions. For the system far from Tc, g and qD
' can be of

the same order of magnitude, and the critical
phenomenon ceases to exist. In this latter regime,
identifiable as a crossover from the critical to the single-
particle regime, the behavior of the system is the same as
the nonideal solution of interacting micelles whose dy-
namics is dominated by the Brownian motion of the
dispersed particles. For a temperature regime around
and below the crossover temperature T„[q Dg( T„)= 1] the
equilibrium and the dynamic behavior of the dispersion
are completely modified and qD( no longer plays the role
of a scaling variable. The qD((T) values obtained in the
present experiment seem to indicate that, for our system,
qD(=1 for T„=43'C (@=1.87X10 ), therefore, for
temperatures higher than this, the critical phenomenon
could be observable. In particular we obtain that qDg,
upon increasing T, increases up to a value of about 80 for
T=49. 19 (@=6.2X10 ). This result is in agreement
with the findings of previous works performed on mi-
croemulsions [28] and for analogous micellar systems [29]
and refiects the suggestions of Fisher's theory [30] for
which such a quantity should be of the order of the size
of the supramolecular structures. In any case, this pic-
ture will be explained in more detail in the forthcoming
section, where the results of the dynamic light-scattering
measurements will be discussed in terms of the mode-
coupling theory [18], and the effects of the background
contribution on the transport coefficients will be pointed
out. This structural point of view has supported several
experimental results and in particular studies of viscosity
behavior [14], sound velocity and absorption [10,11],and
SANS data [12] in a temperature range well below the
critical region.

B. Dynamic light scattering

Using the same assumptions for the mode-coupling
equations as for the analysis of critical microemulsions
[31] [a simplified Ornstein-Zernike form for the nonlocal
susceptibility yT(k, T) with Fisher exponent 7) put equal
to zero] the decay rate of the order-parameter fiuctua-
tions can be written as the sum of two terms:

This quantity, proportional to D, can be directly mea-
sured by photon correlation spectroscopy. The critical
part can be written in terms of the solution of the mode-
coupling equations (using the OG formalism) [16,18) as

~ka T K(kg, T) k2D K(x )

6~q(T)g
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I' (k, T)=k D —(1+x )
3 C
4 qng

(8)

where, for the comparison with the viscosity data,
qn =2RCqc/m. The theoretical predictions for the decay
rate of the order parameter accounted for in Eqs. (6), (7),
and (8) can be more easily compared with the experimen-
tal data if these equations are written in a reduced form
involving only universal quantities. In this respect it is
customary to define a reduced critical relaxation rate:

I '(k, T)= I (k, T) (9)

which is a universal function of the scaling variable x.
Similarly, the scaled background relaxation rate is
defined as

where Dc =Rkz T/6nrlg, x =kg, and E(x)
=(3/4)[1+x +(x —1/x)tan 'x] is the Kawasaki
universal scaling function for the decay rate and k~ is the
Boltzmann constant. R is a universal amplitude equal to
1.027, which in the mode-coupling theory represents the
amplitude correction to the Stokes-Einstein diffusion law.
To the same order of approximation the background con-
tribution on the decay rate is [31]

I (k, T)=I (k, T)
Rk, Tk'

3C
4 qD

1+ x1

X
(10)

This contribution, being the product of a universal func-
tion of x and a nonuniversal term involving the ratio
k/qn, depends on both the geometry of the experimental
setup and the physical nature of the system through the
Debye wave vector. By reducing, in the same way, the
experimental relaxation rate l,„,(k, T), the inverse of the
experimental order-parameter fluctuations correlation
time,

I',*„,( k, T)=l,„,(k, T)
Rkq Tk

it is then possible to make a direct comparison between
the theory and the dynamic light-scattering experiment.
In fact, the difference of the reduced linewidth,
I,'„~,(k, T)—I's(k, T), computed from the previous two
equations, can be compared with the universal function
I'c(k, T) given by Eq. (9). This comparison is performed
in our case from the data obtained at the critical concen-
tration Xc for several relaxation rates measured at the ex-
perimental wave vectors (k=1.979, 1.183, 0.7247, and
0.606 X 10 cm ') where the long-range correlation
length g diverges according to the well established criti-
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FIG. 2. Log-log plot of the obtained relaxation rate l,„p& vs
T& —T, for different scattering wave vectors. Inverted open tri-
angles, 8=90', open circles, 8=50', squares, 8=30', and full tri-
angles, 8=25 . Temperature is measured in degrees Kelvin.

