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Hydrodynamic modes of viscoelastic polymer films
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We discuss the hydrodynamic modes of a thin viscoelastic film of polymeric material at the interface

between two Newtonian fluids. The mode dispersion relations and the dynamic structure factor of
thermally induced (transverse} modes are obtained by the method of fluctuating hydrodynamics utilizing

generalized boundary conditions derived for a thin viscoelastic interface. Specific examples appropriate
to liquidlike films of entangled polymers are presented, and possible relevance to existing experimental

studies of dynamic light scattering from insoluble polymeric monolayers is discussed.
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I. INTRODUCTION

The properties of fluid interfaces in the presence of
surface-active materials has been a very active area of
research in the last few decades [1—3]. Studies of such
systems have implications in physics, chemistry, and biol-

ogy, as well as many technological applications. The hy-
drodynamics of such interfaces is one of the most active
and interesting areas of study. The qualitative effects of
impurities at a liquid-vapor interface have been known
for many years [4,5]; very small amounts of surface-active
material strongly damp surface fluctuations. Early
theoretical studies identified Gibbs elasticity of the sur-
face impurity as the cause of capillary wave damping,
and experimental studies of mechanically generated sur-
face waves on monolayer covered interfaces were carried
out [6]. The subsequent development of quasielastic sur-

face light-scattering techniques made possible nonin-
vasive studies of surface hydrodynamics. Recent
refinements of this technique allow for extremely precise
measurements of the thermally induced modes of fluid in-

terfaces [7,8].
Extensive theoretical studies of the surface light

scattering from monolayers at liquid interfaces have been
made [9,10]. In a seminal paper, Kramer [9] developed a
general theory of light scattering from surface modes of
membranes and monolayers. This theory is based on in-

terfacial stress-strain relations for membranes and mono-
layers with two-dimensional isotropic or hexagonal rota-
tional symmetry and postulated forms for the three in-

dependent interfacial viscoelastic moduli. In Ref. [9], the
transverse modulus, P, and the in-plane shear and
compressional moduli, I and R, respectively, were as-
sumed to have a Voig t form [11]: S(to ) =So+i to/&,
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%'(to) =Ro+i to%'„and P(to) =Pc+i toP, ; where So, Ro,
and Po are the elastic moduli of in-plane shear and

compression, and transverse displacement of the mem-
brane, respectively, and where 4, , R, , and P, are the as-

sociated viscosities [12]. Most other theoretical treat-
ments have followed this approach, although some have
excluded the possibility of a transverse viscosity, P&. Ex-
perimental light-scattering studies of monolayers of low
molecular weight surfactant molecules at liquid-vapor
and liquid-liquid interfaces are in good agreement with
this picture [13—19]. Similar experiments on monolayers
of insoluble polymers have also been carried out [16—24].
These experiments are also in basic accord with existing
theory, although some unusual viscoelastic features were
observed [22,23]. For a recent review of such experi-
ments, see Ref. [24].

Monolayers, however, are only one class of viscoelastic
polymer film that may be present at a liquid-liquid or
liquid-vapor interface. One may imagine various types of
viscoelastic interfacial films of finite but small thickness.
Examples include wetting layers of entangled flexible po-
lymers, insoluble films of entangled polymeric surfac-
tants, and smectic layers of polymer liquid-crystalline
materials. The internal structure of such surface films is
expected to result in more complex viscoelastic behavior
than in the case of classical monolayers discussed above.
A more general approach for studying the interfacial
viscoelastic behavior of more complex films is to start
with a proper hydrodynamic description of the three-
component system consisting of two liquid phases and an
intermediate viscoelastic phase of finite thickness. This
point of view has recently been adopted to discuss the re-
lated problem of hydrodynamic modes of a freely
suspended soap film containing a viscoelastic liquid [25].
In the limit of a very thin film, however, one may reduce-
the full three-phase hydrodynamic problem to an
effective two-phase problem with interfacial boundary
conditions that are derived from the bulk viscoelastic
properties of the interfacial material rather than postulat-
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ed a priori. This approach allows one to systematically
deduce the effect of interfacial structure on the hydro-
dynamic modes of a viscoelastic interface.

In this paper, we illustrate this scheme by considering
the case of a thin isotropic film of viscoelastic material at
the interface between two Newtonian liquids. Such a film

may serve as a model of an entangled polymer film (e.g. , a
melt, a concentrated solution, or a gel) at the interface be-
tween two dilute polymer solutions. In Sec. II, we
present the general hydrodynamic description of the
three-phase system consisting of a viscoelastic film and
two Newtonian liquids. We then show how this descrip-
tion in the thin-film limit reduces to the equations of
motion for two Newtonian liquids with generalized
boundary conditions at the liquid-film-liquid interface.
Derivation of these boundary conditions is presented in
Appendix A. In Sec. III, we present general results for
the dispersion relations co(k ) of the interfacial modes and
the structure factor S(k, co) of thermally induced trans-
verse modes. Derivation of these results is presented in
Appendix B. We illustrate these results by considering
two special cases: (i) fiuctuations of a polymeric film

separating two fluids of the same viscosity and density
(the "symmetric interface"), and (ii) fiuctuations of a po-
lymeric film at the interface between a Newtonian liquid
and vapor (the "free interface"}. We compare these re-
sults to those of the classical monolayer model discussed
in Refs. [9] and [10]. Finally, in Sec. IV, we conclude
with a discussion of possible applications of our general
model, and with suggestions for possible experiments to
check our predictions. A preliminary report of our
findings has been published in a recent proceedings
volume [26].

where V&
——~3/c}x&. Equation (2) is the incompressibility

condition for the Newtonian fiuids. Equation (3) is the
generalization of the Navier-Stokes equation to a linear
viscoelastic medium; it must be amended by dynamical
equations for the internal degrees of freedom of the
viscoe1astic medium as discussed in Appendix A.

The solutions to these equations of motion are subject
to appropriate boundary conditions on the upper and
lower film interfaces. As is usual in hydrodynamic
theories, we characterize these interfaces by step-function
density profiles and surface tensions y, . Then, in addi-

tion to requiring continuity of velocity at the interfaces,
we also require continuity of shear stress, and the balance
of normal stress difference with the Laplace pressure at
each deformed interface.

