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Anisotropic renormalixation of thermodynamic quantities
above the nematic —smectic- A phase transition
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The results of a self-consistent, one-loop model for the nematic-smectic-A phase transition are
presented. Fluctuation-induced renormalization of the correlation lengths parallel and perpendicular to
the director and of the twist and bend elastic constants are calculated. The inherently anisotropic nature
of the coupling between the director fluctuations and the smectic order parameter directly leads to aniso-
tropic renormalization of the correlation lengths and elastic constants. Because the renormalization of
the four quantities mentioned above becomes signi6cant at different temperatures, the crossover from
the isotropic high-temperature behavior to the critical, strongly anisotropic behavior is very gradual,
producing an extended, weakly anisotropic region, consistent with experimental observations.

PACS number(s): 64.70.Md

I. INTRODUCTION

One of the most interesting and complicated phase
transitions in nature occurs between the nematic (N) and
smectic-A (A) phases in liquid-crystal systems. The na-
ture of the critical behavior above the N-A transition has
been studied experimentally [1] and theoretically [2—6]
for 20 years, with unsatisfactory agreement, not only be-
tween theory and experiment, but from one experimental
study to another. The free energy proposed by de Gennes
[7,8] has formed the basis of the theories, but even with
this same starting point difFerent approaches have pre-
dicted different universality classes for the transition.
The most puzzling unexplained experimental behavior
had been the universal weak anisotropy of critical ex-
ponents that spanned three or more decades in reduced
temperature. Recently we outlined a straightforward cal-
culation based on de Gennes' free energy that predicts a
gradual crossover from isotropic to anisotropic critical
behavior and also a broad, weakly anisotropic region of
the type seen experimentally [9]. In this paper we present
the details of our calculations and results. In Sec. II we
describe the liquid-crystal phases and introduce the form
of the free energy used. In Sec. III we discuss the formal
theory for the correlation functions describing the fluc-
tuations of the smectic order parameter and the nematic
director. In Sec. IV we present the self-consistent one-
loop model that we use to simplify the calculation of the
correlation functions. The properties of these correlation
functions (that ultimately lead to anisotropic critical
behavior) are crucially dependent on the anisotropic in-
teraction of the smectic order parameter and the fluctua-
tions in the director. This one-loop model is used in Sec.
V to calculate the spatially uniform (k=O) limit of the
self-energies and the region where strong renormalization
of the temperature scale is expected; this is found to be
well below the temperatures reached by experiments to

date, indicating that the coupling between the smectic or-
der parameter and the director fiuctuations does not
afFect the critical exponent y in this range. Section VI
extends the calculation of the correlation functions to the
spatially inhomogeneous (kAO) case and determines the
critical exponents v~~ and vj associated with the parallel
and perpendicular correlation lengths. In Sec. VII, using
numerical solutions of the renormalization equations for
the correlation lengths and the twist and bend elastic
constants, we discuss anisotropies that develop in various
temperature regimes as well as the asymptotic behavior
of thermodynamic quantities close to the N-A transition.
Plots of the solutions of the coupled equations are
presented for a variety of parameters in the theory. The
results indicate the onset of a weakly anisotropic region
at a reduced temperature where the renormalization of
the bend elastic constant becomes significant. In this
weakly anisotropic region we find that v~~/y remains un-

changed at its high-temperature value of —,', while v~/y
decreases from the high-temperature value of —,

' and ap-
proaches —', . At a lower reduced temperature, where the
smectic-director coupling begins to affect y, a strongly
anisotropic region develops in which vl /y = 1 and

vj /y =
—,'. The critical exponents rl~~ and rlj describing the

behavior of the correlation function at the transition tem-
perature are calculated as a check of the self-consistency
of the model in Sec. VIII, and are found to satisfy the
scaling laws v~~=y/(2 —

q~~) and v~=y/(2 —g~). Section
IX contains a summary of the results of the paper and
some possible directions for future work.

II. STANDARD MODEL AND FREE ENERGY

The nematic phase of liquid crystals is characterized by
orientational ordering of elongated liquid-crystal mole-
cules about a common direction designated by a unit vec-
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tor n, the director. The centers of mass of the molecules
are disordered in the nematic phase. The presence of the
orientational order allows for splay, twist, and bend elas-
tic restoring forces. The energy associated with these
elastic deformations, proposed by Frank [6,10], can be
written in the form

+q;q)
+q'p. p+q)

3

2 3 [(+ loki +@30k
((

)5n,
d k 2 2 2

(2~)

+(%~ok f+E3ok
ii

)5n, ],
where E,o, K2o, and F30 are the bare splay, twist, and
bend elastic constants, kj and k~~ are the components of
the wave vector perpendicular and parallel to n, and 5n,
and 5n, are the splay and twist fluctuations of the direc-
tor perpendicular to no, parallel and perpendicular to kJ,
respectively.