FIG. 3. Log-log plot of the relaxation rate of the critical con-
centration (8=90 ) vs Tc —T; the dots are the experimental re-
sults, whereas the solid line is the calculation in terms of the
prediction of mode coupling including background effects. In
the inset is reported the power-law divergence of the hydro-
dynamic radius Rq. Temperature is measured in degrees Kel-
vin.
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cal law. Figure 2 shows in a log-log plot the obtained re-
laxation rate I, pt vs T~ —T. As can be observed far
below the phase-separation temperature, for Tc —T rang-
ing from 20 to 43 C, and for all the samples, the decay
rate increases and reaches a maximum around 32 C and
then decreases again. This is consistent with the
structural picture proposed by elastic light-scattering and
neutron-scattering data that our mixture behaves like a
macromolecular solution [12,13].

Let us discuss now the experimental results for the
dynamical behavior of the system. Since, close to the
critical temperature, the shear viscosity diverges with a
critical index y=0.0414+0.001, we believe that mode-
coupling equations can be applied to our critical mix-
tures. The experimental values of the relaxation rate
I,„,are first reduced according to Eq. (11). In order to
calculate the background contribution to the relaxation
rate I z, the Debye cutoff must be known. Since from the
actual treatment of viscosity data, based on Eq. (2), we
are able to calculate the quantity qDg( T), we use for 1 s
the following modified expression of Eq. (10):

1+xI's(k, T)= (
' g)'~qg) x

(12)

The difference between Eqs. (10) and (12) is that Eq. (12)
uses the quantity (qD() obtained from the viscosity data;
Eq. (10) instead is written in terms of the ratio k/qD. A

x=k(
10

FIG. 4. Log-log plot of the reduced relaxation rate I c(k, T)
as a function of x =k(. The solid line represents the theoretical
mode-coupling result E(x j/x'. The symbols are the same as in
Fig. 1 ~

direct evaluation of the scaling variable x =k g, and
therefore of the diverging fiuctuation correlation length g
can be calculated, with /=0. 054 and v=0. 63, using the
value (obtained from the viscosity data) for
qD go

= ( Qo /0. 26)go2R C /vr and the experimental
linewidth background values; in this manner Eq. (12)
gives us go-5 A and Qo

' —57 A. This evaluation has
been performed in a temperature range not too far from
Tc (35—47'C). For comparison a direct measurement of
go can be obtained from intensity data or the linewidth
data by using the Stokes-Einstein relation. In the latter
case, using the actual mixture viscosity, we can calculate
the hydrodynamic radius of the dispersed particles RH.
The use of such a procedure, as shown in the inset of Fig.
3, gives as a result that the hydrodynamic radius (mea-
sured from both light and SANS), corresponding to the
critical concentration, and reported in a separate work
[25], diverges according to the law R+=R+oe ', with
v=0. 63+0.004 and RHO=8. 9+1 A that correspond to
(0=4.5+0.5 A (in accordance with the well-known rela-
tion RH= &5( [12]). The so-obtained go agrees, within
the experimental error, to the value obtained in other ex-
periments [33,34].