In the limit of a very thin film (d ~0), the equation of
motion of the viscoelastic material and the boundary con-
ditions at the fluid-film interfaces may be replaced by
effective boundary conditions between the Newtonian
fluids 1 and 2. These are obtained by enforcing conserva-
tion of momentum across the viscoelastic interface
separating the fluids. As we are interested in relatively
long wavelength modes of very thin films (kd «1, where
k is the mode wave number), we may restrict our atten-
tion to transverse undulation modes of the film, i.e.,
modes in which the upper and lower interfaces fluctuate
in phase, approximately maintaining the constant thick-
ness of the film [27]. Then, we may consider the film as a
membrane of negligible thickness and characterize its
modes by the local transverse and in-plane displacements
from equilibrium, g and g, respectively. In Appendix A,
we show that the effective dynamic boundary conditions
for such membrane modes have the form

II. HYDRODYNAMIC MODEL

V.v(') =0
(m}

pm ~ ~ +pmg &

clt

(2)

(3)

where v" and cr" for i = 1,2 are, respectively, the
Newtonian liquid velocities and stress tensors; where p
v' ', and o.™denote, respectively, the density, velocity,
and stress tensor of the viscoelastic material; and where

g~~
—z is the acceleration of gravity. Equation (1) is

the usual linearized Na vier-Stokes equation if a"&
P"5 &+r);(V u& +V&u" }—, where we denote com-

ponents of vectors and tensors by greek indices and

We consider two semi-infinite incompressible Newtoni-
an liquids separated by a film of viscoelastic material of
thickness d. For the sake of argument, we assume liquid
1 occupies the region z )d /2, while liquid 2 occupies the
region z & —d/2 in equilibrium. We characterize each
liquid by its viscosity g; and density p, for i =1,2.
Thermal fluctuations or weak externally applied forces
will induce small-amplitude modes on the upper and
lower boundaries of the film. Under these assumptions,
the appropriate linearized equations of motion have the
form

where [f], z denotes the discontinuity of f across the

membrane and P' ' is the total interfacial force density
(given below), including the contributions from the
viscoelasticity of the film and from the Laplace pressure
of the perturbed fluid-membrane-fluid interface with an
effective surface tension y. Note that the viscoelastic
contribution to the boundary conditions is determined in

part by the choice of a bulk dynamical constitutive equa-
tion for the membrane material. One may use an empiri-
cally determined bulk constitutive equation for o'&', such
as a Maxwell model [11], to obtain P' '. Alternatively,
we discuss a very general form of o'&' appropriate for
homogeneous, isotropic viscoelastic materials from the
point of view of macroscopic hydrodynamics [28], in

which the elastic degrees of freedom are taken to be addi-
tional macroscopic slow variables that, however, relax in

finite time. Thus, in addition to the usual static elastic
and liquidlike viscous responses discussed in the Intro-
duction, we allow for extra frequency-dependent visco-
elastic response, the origin of which is in the relaxation of
entanglements in a concentrated polymeric film. We also
include higher-order viscoelastic bending moduli, for the
sake of completeness. This approach is introduced and
developed extensively in Appendix A.

As for kinematic boundary conditions, we require sur-
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In a linearized theory such as ours, Eqs. (4) and (5) are to
be evaluated at z =((x)=0. Since we are neglecting the
thermal degree of freedom, we do not need boundary
conditions for heat flow.

In order to study both the mode spectrum and the
amplitude-amplitude correlation function of thermally in-
duced membrane fluctuations, we employ the usual
method of linear fluctuating hydrodynamics, in which the
hydrodynamic currents in fluids 1 and 2 are amended by
fluctuating parts with zero means and variances given by
generalized fluctuation dissipation relations [29]. The
stress tensors in the bulk liquid phases then take the form

where X'& are random sources of stress related to dissipa-
tion in liquid i through the generalized fluctuation dissi-
pation theorem for incompressible classical fluids

(X,"p(r, t )X„",'(r', t') ) =2kp Tri;(5 „5p„+5 „5p„)

X5,,5(r —r')5(t —t'),
where kp is Boltzmann's constant, T is the absolute tem-

perature, 5; is the Kroneker delta function, and 5(x —x')
is the Dirac delta function. %e have suppressed the
effects of extensional viscosity in Eq. (7) since we are con-
sidering the limit of incompressible liquids in regions 1

and 2.
Equations (1), (2), and (4)—(7), together with a dynami-

cal constitutive equation for the viscoelasticity of the
membrane material, provide the necessary equations of
motion and boundary conditions to determine the mern-
brane mode spectrum and fluctuation amplitude correla-
tions.

It suffices to consider the case of plane waves of wave
vector k and frequency co propagating along, say, the x
direction. Then, the macroscopic dynamics approach
leads to P' I in the boundary conditions [Eq. (4)] of the
form P' '=C' '(k, co)(ik /co)u' 'with

IlcC' '(k, co)=s+icovll+ 1+lNTii
(8)

l covs cs
C'~'(k, co) =icov, + 1+Icos,

(9)

lC07 yC'"(k, co)=y+ico(v, +vt, k )+ . (c~+ct,k ),I+ s e~z

(10)

where y is the effective surface tension of the fluid-
membrane-fluid interface; c. is the static uniaxial
compressional modulus; v~~, v„and v~ are, respectively,
the liquidlike uniaxial dilational viscosity, surface shear
viscosity, and transversal viscosity; and where the

face modes to be localized at the membrane surface, i.e.,
we impose v"~0 as z~+ ~; and we require the con-
tinuity of velocity at the fluid-membrane-fluid interface,

V( )=V( )=V( )

dynamical contribution to the film viscoelasticity due to
polymer entanglements is characterized by transient
uniaxial-compressional, shear, and transverse moduli, c~~,

c„and c~, and by associated relaxation times, ~~~, ~„and
~~, as discussed in Appendix A. In addition to these
terms, we include in the surface viscoelasticity term cor-
responding to transverse displacements [Eq. (10)] the pos-
sibility of a transverse-bending mode viscosity vb, and a

dynamic viscoelastic bending modulus cb with corre-
sponding relaxation time ~~, i.e., the same relaxation time
as for c~. Note that the dynamic viscoelastic terms in
Eqs. (8)—(10) corresponding to relaxation of entangle-
ments are equivalent to those obtained within the context
of a Maxwell rheological model.

III. RESULTS

Localized surface mode solutions of Eqs. (1), (2), and
(4)—(10) include in-plane shear modes, in-plane compres-
sional modes, and transverse modes. Due to the isotropic
rotational symmetry of the polymer filrns under con-
sideration, the shear modes decouple from the others.
Furthermore, in-plane shear modes are not easily observ-
able with conventional radiation scattering techniques.
So, we ignore the shear modes, and assume v=v(x, z)
and v y=0. In general, however, the transverse modes
and in-plane cornpressional modes are coupled. The gen-
eral film dispersion relation co(k ), and the dynamic struc-
ture factor S(k, co) of thermally induced transverse
modes are derived in Appendix B. The resulting expres-
sions for co(k) and S(k, co) are given by Eqs. (B24) and
Eqs. (B26)—(B28). These are rather involved so we will
not reproduce them here. Rather, in the next two subsec-
tions, we discuss two interesting limiting cases. The first
case (the symmetric interface) corresponds to the limit of
equal fluid viscosities g, =g2 and equal fluid densities

p&
=p2. In this limit, transverse and compressional

modes are decoupled, and S(k, co) is independent of
C'"'(k, co). This is a consequence of reflection symmetry
with respect to the x-y plane; from a hydrodynamic point
of view fluids 1 and 2 are identical in this limit. The
second case (the free interface) corresponds to the limit of
vanishing g and p for the fluid in one region. This limit is
essentially the case of a viscoelastic film at a liquid-vapor
interface, an often studied situation [16—23]. In this lim-
it, the coupling between transverse and compressional
modes is maximized.