Smectic liquid-crystal phases are characterized by the
presence of a one-dimensional density wave. The order
parameter g(r)=f(r)exp[i(qo r+P)] for the smectic
phases is a measure of the strength of the density wave

[11],

(a)

functions G(k) and D, , (q}, respectively:

G(k) = ( 1('(k)P(k) ) = [Go '(k) —&(k) ]

D, , (q) = (5n, , (q)5n, , (
—q) )

= [Do, ', (q) —II(q) ] (5b)

FIG. 1. Bare three- (aj and four-point (b) vertices arising
from the gradient term coupling in the f-free energy in Eq. (3).
Straight lines represent smectic correlation functions G, and

wavy lines represent director correlation functions D.

p(r) =po(r)[1+f(r)sin(qo r —P)], where the bare correlation functions are

where p is the density and qo is the wave vector of the
density wave. The Landau-Ginzburg free energy for the
order parameter l(, near the N-A transition, proposed
originally by de Gennes [7,8] is

G (k)=[r+g2 k2+g2 k2] (6a)

(6b)

P&p= f d "[r I
ql'+ ,'b I

yl'-
+ ( V+ iqon), 1('I;,( V —

iqon), g], (3)

where p is the inverse temperature, t =(T T, )/T„b is-
constant, and

o 0 0

r= 0 g'„0
0 0 g'iso

(4)

where g~o and
g~~o

are the bare smectic correlation lengths

perpendicular and parallel to qo. As required by global
rotational invariance, the gradient term in Eq. (3) con-
tains an explicitly anisotropic coupling between the direc-
tor and the smectic order parameter; this interaction
causes the director fluctuations to produce qualitatively
difFerent renormalizations of gj and g~~, and also causes
the smectic fluctuations, in turn, to produce a renormal-
ization of the elastic constants [7,12] as the N Atransi--
tion is approached. A similar model, generalized to in-
clude smectic-C director fluctuations, has been used by
the authors to describe the nematic —smectic-C transition
[13].

I'„(k,k+q;q}= —qok', oq, (2k, +q, )

qokfo(2k~, +qx), (7a)

We have used Dyson's equations to express the correla-
tion functions G(k) and D(q) in terms of the self-energy
functions X(k) and II(q) which arise from the interaction
between the bare smectic and nematic modes Go and

Do, , Inspection of Eq. (3) reveals that the interactions
arise from the gradient term, which contains both three-
and four-point vertices connecting 5n and l(, as illustrat-
ed in Fig. 1. The bare three-point vertices, connecting
Go(k), Go(k+q), and Do, , (q}, have the momentum-

dependent form

III. FORMAL THEORY
OF THE CORRELATION FUNCTIONS

The critical behavior near the X-A transition can be
found by studying the smectic- and director-correlation

FIG. 2. Representative terms in the expansion of the smectic
self-energy X in terms of bare correlation functions and vertices.
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FIG. 5. Leading terms in the expansion of the director self-

energy II in terms of renormalized correlation functions and

bare and renormalized vertices. The first two terms are the only

graphs kept in the one-loop model.

FIG. 3. Representative terms in the expansion of the director
self-energy II in terms of bare correlation functions and ver-

tices.

r3, (k, k+q;q) = —qogono [q&X(2ki+qi)]

= —tokyo(2k'~ » (7b)

where s and t stand for splay and twist and ki, (ki, ) is the
component of ki along (perpendicular to) qi. The bare
four-paint vertex, connecting Go(k), Go(k+q), Do, , (p),
and Do, ,(p+q) is momentum independent:

I'4(k k+q p p+q) =eoelo .