This value of go is significantly larger than those usual-

ly obtained for pure Auids or binary liquid solutions
[26,27], but it is of the same order of the values found for
critical nonionic micellar suspensions [29] and water in
oil microemulsions [28]. Having obtained Qo

' —50 A
we can evaluate the Debye cutoff qD

' in all the explored
temperature ranges far and near Tc. In fact, working un-

0
der the assumption q& -—qL„we obtain qa

' —16 A, a
value in agreement with Fisher s prediction; in fact, qD
is of the order of the size of the dispersed particles,
confirming again the structural picture proposed by other
experimental observations. Furthermore, the comparison
with the same parameter obtained for a binary critical
mixture (n-hexane and nitrobenzene [27]), i.e., qD =5 A,
implies that the background contribution to the relaxa-
tion rate I s given by Eqs. (10) or (12) is very large in our
system. With this value of the Debye cutoff length we fit
our linewidth data in the critical regime. Figure 3 shows
in a log-log plot the relaxation rate of the critical concen-
tration (0=90') vs Tc —T; the dots are the experimental
results, whereas the solid line is the calculation in terms
of the prediction of mode coupling, including background
effects. Finally in Fig. 4 we plot, against x, the reduced
critical decay rate I c(k, T) obtained by computing the
difference l,*„,(k, T) —1 s(k, T) for all the k values used.
The solid line represents the theoretical mode-coupling
result E(x)/x . It can be seen that the agreement be-
tween the theory and the experiment is good, for x rang-
ing from 0.28 to 12, when background effects are taken
into account.

Let us go back now to the low-temperature domain.
With the above numerical values for go and qD, and the
critical indices y, P and v, we obtain Q g(To)=1 for
ET=6 C below Tc, i.e., around 43'C which corresponds
to the crossover temperature T . If we increase the tem-

perature, the sample obeys the usual critical laws,
whereas moving below it the previous divergent quanti-
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ties (e.g. , correlation time of the order-parameter fluctua-
tions) remain roughly constant.

IV. CONCLUSIONS

We studied both the shear viscosity and the relaxation
rate of a water-butoxyethanol mixture as a function of
the temperature at the critical concentration. The ob-
tained results confirm the physical picture proposed by
the data of different experimental techniques (ultrasound
velocity and absorption, SANS, quasielastic and elastic
light scattering} giving confirmation of the amphiphilic
character of the alcohol molecules (C&E&). These proper-
ties in the butoxyethanol molecules give rise to a well-
defined micellar structure. The presence of such
supramolecular aggregates is reflected in the physical
properties of the solution. In particular, with the present
study we confifm that the critical properties of the mix-
ture can be described within the framework of the mode-
coupling theories for critical systems, taking into account
dynamic background effects. In our case, such effects
come from the noncritical contribution to the transport
coefficient entering in the mode-coupling dynamics. Us-
ing these theoretical concepts we can explain why critical
effects emerge in the system only at a few degrees from
the critical temperature, while far from T& the viscosity
behavior is the same as a micellar solution. In our data
analysis the main role is played by the Debye cutoff
length qD ', which is of the same order of the size of the
micelles. Depending on the value of the correlation
length g, and in particular on the quantity AD(T) as
shown by the analysis of dynamic light-scattering data,
the system ranges through a crossover from a critical to a
single-particle behavior. More precisely, the analysis of
the shear viscosity in terms of a multiplicative law for the

background and the critical contribution gives a value for
the critical index y which agrees with recent measure-
ments in simpler fluids and also allows the direct evalua-
tion of the quantities qDg(T) and the crossover tempera-
ture T„[qDg( T)= 1]. Combining these results with those
derived from the Stokes-Einstein law for the diffusion
coefficient, we can calculate the short-range correlation
length go and the parameter qD ', both the obtained
values are consistent with the above exposed structural

0
picture. In particular, the measured qz '-16 A, in
agreement with Fisher's prediction for critical scattering
from analogous supramolecular aggregates such as micel-
lar structures and microemulsions.

Finally, using the mode-coupling theory for the decay
rate of the order-parameter fluctuations, including the
dynamic background effect for the transport coefficient,
we make a quantitative analysis of the linewidth results.
More properly, in addition to the background contribu-
tion to the experimentally obtained rate relaxation data,
we obtain excellent agreement between the critical contri-
bution with the dynamic scaling of Kawasaki in the
whole range of the scaling variable kg (from 0.28 to 12}.
In conclusion, the performed analysis gives evidence for
the overall determining role of the quantity q~ in control-
ling the critical dynamics for both the divergence of the
viscosity and the order-parameter correlation time.
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