A. Modes of a symmetric interface

In the limit of equal fluid viscosities and densities, the
compressional and transverse modes of the film are in-
dependent, with dispersion relations obtained from Eq.
(B24) in the limit g&=g2=g and p&=p2=p. These are
given by

k (q —k)C' '(k, co)

2p

k (q —k)C "(k,co)

2pq

where q/k =(1+ipco/gk )'~ and where C' ' and C"
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are given by Eqs. (8) and (10). Equation (11) is the impli-
cit dispersion relation of uniaxial compression modes,
while Eq. (12) is that of the transverse modes. The corre-
sponding dynamic structure factor of thermally induced
transverse modes is obtained from Eqs. (B26)—(B28) in
the limit g1=qz=g and p, =pz=p, we find

1.10

1.08

1.06

1.04

k~ TA,„(k,co)
S(k, co),„

~co C "—(k, co)k /2p+ik(q+k)geo/p~

(13)

1.02

1.0
200 400 600 800 1000

where A,„(k, co)=rik ~q+k /(2p Re[q]) and where
the subscript label sym indicates the symmetric interface
limit. Notice that S(k, co),„ is independent of all in

p/ane viscoelastic moduli and viscosities. In the absence
of viscoelastic material at the liquid-liquid boundary,
Eqs. (12) and (13) reduce to expressions for the capillary
fluctuations of a symmetric liquid-liquid interface [30], in
which case the dynamic structure factor S(k, a&),„ in the
low fluid viscosity limit has a peak at coo=(y/2p)' k ~

of width b,co0=4rik /p. The presence of viscoelastic ma-

terial can modify the mode spectrum in interesting ways.
Consider the case of a thin film of concentrated polymer
solution at a liquid-liquid interface as might occur, for
example, when it is energetically favorable for polymers
in solution to wet the interface between two immiscible
solvents. In the simplest model of such a scenario, the
viscoelastic interface may be characterized by an effective
surface tension y, and by a transient modulus cj and re-
laxation time r~ due to polymer entanglements (a
Maxwell model). Thus, for simplicity, we ignore the
viscoelastic bending modulus and interfacial viscosities in
C", and write C"(k,co)=y+c'(co) with c'(co)
=icorjc~/(1+ice~~) Qualit. atively, the viscoelastic con-
tribution c'(co) provides an eff'ective transverse viscosity
at moderate frequencies (co= I/r~) and augments the
effective surface tension at high frequencies. Thus, the
peak width Aco is anomalously broadened at intermediate
k and the peak position co is shifted to higher frequen-
cies at high k. In Fig. 1, we give plots of co and hen vs k
for y =40 dyn/cm, ri= 10 poise, p = 1 g/cm,
z~=3X10 sec, and c~=2, 4, 6, and 8 dyn/cm. Figure
1(a) shows co~ normalized by the peak position for a bare
symmetric interface, coo = ( y /2p) ' k, and plotted
against k. Notice that the peak position is essentially
unaffected by interfacial viscoelasticity for k (200 cm
but that co increases monotonically with k for k &200
cm '. Figure 1(b) shows Aco normalized by the intrinsic
peak width for a bare symmetric interface,
hco0=4qk /p, and plotted against k. Notice that the
peak width increases sharply at k=350 cm ', corre-
sponding to the crossover frequency co(k)=1/r~. In
both the plots of co and Ace, the viscoelastic efFects be-
come more pronounced for larger values of the transient
stretching modulus c~. %e note, however, that in realis-
tic situations c~ is probably quite small, and that the
effects shown in Fig. 1 might be difficult to observe in
practice.

1.6

1.S

200 400 600 800 1000

FIG. 1. Plots of dimensionless co~ and hen vs k in units of
cm ' for y =40 dyn/cm, g = 10 poise, p = 1 g/cm',
~~=3 X 10 sec and c, =2, 4, 6, and 8 dyn/cm (bottom to top).
(a) shows co~ normalized by the peak position for a bare sym-
metric interface, no=(y/2p)' k', and plotted against k. (b)
shows bee normalized by the intrinsic peak width for a bare
symmetric interface, Acoo=4qk /p, and plotted against k.

B. Modes of a free interface

X [C'"'(k, co)k +i haik(q+ k )co]

+g k (q —k) co (14)

"(k, ~)="(k, ~)+g /k', p2= p,
q/k =(I+ipcolgk )'~, and where C'"' and C" are
given by Eqs. (8) and (10). Equation (14) is the generali-
zation of the well-known Lucassen mode dispersion rela-
tion [6,9,10] to more general viscoelastic interfaces. The
corresponding dynamic structure factor of thermally in-
duced transverse modes obtained from Eqs. (B26)—(B28)
in the limit p, ~0 and g, ~0 is given by

ks TA„(k, co)
S(k, co)r, =

D(k, co)„'
(15)

where the subscript label fr indicates the free interface

The limit of vanishing density and viscosity in one fluid
region corresponds to the case of a viscoelastic film at a
liquid-vapor interface. The interface mode dispersion re-
lation in this limit is obtained from Eq. (B24) with p, ~0
and F1~0; we find an implicit dispersion relation
D(k, co)r, =0 with

D(k, co)„,= [C "(k,co)k'+igk(q+k )co —pcs ]
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limit, and D(k, co)f, is given in Eq. (14) and A&,(k, co) is

given by
8 ' I'

A (k co) = I co A,
—co (A, Re[C"'"']

Iq
—kI'

1.01

1.00

0.99

'~

—
A, IIn[C'"'])+A, IC'"'I ]

with

A, , = 1 —Im[q]/(Pk),

~z=k'Iq —k I'/(2Re[q]p}

A3=k Iq
—kI /(Im[q]p),

A4=P Im[q ]k'/(4p2),

(16}

(17)
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where Re[f], Im[f], and If I denote, respectively, the
real part, the imaginary part, and the modulus of f; and
P=pco/gk . Equations (14)-(17) reduce to the classical
theory for the surface hydrodynamics of monolayers dis-
cussed in the Introduction [6,9,10] if C'"'=s+icov~~ and
Co"=y+icov~. The general viscoelastic response is more
complex, however. Consider the idealized case where
C'"'=s+icovl+c'(co) and C"=y+icovj+c'(co) with

c*(co)=icosa/(1+icos). Here we assume, for simplicity,
a single characteristic viscoelastic response c'(co)
due to entanglements for both transverse and compres-
sional modes of the film. In Figs. 2 and 3, we give plots
of peak position co and peak width hco vs s/y at k =200