The self-energies X(k) and II(q) are given by an expan-
sion in terms of the bare interactions I 3, , and I 4 togeth-
er with the bare propagators Go(k) and Do, , (q), as shown
in Figs. 2 and 3, respectively. Examination of this expan-
sion reveals that the terms may be resummed into renor-
malized skeleton graphs in the usual way as shown in
Figs. 4 and 5 by introducing renormalized propagators as
well as renormalized vertices I 3, , and I 4 [14]. Note that
in order to avoid double counting, the I 4 vertex in the
Hartree diagram and the Srst I 3, , vertex in the second
diagram are not renormalized in both cases. The dressed
interactions I 3, , and I 4 are themselves given by an ex-
pansion in terms of dressed interactions and propagators
as shown in Fig. 6. In Sec. IV we consider a model in
which these self-consistent expansions for D(q) and G(k)
may be evaluated.

IV. SELF-CONSISTENT, ONE-LOOP THEORY

We now consider the type of approximation we use to
solve the set of coupled equations given above. We start
with contributions from the large-N limit of the N
component theory, where X is the number of degrees of
freedom of the g order parameter; this amounts to taking
the leading one-loop contributions in the perturbation ex-
pansions for the self-energies in Figs. 4 and 5. It is
known that this approximation gives a nontrivial descrip-
tion of a phase transition, including nonclassical (non-
mean-field) exponents [15]. Next we impose the require-
ment that this approximation be a conserving one, so that
conservation laws are preserved [16]. This last condition
means that the propagators appearing in the one-loop
contributions must be fully dressed, and that the dressed
vertices must be determined self-consistently from the
self-energies. Thus, although this approach starts by
keeping terms of order 1/N, it also keeps terms of higher
order to satisfy self-consistency and thus preserve global
rotational invariance and ensure that the elastic mode en-

ergies of the director vanish in the long-wavelength limit
[i.e., that D(q) remain massless] [7]. Thus, despite its
similarities, the one-loop model represents a di8'erent ap-
proximation than the straightforward 1/N expansion [5].

In further justi5cation of this approach we note that in
the treatment of the one-loop model of massless scalar
electrodynamics by Coleman and Weinberg [17], it was
shown that this approximation gave a better treatment of
the global minima of the system by treating all terms in
the free energy on equal footing. Thus we may expect the
one-loop approximation to give us the most unbiased

(a

+ t ~ ~

(b)

FIG. 4. Leading terms in the expansion of the smectic self-

energy X in terms of renormalized correlation functions and
bare and renormalized vertices. The first two terms are the only
graphs kept in the one-loop model.

FIG. 6. Representative terms in the expansions of the three-
(a) and four-point (b) renormalized vertices.
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But a simple mathematical identity is obtained by in-
tegrating by parts:

—2 J 1 ~G(k) = —2f qpg~p kJ
BG(k)

k k Is, t

2 2 2BG '(k)
2qokioki. t G

k is, t
(12)

Thus, using Eqs. (11) and (12) with expressions (7), we
find a relation between the splay and twist vertices I 3,
and I 3t and the Preen's function

consideration of possible correlations leading to the phase
transition. As Coleman and Weinberg show, the pres-
ence of two coupled fields (scalar meson and photon in
their case, smectic order parameter and director Auctua-
tion for our model) leads to a valid one-loop expansion
for small coupling constants, which yields a correct
description of the nontrivial minima in the free energy.
This is not true for the expansion in an uncoupled sys-
tem.

For the smectic fluctuation self-energy X, the first two
terms in Fig. 4 contribute in the one-loop approximation:

X, , (k)= f I'„„(k,k+q;q)D, , (q)
q
""

X G(k+q)I 3, 3,(k+q, k; —q)

f I'~D, i(q) .
q

For the director-fluctuation self-energy we have, from
Fig. 5, to the same order

11„(q)=f I p„„(k,k+q;q)G(k)

XG(k+q)I 3, 3, (k+q, k; —q) —f I'4oG(k) .
k

(10)

These equations are nonlinear, self-consistent expressions
determining the self-energies X(k) and II, since both the
dressed propagators 6 and D, as well as the dressed ver-
tices I 3~ t depend on X and II. We will evaluate these ex-
pressions by determining effective expressions for 6, D,
and I 3, , which permit carrying out the integrals.