2.4
3,0)

2.2

2.0

1.6

1.4
t

1.2

1.0
0.0 0.2 0.4 0.6 0.8 1.0

FIG. 3. Plots of dimensionless peak position m~ and peak
width hco vs c/y at k =200 cm '. Parameters are chosen as in

Fig. 2, except that ~=10 sec.
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FICx. 2. Plots of dimensionless peak position co~ and peak
width hco vs c./y at k=200 cm ' for co=4 dyn/cm, y=40
dyn/cm, g=10 poise, p=l g/cm', vII=10 surface poise,
and v&=0 surface poise. (a) shows a plot of u~ for r=10 sec
normalized by the peak position for a bare free interface,
coo=(y/p)' k' . (b) shows the corresponding plot of Leo nor-
malized by the intrinsic peak width for a bare free interface,
hco0=4qk /p. The dashed curves are those corresponding to
c (co)=0, i.e., the analogous classical results.

cm ' for co=4 dyn/cm, y=40 dyn/cm, ran=10 poise,
p=1 g/cm, v~~=10 surface poise, and vj=0 surface
poise. Figure 2(a) shows a plot of co for ~=10 sec nor-
malized by the peak position for a bare free interface,
coo=(y/p)'~ k ~; while Fig. 2(b) shows the correspond-

ing plot of hco normalized by the intrinsic peak width for
a bare free interface, b,co0=4gk /p. Figure 3 shows

analogous plots of co and hco for v=10 sec. In both
plots, the dashed curves are those corresponding to
c'(co)=0, i.e., the analogous classical results. Notice
that while the anomalous film viscoelasticity has only a
small effect on the peak positions, it has a significant
effect on the broadening of the peaks; the apparent static
Gibbs modulus c at which peak width is maximized de-
creases in the presence of viscoelasticity due to entangle-
ments. This behavior is inherently frequency dependent,
as can be seen by comparing Figs. 2(b) to Fig. 3(b). At a
given frequency co, the film depicted in Fig. 2 (with
r=10 ) is more solidlike (elastic) than the film depicted
in Fig. 3 (with ~= 10 ). We should add that the qualita-
tive behavior in Figs. 2 and 3 is unchanged if we suppress
transverse viscoelastic effects and write C' =y+icov~;
the broadening of the peak in S(k, co}f, is controlled pri-
marily by the coupling of the propagating transverse and
in-plane modes of the film, and hence is most sensitive to
the entanglement contribution to the compressional
viscoelasticity.

IV. DISCUSSION

We have presented a general theoretical approach for
the hydrodynamics of thin viscoelastic films at liquid-
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liquid and liquid-vapor interfaces based on the method of
linear fluctuating hydrodynamics utilizing generalized
boundary conditions obtained from the bulk viscoelastic
properties of the interface material. We have illustrated
this approach for the case of homogeneous and isotropic
polymeric films characterized by an idealized constitutive
equation modeling the effects of polymer entanglements
on film viscoelasticity.

In Sec. III A, we showed that at finite frequencies the
viscoelastic stretching modulus of the film augments the
effective interfacial tension and provides an extra source
of dissipation. As a result, the peak of the dynamic struc-
ture factor of the thermally induced transverse-mode
shifts to higher frequency with increasing k [i.e., a)(k)
grows with k somewhat faster than k at high k; cf.
Fig. 1(a)]. Also, the peak width hco(k) is anomalously
broadened at intermediate k [cf. Fig. 1(b)]. For realistic
films, these effects may be quite modest since c~ is expect-
ed to be quite small.

In Sec. III 8, we considered the effect of film viscoelas-
ticity on the coupling between transverse modes and in-

plane compressional modes. In the conventional Lu-
cassen picture of monolayer hydrodynamics [6,9, 10], cou-
pling between transverse and in-plane compressional
modes results in broadening of the peak in the
transverse-mode dynamic structure factor, S(k, co). This
broadening is maximized for a static Gibbs modulus
@=0.2y. However, in the present case the complex,
frequency-dependent contribution to the in-plane
comp ressional modulus due to entanglements
significantly alters the apparent maximizing value of E [cf.
Figs. 2(b) and 3(b)]. Such interfacial viscoelasticity due to
entanglements could complicate the interpretation of dy-
namic light-scattering data.

The theory we have presented may have some
relevance to recent dynamic light-scattering studies of in-
soluble polymer monolayers at liquid-liquid and liquid-
vapor interfaces [16—22]. In these experiments, the sur-
face tension y and static Gibbs elasticity c. of polymeric
monolayers as a function of surface coverage I were
monitored in a Langmuir trough simultaneously with dy-
namic light-scattering studies of transverse interfacial
modes. In these studies, dynamic light-scattering results
were analyzed using the classical theory discussed in the
Introduction [9,10]; and for the most part, theory and ex-
periment were consistent, especially at low to moderate
surface coverages. Some unusual features were observed
in several studies, however, especially at high surface
coverage including (i) a significant discrepancy between
measured static and dynamic surface elasticities at high
I", and (ii) an unusual double maximum in the
transverse-mode peak width Ace vs surface coverage r
[22]. The former feature is quite plausibly a viscoelastic
effect of the sort discussed in this work. The latter
feature was explained in terms of a nonmonotonic depen-
dence of E on I [22]. However, we suggest that a viscoe-
lastic interpretation is also possible. Very recent electro-
capillary wave diffraction studies of cellulose-based poly-
rner monolayers have reported effective compressional
moduli and surface viscosities, E( ro ) and )i( co ), with
unusual frequency dependencies, and have qualitatively
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and finished during his tenure in the Department of Ap-
plied Physics, Nagoya University in Nagoya, Japan. The
financial support of the National Science Foundation and
the Japan Society for the Promotion of Science is grate-
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the Deutsche Forschungsgemeinschaft.

APPENDIX A

We consider a thin film separating two Newtonian
fluids. On hydrodynamic length scales, we may regard
the film as a membrane of negligible thickness which we
assume lies in the z =0 plane. The region z )0 contains
fluid 1, while the region z &0 contains fiuid 2. The con-
servation of linear momentum in both regions implies
[32]

~ (i) p (i)
ga at) (Al)

where g" and o"& are, respectively, the components of

analyzed the viscoelastic properties of these monolayers
in terms of a phenomenological Maxwell model of surface
viscoelasticity [23]. We should note that chain entangle-
ments are relatively ineffective in true two-dimensional
(2D) polymer monolayers. However, at sufficiently high
I monolayers may buckle, leading to films of finite thick-
ness in which entanglements might play a role in the sur-
face viscoelasticity. Alternatively, films subjected to high
surface pressures may also respond by formation of loops
in the solvent subphase(s). Hydrodynamic and direct in-

teractions between such loops might also contribute to
the effective viscoelastic properties of the films [23].

There are several interesting experimental scenarios in
which our hydrodynamic model may be applied. For in-
stance, dynamic light scattering might be used to monitor
the process of adsorption or wetting of polymer at a
liquid-vapor interface from solution as a function of sol-
vent quality and polymer concentration. The viscoelastic
behavior of very thin films would be essentially like that
of monolayers, while for thicker films viscoelastic effects
due to chain entanglements would play an increasing role
[31]. Another interesting possibility would be to use dy-
namic light scattering to study the gel-sol transition in

polymer wetting films. In this case, the characteristic re-
laxation times associated with chain entanglements
diverge at the gel transition, leading to essentially
different viscoelastic behavior in the gel and sol regimes.
This effect perhaps could be probed by dynamic light-
scattering techniques.

The theoretical approach described in this paper may
be extended to include anisotropic films and membranes
with internal structure such as films of copolymeric sur-
factants, liquid crystalline polymer materials, or hybrid
macromolecular materials. One must then modify the
procedure described in Appendix A to deduce the ap-
propriate generalized boundary conditions from the
known viscoelastic properties of the analogous bulk
phase of the material.
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(A3)

In the limit V~O, the volume integral in Eq. (A2) is

governed solely by the momentum density at the mem-

brane surface and we have

the linear momentum density and the stress tensor in

fluid i, and where the Einstein convention on summation

over repeated greek indices is implied everywhere. Con-
sider a cylinder of volume V containing a sma11 area AA
of membrane and aligned parallel to the z axis, as shown

in Fig. 4. Integration of Eq. (Al) inside the cylinder us-

ing the divergence theorem of vector calculus yields

f g (i)d y f &(ip) (A2)

where 8 V denotes the surface of the cylinder, and dfp are
the components of the local surface normal multiplied by
an infinitesimal area element. The contribution to the
surface integral in Eq. (A2) from the cylindrical mantle
vanishes by symmetry, giving

~(l) —~(&j ~(2) gA

stretching, and compressional terms in the corresponding
strain energy per unit area. However, for more general
deformations there are also bending energy contributions
which depend on the local film curvature. One may see
this by considering a deformation profile that depends
linearly on z, with a coefficient that depends on the local
film deformation: u (x,y, z )=u (x,y }+f[Vpu a ]z for
P=1,2. Expansion of such an e(Vpu ) around the film

midpoint z =0 to second order in z and integration of the
resulting expression across the film yields an 8 which is
the sum of in-plane elastic terms proportional to the film

thickness d multiplied by e, and bending energy terms
proportional to d and depending on second derivatives

V~V&u~. A general mathematical discussion of this ap-
proach including a detailed discussion of membrane
mechanical stability issues can be found in Ref. [35] and
references therein.

For the case of linear elasticity, this procedure is
equivalent to the classical theory of thin elastic plates and
shells (see, for instance, Ref. [33]), in which 8=8 +6'&
with in-plane and bending contributions given by

where (r( p) is the surface stress tensor of the membrane

(i.e., a surface energy per unit area), and where we have
used the equation of linear momentum conservation in
the membrane g' '=Vp(r' p'. Putting together Eqs. (A3)
and (A4), we obtain an effective boundary condition

=d
2oap ap'

d3 d3

(A6)

(A7)
(o(1) o(2) ) V (m)
Oaz Oaz ap (A5)

for the discontinuity of stress across the membrane.
In order to complete the derivation of the stress bound-

ary conditions, we must relate the viscoelastic surface
stress tensor 0' &' to the corresponding bulk material con-
stitutive relation. For purely elastic materials, the usual

approach to this problem amounts to obtaining the strain
energy per unit area 8 by integration of the deformation
free energy per unit volume e across the film [33—35].
The deformation energy per unit volume is assumed to be
a function of the spatial derivatives of the film deforma-
tion profile u (x,y, z ), i.e., e =e(Vpu ). If the film defor-
mation profile is homogeneous, there are only shear,

fluid 1

geseeaz 0 g

)
e+eence+ ~

fluid 2

FIG. 4. Sketch of a small cylinder of volume V intersecting a
thin film which separates two Newtonian fluids. On hydro-
dynamic length scales, we may regard the film as a membrane of
negligible thickness positioned at the z =0 plane. The cylinder
is assumed to be aligned parallel to the z axis, and contain a
small area hA of membrane.

Eap T~(VpQa+ Vattp ) p (A8)

and where o is Poisson's ratio, and b, i =V2 +V2.
The analysis for isotropic linear viscoelastic materials

is analogous to the case of linear elasticity presented
above. The principle difference is that the deformation
energy density e(t ) is a history-dependent quantity which
relaxes for sufficiently long times. The terms in the strain
energy per unit area ( inherit their history dependence
from the bulk deformation energy density [e.g. ,
8 (t ) =e(t )d ]. There are many schemes used to model
the bulk viscoelastic properties of materials. The tradi-
tional approach is to use a phenomenological constitutive
equation relating stress to strain history, which is either
postulated a priori or obtained empirically. In this case,
one generally has o p(t)= f' G(t t')

p &i &(t') fo—r
the bulk viscoelastic material. The Maxwell model, with
G(t ) p &-exp( t lr), is a typical —example of such a con-
stitutive equation [11]. In frequency space, this approach
entails frequency dependent moduli, e.g., (M

=p{co),
K=K(co), etc. Then for the case of thin viscoelastic
films, one simply obtains b(to) from Eqs. {A6) and (A7)
with the relevant p(to} and K(co). The corresponding in-
terfacial force densities, P' ', due to film viscoelasticity
are then easily obtained from C(co).

We adopt an alternative approach in the following
which is somewhat less phenomenological. Rather than
assuming a dynamical constitutive equation (r p(co) for

where o,p=2pe p+(K 2p/—3)err5 p is the usual stress
tensor of a linear elastic solid with shear modulus (M,

compression modulus E, and e &
is the 2D membrane

strain tensor
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Tds=d( p,dp —v dg' —' Qpde p— (A9)

where s is the local entropy per unit area. Equation (A9)

gives the variation of the entropy per unit area s with the
changes in the other thermodynamic variables. Since the

properties of the system are invariant under homogene-
ous displacements and rotations, the appropriate quasihy-
drodynamic variable appearing in Eq. (A9) and below is

the symmetrized 2D strain tensor e &
rather than the dis-

placement field u . The quantities T, p, v, and l(~ p are
the thermodynamic forces that are conjugate to the above
thermodynamic variables. Note that all quantities are in-

dependent of the z coordinate within an infinitesimally
thin film, and in particular that V, u =0. The thermo-

dynamic forces are generally obtained by variation of the
total free energy of the film E= f ( (x,y)dx dy with

respect to the relevant thermodynamic variable. For in-

stance, the surface stress g p conjugate to e p is given by

f p=6E/6e p), , where . . . indicates that all other
thermodynamic variables are held constant. Within

the membrane stress tensor, we treat the displacement
field u as a slowly relaxing field within the context of
macroscopic dynamics [28], in which very slowly relaxing
fields are included among the list of true hydrodynamic
variables of a system in the formulation of its linear ir-
reversible thermodynamics. This approach has been uti-
lized to describe the dynamics of the k transition in He
[36], and more recently has applied to the dynamics of
polymeric liquids [28] and liquid crystalline polymeric
elastomers [37]. In the present context, this approach
reduces to the usual Maxwell model of rheological
behavior. We utilize the macroscopic dynamics ap-
proach, however, since it is less ad hoc than the tradition-
al rheological modeling and since it is rather a general
approach which may be extended to nonisotropic materi-
als with additional internal degrees of freedom. As this
approach is developed extensively for bulk polymeric
liquids in Ref. [28], and the connection between bulk and
interfacial viscoelasticity is discussed above, we only
present an abbreviated derivation in the following.