It is possible to relate the renormalized vertices I 3 t to
the self-energy X from a Ward identity which arises from
the global rotational invariance of the theory. We derive
the connection between these renormalized vertices and
the renormalized perpendicular correlation length from
the requirement that the mass of the director fluctuations
must vanish above the transition. Consider the leading
contributions to the director self-energy II, as shown in
Fig. 5. If the director mode is to remain hydrodynamic
as the transition is approached, then II(q=O) must van-
ish. Formally, we must have

11, ,(q=O)=0= —2 f I 4G(k)

+ f I'„,(k, k;O)G'(k) I „,(k, k;0) .

aG-'(k), - ar(k)I, , (k, O) = —
q =1,, (k, O) —q

is, t js, t

(13)

V. EVALUATION
OF THE ONE-LOOP THEORY FOR k =0.

[1+/ k +g, (k, —
q ) + Pk ], (14)

which defines the physical perpendicular and parallel
correlation lengths g~ and g~~. The parameter c measures
the non-Lorentzian character of the density-fluctuation
spectrum and a =G '(k=0). Similarly we have

D, , '(q) =Do, ', (q) —II, , (q) =p[E, ,q~+&3e l ],
which defines the physical elastic constants I(:&, E2, and
E3.

We may now derive the forms for I 3, , required by the
Ward identity arising from rotational invariance, by sub-
stituting the form of G from Eq. (14) into Eq. (13), which
yields

3, , (k, k+q;q)~q o= —
qp g~k~, ,

or, therefore,

0 2

(16)

(17)

Thus we find

I 3, (k, k+q;q)= —qoagjqj (2k+q),

where

(18)

Al, ifxy

g~ ~~„„are the temperature-dependent correlation lengths
of the liquid-crystal system in the absence of the coupling
between smectic and director fluctuations.

With these results we are now in a position to calculate
the expressions for the self-energies given in Eqs. (9) and
(10). The renormalization of the transition temperature
and the exponent y are determined by the k=o value of
X(k), while the renormalization of the correlation lengths
(and the exponents v~, v~~, gi, and g~~) arise from the k
dependence of X(k). The q=O value of II(q) is
guaranteed to vanish from the Ward identity above, while
its finite q dependence determines the renormalization of
the elastic constants.

In the remainder of this section we consider the tem-
perature renormalization [X(k=O)] efFect and show that
director-fluctuation effect are unimportant down to the
lowest temperatures of interest. The exponent y is
defined by the relation

a=r —X(k=O)~r~ . (20)

Close to the phase transition where long wavelengths
dominate the problem, we may use the small-k limit of
the correlation functions G and D. G must have the form

G-'(k) =G (k) —Wk)
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The form of the self-energy in the k~O limit is

X„(0)=f ro„3g(0, —q;q)D, , (q)
q

XG(q)I'3 3g(q, 0; —q) —f P4D, , (q) .

(21)

Using Eq. (7b) in Eq. (21), we find that as k~O the first
term in the twist contribution to the self-energy vanishes.
Thus the renormalization of T, and the exponent y are
determined only by the splay term and the Hartree terms
in Eq. (21). Substituting the expressions for the Green's
functions Eqs. (14) and (15), as well as for the vertices
[Eqs. (7), (8), and (16)],we obtain the result for X(0):

X(o)=—f ( —qokioqi)[1+kjqj. +k~~(q~~
—qo)'] '

X[K,q', +K,q~~]
'( —qpgqj)

f q p g'gp( [K,q j +IC3q
~(

]
q

+[K2qj+K3q~~] ') . (22)

Evaluating the integrals gives an expression that depends
on the temperature through the correlation lengths and
elastic constants. Using the bare elastic constants and
high-temperature (unrenormalized) expressions for the
correlation lengths [Eq. (19)] allows us to estimate the
point at which director fiuctuations become important in
determining the exponent y; this result has the form of a
large temperature-independent term plus a temperature-
dependent term:

a =t —X(0)=t+a ' (2ln. +a '
) =t'+a ' a'

r r (23)

where t' is the shifted temperature which vanishes at
t = —2ar~ /tt, and ar, the temperature at which correc-
tions to linear behavior of a appear, is

ar
2 2 2

qoCio

24m PK gimp

(24)

where E is a typical bare elastic constant. The form of
this result indicates that (a) the transition temperature is
renormalized downward by the director fluctuations due
to the constant term, and that (b) since the temperature-
dependent term is negligible for a )ar, the value of y is
unchanged down to a characteristic temperature a =ar.
In other words, a is the effective Ginzburg criterion for
the effect of the director fluctuations on renormalizing
the critical exponent y, and for typical liquid-crystal pa-
rameters a is of order 10

On both theoretical and experimental grounds the
value of ar is expected to be much less than the Ginzburg
criterion aG for the smectic-smectic interaction arising
from the ~g~ term in the free energy. Although aG is
very small in superconductors, the shorter correlation
lengths in a liquid crystal should imply aG=10 —10
[3]. From an experimental point of view, if aG were as

small as ar, then y would have the mean-field value

y f= l throughout the measured experimental range, in
contradiction to what is observed (y%1).

Thus in the present experiments, it appears that the en-
tire isotropic and weakly anisotropic region occurs above
the temperature at which renormalization of y due to
director fluctuations occurs. If this is the case, the
behavior of y is determined by the ~P~ term and is that
of the three-dimensional (3D) xy model.

VI. EVALUATION
OF THE ONE-LOOP THEORY FOR FINITE k

XD,(q)G(k+q), (25a)

'W

b c
W W
d e f

FIG. 7. Typical term in the expansion of the smectic self-
energy. Expansion of X in terms of the external momentum is
accomplished by extracting the leading momentum dependences
from the bare smectic propagators designated by numbers, and
the bare three-point vertices designated by letters.

We now turn to the evaluation of the finite-k contribu-
tions to the self-energies, which lead to renormalization
of the correlation lengths (from X) and elastic constants
(from II). The self-energy may be expanded in powers of
k; for finite values of reduced temperature a, the expan-
sion is analytic in k . We consider later the k depen-
dence for a =0, which determines the critical exponent ri.

In determining the finite k dependence of the self-
energy, it is important to note that contributions come
not only from the k dependence of the propagators in Eq.
(9), but also from the momentum dependence of the ver-
tices. In order to extract the leading k dependence, the
diagrams in Figs. 4 and 5 are expanded in terms of bare
correlation functions and vertices. A typical term in this
expansion is shown in Fig. 7. The smectic density-wave
fiuctuation (straight line) on the bottom of the diagratn
carries the external momentum through the graph; a con-
tribution to the k dependence arises from each bare prop-
agator or I 3 vertex on the bottom line. The result of
summing all these contributions is shown in Fig. 8, where
it may be seen that the effect is to generate a dressed ver-
tex on both sides of the diagram. The phenomenon is
well known, for example, in transport theory, where one
is interested in the leading frequency dependence of the
conductivity.

Substituting for the vertices and noting the Hartree
terms are momentum independent, the leading k depen-
dence may be obtained from expanding equations of the
form

3

X,(k)= f 3 (
—qpag~) [qj (2kj+q~)]

(2n )'



1398 BARBARA S. ANDERECK AND BRUCE R. PATTON 49

33b j 98b& +80
256(1 b—i )

b
&

—24b
&
+72b, —64

tanh '
1 b—,

256(1 b—, )

k=0
b, 16(1 b~—)

3b2 —4
tanh '+1 b2—,

16(1 b2—} ~

(28c)
FIG. 8. Contributions to the leading k' dependence of the

smectic self-energy. The vertical dashed lines indicate the ex-
traction of a factor of k from the cut propagator or vertex. The
net effect of the expansion is to dress both vertices in this one-
loop contribution.

eodi

~PK, g~

where b, =(K3/g~~)/(Ki/(J) and by=(K3/g~ )/(K2/gij).
Comparison of Eqs. (6a), (14), and (27) yields expressions
for the anisotropic correlation functions:

2
bio

(29a)
a

and

d q 22~&,(k)=f, ( —qoa(i)'lq, X(2k, +qi}l'
(2n. )

XD, (q)G(k+q)

d3
II,(k)= f ( —qoagi) [ki (2qi+ki)]

(2n }

2 2 2
k~~o eoCA'~~

a ~PK

(25b) Similarly, evaluation of Eqs. (26) yields

II„(k)=II„(0)—h, K, k —h K k

II (k) = II (0) h~Kzoki h3K3ok 3

where

(29b)

(30a)

(30b)

X G(q)G(k+q),

II,(k) =f ~
( —qoagi) lkiX(2qi+ki)l

X G(q)G(k+q) .

(26a)

(26b)

h, =0,
co(i

247rpK2og~~

eo4i

24vrPK3o

(31a)

(31b)

(31c)

[Note that these equations are only valid for the finite k
dependence of the self-energies; Eqs. (9) and (10) are to be
used when the external momentum is identically zero. ]
Terms with mixed splay and twist vertices yield zero
upon integration.

The integrals in Eqs. (25) are evaluated after expanding
G to fourth order in k. The resulting form for the ilj self-

energy is

Thus, the splay elastic constant is not renormalized:

X, =Zoo (32)

The form of the corrections to E2 and E3 is similar to
that found by de Gennes [7] and by Jahnig and Brochard
[12], but the actual dependence on temperature is
di8'erent due to the anisotropic divergences that we find
for gi and gi.