In an isotropic single-component viscoelastic mem-

brane, the rigorous hydrodynamic variables correspond-
ing to conserved quantities are the membrane density p, ,
the interfacial linear momentum density g' ', and the en-

ergy density 8. In the case that the viscoelastic mem-
brane is a two-component mixture (as in the case of a thin
film of semidilute polymer solution) we would also in-

clude the local concentration P of one constituent as a
hydrodynamic variable. In addition to these true hydro-
dynamic variables, we also keep the elastic displacement
field u as a quasihydrodynamic variable which relaxes in

a large but finite time. Since the membrane separates two
bulk samples of immiscible liquids, the thermodynamic
state of the interfacial region also depends on the area 3
of the membrane. We treat this dependence separately
from the thermodynamic description of the membrane it-
self. Thus, in the hydrodynamic regime, the membrane is

locally in thermodynamic equilibrium and satisfies the
following Gibbs-Duhem relation:

linear thermodynamics, the total energy is the most gen-
eral bilinear function of the thermodynamic variables
that is consistent with all fundamental invariance proper-
ties of the system (e.g., time-reversal symmetry, transla-
tional and rotational symmetry, symmetry under spatial
parity transformations, etc.). Thus, the corresponding
thermodynamic forces are linear functions of the thermo-
dynamic variables. Of particular interest in our case is
the form of the surface stress g p. In the absence of cross
couplings to thermodynamic variables other than e &, we

find

Nap ( ck +cs )Eyr5up+ 2c~ E~p+ (ci cb ~l)taz~pz

(A10)

~ (m)+ V (m) 0aga (Al 1)

(m) q (m)
ga ap (A12)

where 0'[&' is the membrane surface stress tensor, the

sign of which is chosen to conform to the usual Navier-
Stokes equation in the case of a viscous liquid film. Note
that the density of linear momentum g' ' is both a hy-

drodynamic variable and the current of the areal density
[cf. Eqs. (A9) and (A12)]. The corresponding dynamical
equations for the nonconserved variables e &

and s are

i ~+X p=0, (A13)

Rs+V~ (A14)

where j is the entropy current, R /T is the entropy pro-
duction (8 ~ 0, as required by the second law of thermo-
dynamics), and X p is the quasicurrent associated with

the strain tensor field e &. In a Newtonian fluid the
dynamical equation for e &

would be absent, since there
the strains relax on a microscopic time scale. The conser-
vation equation for membrane energy density 6 is ob-
tained from Eqs. (A10)—(A14). In the following, howev-

where A~= V, +V and where ck and c, are, respectively,
the in-plane compression and shear elastic constants, and
cJ and cb are, respectively, the transverse stretching and

bending elastic constants. It is convenient in the follow-

ing to define a uniaxial compressional modulus

c~~
——ck+c, . The membrane elastic constants are given in

terms of the corresponding transient bulk elastic con-
stants of compression and shear, K and p, Poisson's ratio
0 of the material, and the film thickness d by

c)~~
=(K+@)d, c, =pd, ci-c„and cb =pd /12(1 cr) [cf.—

Eqs. (A6) —(A8)]. There is only one curvature elastic con-
tribution (cb ), related to the mean curvature of the sur-

face, since the second part of Eq. (A7) does not contrib-
ute to 1( p.

We will now discuss the appropriate dynamic equa-
tions. The conservation laws for the areal density and
density of linear momentum are given by
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er, we focus on the dynamical equations (Al 1}—(A13}for
density, momentum density and strain field.

In order to close our set of equations (A10}—(A14), we
must relate the currents and quasicurrents g' ', o'&', s,
and X p to the thermodynamic forces T, {M, u, and f p,
taking into account all symmetries of the system. Within
linear macroscopic dynamics, these currents are linearly
related to the thermodynamic forces, and in general are
the sum of reversible and dissipative contributions. The
reversible parts may be obtained using general symmetry
and invariance arguments alone. Their dissipative coun-
terparts are obtained from functional derivatives of the
dissipation function R, which is the most general bilinear
function of the thermodynamic forces that is consistent
with all symmetry and invariance properties of the sys-
tem, and the requirement of positive definite entropy pro-
duction R &0. For example, the dissipative part of the
strain quasicurrent X p is given by X,p =5R /5$, p~. . ..
This procedure is discussed in detail in Ref. [28], so we
sim ly give the results here. The momentum
g' =p v' ' is a purely reversible current, while the
stress 0' &' and strain quasicurrent X

&
have both reversi-

ble and dissipative parts. The resulting membrane contri-
bution to the surface stress (excluding the contribution
from the fluid-membrane-fluid surface tension) is given by

0'
p p5 p+ f~p+ vl{5~pVru r

+v, A p+(vj vbb, ~)5,Vp—v{ (A15)

where p is the hydrostatic pressure, P,p is the elastic con-
tribution of the transient polymer network to the stress
tensor, A p=(V up '+Vpv' ')/2 is the symmetrized ve-

locity gradient tensor, and v~~, v„v~, and vb are, respec-

tively, the viscosities corresponding to uniaxial compres-
sion, shear, transverse stretching and bending motions of
the membrane. Changes in the pressure 5p are related to
variations in density 5p vict 5p =e5p /p, where e is
the liquidlike compressibility of the membrane. This re-
lation provides a connection between pressure and spatial
variation of the momentum density through the continui-
ty equation Eq. (Al 1).