2 2

X(k)=X(0)+ [figiki —
f((g'(), (k)~

—qo)

—
gikiki ] (27)

where g~~,
——(~~a' . The explicit forms of fi, f~~, and gi

were determined by integration and collection of terms
(see Appendix):

qoki
K2 =E2o+

24m

2

K=K +3 30 24 P

VII. NUMERICAL SOLUTION OF THE SCALED,
COUPLED EQUATIONS

(33)

(34)

The growth of the correlation lengths and elastic con-
stants can be found for arbitrary temperatures by solving
the four coupled equations (29a), (29b), (33), and (34).
The form of these equations can be simplified by making
the following definitions:

b2+, tanh '+1 b2, —
bi 2(1 b2)'~— (28a)

5bi —8 (b, —2)(bi —4)+ tan h '
1 b, —

16(1 b i ) 16(1 b i
—)—

b, (b, +2)f = — + tanh 'Q 1 b, , (28b)—
8( 1 b) 8( 1 b)'— —

2
+ 04'((0

24m'PK3o

2

(35a)
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I— Q
a =

7

~30

R= (44»)'

(kiC»)'

bio=
K3o CIIQ

Ki Cjo

K30 CIIQ
&2O=

K30 C»
Then Eqs. (29) become

L =, 24b»—L ft,R

(35b)

(35c)

(35d)

(35e)

(35f)

(36a)

R
, +24b/QL'fII, (36b)

where ft and fII are functions of b&=b&o(R+L) and
b2=b30(R+L)i(1+bzoL). The two Eqs. (36) summa-
rize our results; their solution depends only on three ra-
tios: K30/Kf K30/Kzo andgyp/gIIQ.

In the high-temperature limit, where a' is large, we
have the expected isotropic behavior of the correlation
lengths, which means that R = 1 and L ~ gt/g~p
~1/V a '. In fact, by looking at Eqs. (36) we see that
L ~1/v a ' for large a' since ft and fII (and their argu-
ments b, and b2) approach constants. In the low-
temperature limit, a'~0, the self-consistent solution to
Eqs. (36) and b, and b2 yields b „b2,ft, fII, and L all ap-
proach constants, while R ec a'. Specifically, as a'~0,

1

24b»f
II

(37)

This behavior of L implies that /II is diverging twice as
rapidly as g~ in the asymptotic region, i.e.,

vll 2vi . (38)

This strong anisotropy is the same behavior as that found
by Nelson and Toner close to but below the transition [4].
«o»ng at R we fin«hat R "(CIICIIo) '"a =CIICIIo
~ 1/a '

vII
=y. Noting that b, ~b»L, we can solve

the asymptotic transcendental equation for b, [Eq. (37))
to find

=1+1.219(K,Q/E20). Hence the increase in E3 may not
be much more than a factor of 3 for typical polar liquid-
crystal systems.

Interesting and novel behavior occurs for intermediate
values of a' where the correlation lengths and elastic con-
stants cross over from high-temperature isotropic
behavior to the low-temperature strongly anisotropic lim-
it. The crossover is gradual and broad. The results of
our model are weakly anisotropic at these intermediate
temperatures. The specific behavior can be seen in Figs.
9—16, which result from numerical solutions to Eqs. (36).
Figure 9 shows a log-log plot of gz/gzo and /II/gIIQ versus
a' for K30/K&0=2 K30/K30=3, and (IIQ/g»=7. These
parameter values were chosen because they are typical of
(polar) liquid-crystal systems [ll]. For large a' the two
correlation lengths diverge as predicted by an isotropic
theory: g/go = I /v a '. At lower temperatures the
growth rate of g~ is reduced, as seen by the shallower
slope. Finally, in the strongly anisotropic regime, we
again have g~ ~ I/3/a ', but (II 1/a'. For the set of pa-
rameters chosen we see that the intermediate, weakly an-
isotropic regime extends over about eight orders of mag-
nitude in a'. (This would correspond to roughly six or-
ders of magnitude in reduced temperature if y = 1.25.)

The deviation from high-temperature (3D x-y)
behavior is seen more clearly in Fig. 10, which is a plot of
g~ II/g„„. Figure 11 shows the effective correlation length
exponents vt II/y =ding/dlna'. vt/y drops to -0.4 in
the middle of the weakly anisotropic region, yielding an
anisotropy ratio of vII/vt= —,'. If this intermediate region
were sufftciently wide vj /y would reach a minimum of —'„
which would give vII/vt= —', . For the parameters used in

Figs. 9 and 10 the effect of the weakly anisotropic region
is to reduce gt by an order of magnitude over what it
would have been in the low-temperature regime had the
5n-l{ coupling not produced the weakly anisotropic re-
gion.

The qualitative features of the curves in Figs. 9—11 are
dependent on the three ratios of initial parameters. In or-
der to see the nature of these dependencies, we define
four crossover temperatures, namely the temperatures at
which gt and /II change their rate of divergence, and the
temperatures at which K3 and K3 begin to diverge.

106—

10

and

bi -+1.2190. . . (39)

L~1.2190. . . /bio . (40)
10

Writing Eq. (33) in terms of our scaled quantities, we find

K2 =K30(1+b2pL ), (41)

which means that K2 approaches a constant as a'~0. So
while E2 begins to renormalize at higher reduced temper-
atures, asymptotically it does not diverge. In fact, the
fractional increase in E2 is 1+b,(K,Q/K&0)

104 i )& I

10-iO 10 6
I I I I I I I I I I I

10 10' 10
+'~30

FIG. 9. Plot of the perpendicular (broken line) and parallel
{solid line) correlation lengths for gIIO/g, o 7, X3p/E~ 2, and
K3O/K2O =3.



BARBARA S. ANDERECK AND BRUCE R. PATTON 49

10
108

I I I I [
I ) I I

)
I ( I I

(
i I ) I

10
10

0$
0

10

10'-

1010-1O 106
I

10
g/a3o

10
)

10'
104

10-15 10-10 10'
a/a3o

10' 10'

FIG. 10. Plot of g) /(„» (broken line) and (Ii/g, » (solid line),
showing the deviation of the critical behavior of these quantities
from their 3D xy behavior, for (IIp/()p=7 K)p/K) =2, and

K3O /F20 =3.

FIG. 12. Plot of the perpendicular (broken line) and parallel
(solid line) correlation lengths for gIIp/g, p 10 K)p/K) 0 ~ 01,
and &3p/+20
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(42a)

(42b)

(42c)

(42d)

where

1
Vy

J
y

(43a)

Specifically, we define the crossover temperatures to be
the points at which the correction terms in Eqs. (29) and
(31) are equal to the "bare" values. (In the case of g~ it is
the temperature at which the negative correction is half
of go). We then find

' 2/(I —25 )

(43b)

For physically reasonable values of the "bare" parame-
ters, the crossover temperatures are arranged so that

aII =a2 &a~=a3. By comparing Eqs. (42a) and (42b) we

find that a3 )a) if 48b, ft & 1. This is true for

b,o=b20& -0.008. For the parameters used in Figs.
9—11 we have b)o=2/7 =0.04 and bzo=3/7 =0.06, so

a~/a3o )a3/aso =1. So a) and a3 mark the high-
temperature end of the weakly anisotropic region for
physically realistic parameters.

The low-temperature end of the weakly anisotropic re-

gion is marked by a2 and aII. Comparing Eqs. (42c) and
(42d) shows that a2 &aII if fII &E, /24E2o. In the low-

temperature limit we have fII —+1/24b)oL~0. 034. The
case we have shown in Figs. 9—11 has
E) /24K2o =0.0625, so az is slightly larger than a II.

In order to understand the behavior of our theory
more completely, it is instructive to consider several lim-

iting cases in which the parameters vary from currently
accessible experimental values. If splay were stiff enough
compared to twist, Q2 might move up to the temperature
region where Q~ is. Specifically, we would have Q2 &Q~ if

f~ &E, /48K2o. Figures 12 and 13 show the correlation
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FIG. 11. Plot of the perpendicular (broken line) and parallel
(solid line) effective correlation length exponents for gIIp/()p=7,
+3o /+ I 2 and +3(}/+2O

FIG. 13. Plot of the perpendicular (broken line) and parallel
(solid line) effective correlation length exponents for
gII~p/$)p=10, K,p/K, =0.01, and Kso/Kzp =10.
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FIG. 14. Plot of the perpendicular (broken line) and parallel
(solid line) correlation lengths for g~~p/(jp=10, K3p/K, =10,
and K3p/K2p =0.01.