The quasicurrent X
&

is given by

Xp ——A p+ ,'TpsQs, — (A16)

where the "T prs's are relaxation coefficients of the visco-
elastic material, i.e., each is a product of a relaxation time
and an appropriate elastic constant. The tensor of these
coefficients has the same symmetries as the elastic strain
field e p. We should note that while v,' '=g in the above,
e WV g from the point of view of macroscopic dynam-
ics; internal rearrangement of material within a thin
viscoelastic film is not necessarily connected to its
geometric transverse displacement g. Equations
(Al 1)—(A16) give the divergence of the membrane stress
tensor components Vp{T{p' in terms of spatial derivatives
of membrane velocity and strain. For our purposes it
suf5ces to consider the simplified case of one-dimensional
membrane modes, in which all quantities are assumed to
vary as exp(ikx +i cot ). Then the above analysis
simplifies considerably; all spatial derivatives with respect

to y and z vanish, while V„~ik and d/dt ico .After
some algebraic manipulations, we find a total interfacial
force density of the form

p{mj —@{a)(k2/ } {m}
a l CO U~

with C' ' for {x=x,y, z given by

l C07 ((C)(
C "'(k, co) =a+icovll+ 1+l o'Tii

l C07 C
C ~ (k, co}=icov, +

1+IN'Ts

(A17)

(A18)

(A19)

k CO'P j
C "(kco)=y+ico(vj+vbk )+ . (c~+cbk ),]+iconj

(A20)

where we have included in Eq. (A20) the contribution to
the surface force density from the Laplace pressure of the
fluid-film-fluid interface, Pt =yV„g=y(ik /co)v, '

and where we have explicitly written the relaxation
coeScients as products of macroscopic relaxation times
and elastic constants, e.g., gll=rllcll g, =r, c, and

T~=r~c~, in order to make a connection with the classi-
cal Maxwell model. Equations (A17}—(A20) are the
boundary conditions given in Eqs. (8)—(10) of Sec. II.
The C'"'(k, co) and C"(k,co) in Eqs. (A18) and (A20)
can be interpreted as a generalized co- and k-dependent
compressional modulus e,{t(k, co } and surface tension

y,{t(k,co}, respectively, both of which contain dissipative
contributions due to internal viscoelastic effects.

APPENDIX B

(Bl)

ikv "+7 v"=0
X Z Z

(B2)

(B3)

where 8=V, —k and where X'p~ are the components of
the fluctuating stress tensor in each liquid. In Eq. (B2},
we have implicitly included the gravitational contribution
to the hydrostatic pressure by writing P"=P"+p; gz.
These equations of motion are subject to the requirement
that mode amplitudes vanish far from the membrane, i.e.,v"~0 as z —+ ~, and subject to the effective kinematic
and dynamic boundary conditions at the membrane sur-
face

To obtain the membrane-mode dispersion relation
co(k ) and the transverse-membrane-mode structure factor
S(k, co ), one must solve the linearized equations of
motion and boundary conditions given in Sec. II. The
techniques used in this appendix are very similar to those
used in a previous work to calculate the surface modes of
a semi-infinite viscoelastic liquid [38,39]. Hence, we give
only an abbreviated derivation in the following. For our
purposes, it suSces to consider one-dimensional mem-
brane modes, for which all quantities vary as
exp(ikx+icot). Then, Eqs. (1), (2), and (6) for fluid i be-
come
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(1) [ —(2)
~

—(m)
rz=o " ~z=o (84)

[rt;(V, v "+ikv,")+X,",], 2+C"(k,cv)(k /ico)v' '=0,
(86)

I

[2', V, v,"+X,", P—"], 2+ C' (k, co)(k /i co)v,' '=0,
(85)

where [f ' ], 2 denotes the discontinuity of f across the
liquid-membrane-liquid interface, and where C' '(k, cv)

and C "(k,cv) are given by Eqs. (A18) and (A20). The
Fourier-transformed components of the random stress
tensors X'tI(k, z, t) are related to the fluid viscosities q;
through the generalized fiuctuation-dissipation theorem
for classical fluids [29]

(X'&(, zt )X„'„"'(k',z', t') ) =8~'k~ Tq, (5 „5&,+5,5&„)5,,5(z z')5—(k k'—)5(t t')— (87)

where k~ T is the thermal energy, the asterisk denotes complex conjugation, and where we define the Fourier transform

by f(k, co) = f +"dx f +"dt f(x,z, t ) exp(ikx+i cot }. It is convenient to express all equations of motion and boundary

conditions in terms of v,".The incompressibility condition, Eq. (83), gives v,"in terms of v,".Then, taking the curl of
the Navier-Stokes equation by subtracting ik times Eq. (82) from V, of Eq. (Bl) gives an equation of motion for v,'I,

(p;co+i';B)Bv,"=—ik V, (X„'„'—X,", )
—kD+X'„", , (88)

where 8+ —=V, +k . Solving Eq. (Bl) for the pressure P" and using Eq. (83) to eliminate v„'I yields

(89)

Substitution of Eq. (89) into Eq. (85) gives the normal stress boundary condition in terms of the v,"
k

[[rt;(D 2k )
—ip;cv—]V,v,"])z [C—"(k,co)k +bpg]v,"~, o=[k (X,", —X„'„')+ikV,X„",]) 2

1CO
7

(810)

where hp=p2 —
p&, and where we have used g(x )=v~'(x, 0)/icv (for the gravitational contribution), v,

' '=v,"'~, o, and

[f"], z=(f"'—f' ')~, o here and in the following. Similarly, elimination of v„" in Eq. (86) gives the shear stress

boundary condition as

2

In;D+v,']i2+. C'"(»V, ,"~,=o—[ V, „li»
lCO

(811)

where we have used v„' '=v„"~, o=iV, v,"', o/k.
The most general solution to the equations of motion is the sum of a particular solution of Eq. (88) and the solution

of the associated homogeneous equations with X &=0 which satisfies the boundary conditions, Eqs. (810) and (Bl 1).

To obtain a particular solution in region i, it is convenient to Laplace transform Eq. (88) with respect to the z coordi-

nate using

j dz exp( —q, z )f"'(z )

f"(q;)= '
o| dz exp(+q2z)f' '(z) .

(812)

Since we seek any particular solution of Eq. (88) that is consistent with the boundary conditions, we have the freedom

to choose the values of U,",and its derivatives with respect to z, U,",v,"",and U,
"'"on z =0. For convenience we take

these to be

v "(0)=0

v "(0)=0
v"'(0) =ikX"(0)/g

v,' '"(0)= [ikX ",(0)—k [X"(0}—g,",(0)]]/q, .

Then after the Laplace transformation of Eq. (88) using Eq. (812), one finds v,"(q, ) in region i given by

—[q;k [X'„'„'(q, )
—X,",(q;)] ik(q; +k )X„",(—q, )]

v,"(q, ) =
q;q; (ip;co+2',—k )q, +(ip, co+a;k )k'

(B13)

(814)

These v,"(q, ) are easily inverted into real-space expressions using the convolution theorem of Laplace transformations.

The general solution for v,
"is then the sum of the homogeneous solution [v,"]z and the particular solution obtained by
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inverse Laplace transformation of Eq. (B14);we find

u,("(k,z, a)) = [u,'"]„+I dz'A"p(z —z')X"p)(z'),
0

v,
' '(k, z, co)=[u' '] + dz'A, ' '(z —z')X' '(z'),0

z

where A,"p)(z) is given by

(B15)

A,"p)(z ) = {
—(5 5p„—5 5p, )+2i5 5p, ]+ {—(5 „5p„—5 5p, ) 2i —5 5p, ]

(i) k exp(kz) . k exp( —kz)

2ri, (k' —q', )
" ' '

2»)i(k' —qi )

k exp(qiz)

2ri, q)(k' —qi)
k~ exp( —q, z)

2niqi(k' —q'»

k +q,
ik

5 5p,

q& k +q,
(5 5p„5—5p, )+ 5 5p,

q&
(5 5p„—5 5p, )— (B16)

and where A,
' p(z ) =A,"p( —z ) with q, ~qz and ri, ~alii. The homogeneous solutions [v,"]),have the form

[v,"]&=a, exp(kz )+b, exp( —kz )+c;exp(q;z)+d, exp( —
q, z ), (B17)

where q, =k +ip, rvlrA, and where the coefficients a;, b;, c;, and d; are to be determined by the boundary conditions.
The requirement that the modes are localized at the membrane surface (u,"~0as z —++ 0() ) iinplies that

a) = —Ik(1)

c +Iq1

b = —I(2)
2 k

d =+I"'
2

(B18}

with Ik' and I"given by

(;) kIk'= . z'exp —z' X„" z' —X"z' —2iX„", z'

Iq'= . z'exp -q, z' X(') z' -X(') z'+ . X(',) z'(;) k k +q;
2lN 0 ikq,

(B19)

Due to our judicious choice of derivatives of [u,"]~ on the membrane surface z =0 [cf. Eq. (B13)],the general solu-
tion for u,

"given by Eqs. (B15) and (B16) will satisfy the kinematic and dynamic boundary conditions provided [v,"]),
satisfy the associated homogeneous boundary conditions, i.e., Eq. (B4), and Eqs. (B10) and (Bl 1) with 2(,'p)=0. These
homogeneous boundary conditions are

[u(1)(0)] [u(2)(0)] —u(m)

V,[."'), l, =.=V,[,"'] l, =.=- k.'-'.
(B20)

(B21)

2

{[ri,(D 2k ) ip, co]V—, [u(')—]„],i— [C "(k,co)k +bpg]u(')(0)]„=0, (B22)

k („)[»i(8+[v,"]),]i i+ C'"'(k, co}[V,u,"]),1,=0=0 ~

l CO

(B23)

where in Eq. (B21) we have used the incompressibility relation to write ik [v„"(z) ]&
=—V, [v,"(z ) ]&. Substitution of the

form of [v,"(z)]& from Eqs. (B17) and (B18) into Eqs. (B20)—(B23) yields four inhomogeneous linear equations for
{az,b„cz,di] in terms of Ik' and I»".

The determinant of the matrix of coefficients of {ai,bi, ci,d i ] gives the implicit membrane mode dispersion relation
D(k, co) =0. After substantial algebraic manipulation we find
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D(k, co)=(k —qi)(k —qz)C '(k, co) C"(k,co)+ k —2(k —qi)(k —qz)[ri, q)+r}zqz —g)z}z(q)+qz) —(brl) k]co k

+ p, q, +p,q, 2p— C "(k,~)—(p, q, +p,q, 2p—k) C '(k, ~)+[z) g
k k

q&q2 2 2 2 3 2— 2p
k (n)q)+nzqz) —2(pzn)q(+p)nzqz)k+~pln)(qi qzk—} nz(—qz qik—) ~gk ] t~ k, (824)

where 2p=p&+p2, Ap=p2 —
p& and Ag=g2 —

g&. In the limit q&=g2 and p&=p2 the cornpressional and transverse
modes decouple, and Eq. (824) reduces to the product of the compressional and transverse membrane mode dispersion
relations given in Eqs. (11) and (12) of Sec. III A. On the other hand, for p) ~0 and rj) ~0, we recover the limit of a
film at a liquid-vapor interface, and Eq. (824) reduces to the generalized Lucassen mode dispersion relation given by Eq.
(14) of Sec. III B.

Solving the inhomogeneous equations for [az, b„cz,d) ] gives g(k, co) =v,"(k,O, co)/ico in terms of I&" and I". The
dynamic structure factor S(k, co) =(2tr) ( lg(k, co)l ) of thermally excited membrane modes is then determined by the
thermal averages of Ik' and I". These are obtained with the aid of the generalized Auctuation-dissipation theorem
given in Eq. (87) as

( I(i)I e( j) ) 1+
q;+ q;*

(I("I (j))= 1+k

k+q, .*

(Ik'Ik j') =(2m. } 2kz) TrA

(I"I)* & ())

k
6

(I(i)Ie(j) )
4kz

(k +q, )'

2kq, '

(825)

where no summation convention on repeated roman indices is implied. With the use of Eq. (825), one eventually ob-
tains S(k, co) in the form

2kt) Tco A(k, co)
S(k, co) =

D(k, co)

where D(k, co) is given by Eq. (824), and where A(k, co) is

A(k, co) =4 Re[ C '"'(k, co) ]A)(k, co) —8 Im[C "(k,co)]Az(k, co)+ I
C '"'(k, co) I A3(k, co)+4A4(k, co)

with the A;(k, co) given by

(826)

(827)

A)(k, ~) =(p)gzlk —
qz I'+pzg(lk —qil'} Im[qi] Im[qz]k'+(n) Im[qi l

—
gz Im[qz]}lk —

qi I'Ik —qzl'~g

4

Az(k, co) =(pi Im[qi ] lk —
qz I' —pz Im[qz] lk —

q i I'erik'+ p)pz Im[q i 1 lm[qz]cok'+ I k q i I'Ik ——
qz I'(~rl )'

2
k4

A3(k co}=(pi Iml qi ] Ik —
qz I'+pz Im[qz ] Ik —

qi I'}

A4(k, co}=p,pz(pz Im[q, ]+p, Im[qz])co —(p, lk —
qz I

—pzlk —q, I
)l))rico k

—(p, im[q»lk —q, l +pzIm[q, ]lk —q, I )(Ari) cok (828)

where Re[f ], Im[f], and If I
denote, respectively, the real part, the imaginary part, and the modulus of f. Equations

(824), (826), (827), and (828) for the implicit dispersion relation D(k, co) =0 and the dynamic structure factor S(k, co)
are our central results. In the limit rl) =ariz and p, =pz, Eqs. (826)—(828} reduce to the symmetric interface dynamic
structure factor S(k, co),„given in Eq. (13) of Sec. III A. On the other hand, for p, ~O and rl) ~0, we recover the limit
of a film at a liquid-vapor interface, and Eqs. (826}—(828) reduce to the generalized Lucassen mode dynamic structure
factor S(k, co)t„given by Eqs. (15)—(17) of Sec. III B.
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