FIG. 16. Plot of the corrections to the twist (broken line) and
bend (solid line) elastic constants for f10/g, p=7, K30/K, =2,
and K3o~K2o =3

lengths and critical exponents for the case where
(1p/$~p= 10, K3p/K, =0.01, and K3p/K2p = 10. Here the
renormalization of K2 drives the onset of the weakly an-
isotropic region and decreases vj/y from its isotropic
value of 0.5. But as a is decreased vj /y begins to recover
before a~ is reached, causing a second, less dramatic de-
crease in vj /y.

It is also possible theoretically to have a1~aj. Com-
paring Eqs. (42a) and (42d) we find the condition for the
onset of change in the renormalization of gj to occur at a
higher temperature than the change in the renormaliza-
tion of'

g~ to be f
~~

& 2f~. If twist were sufllciently stiff to
cause the last term in Eq. (28a) to be negligible, then this
condition would be equivalent to b& =(K3/$1p)/
(K&/gp) ~ 3.7. Figures 14 and 15 show the correlation
lengths and critical exponents for parameters that meet
this condition. Note that once the critical behavior of gj
changes, its rate of growth is quite dramatic until the 5n-

f corrections to gj become important (below aj), at
which point the rate of growth of (1 drops again and then
finally rises to the asymptotic rate with v1/y=1. Re-
gardless of the values of initial parameters and the order
of the crossover temperatures, the asymptotic critical re-

gion in our model is strongly anisotropic, with v1/v~=2.
Finally, the corrections to the twist and bend elastic

constants for the physically realistic parameters are
shown in Fig. 16. Because 5K2 depends on gj, its
behavior changes character at the same temperatures as

The asymptotic constant value of 5K2 reflects the
strong anisotropy v1/vj=2(=(~/(1 constant). 5K3,
which depends only on g1, does not change from the
high-temperature behavior until the strongly anisotropic
region is reached.

The results outlined above in the strongly anisotropic
regime are what would be seen if the N-A transition were
second order. Previous theoretical work [3] and experi-
mental measurements [18] as well as preliminary calcula-
tions based on the model used in this paper indicate that
the N Atransitio-n may be weakly first order. The first-
order transition may be encountered as the strongly an-
isotropic region is approached, making this region inac-
cessible except by supercooling the sample.

VIII. SELF-CONSISTENCY OF THEORY:
CALCULATION OF CRITICAL EXPONENT pi AND pii

1.2

0.9

Y

0.6

I I
I

I I
I

I I
I

I I

In this section we complete the calculation of the
correlation function exponents, which provides a useful
consistency check of our model. In particular, the corre-
lation function critical exponents must satisfy the scaling
relation v =y /(2 —g). In order to check the self-
consistency of this model we calculate g~ and gI~ explicit-
ly. Since we consider here only director-smectic fluctua-
tions this amounts to neglecting the small value of g in
the 3D xy model.

We again evaluate Eqs. (25a) and (25b), but this time in
the limit that 1 «gj 1k~1. The values for gj and g1 are
defined by

0.3
10

I « I

10 10
q/aso

1p8 1P11

FIG. 15. Plot of the perpendicular (broken line) and parallel
(solid line) efFective correlation length exponents for
(1P/(lo =10, K,o /K, = 10, and K3o/K20 =0.01.

G '(a =O, k„k~, =0) k

G '(a =O, k, =O, k„) k

(44a)

(44b)

Consider first g1. The contribution to X from Eq. (25b) is
zero, since k~ =0. Evaluation of Eq. (25a) yields
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limX, (k=k~~e~~)a~0
2 2 3 2

~qoki d p PI 1= lim
(2Ir) pI+bipi~ 1+pi+(p)+sI)

kioqo

(1+Qb, )'
(45)

1
X

2 21+ p, +s, i +p„
(46)

where SI=(Ik~. Explicit evaluation shows the linear
term in k~ vanishes by symmetry, although its prefactor
would have a temperature dependence which would
cause it to vanish as a~O in any case. Therefore the
leading kI dependence in (46) is k I, indicating that I)I=0.
Thus vI and riI satisfy the scaling relation vI=y/(2 —I)I),
consistent with vI=y/2, as found earlier.

IX. SUMMARY

We have presented the results of a self-consistent, one-
loop model calculation for the nematic —smectic-A phase
transition based on de Gennes' free energy. In particular
we have calculated, at all temperatures, the fluctuation-
induced renormalization of the correlation lengths paral-
lel and perpendicular to the director, as well as the renor-
malized twist and bend elastic constants. The anisotropic
renormalization of the correlation lengths (vIWv~~) and
elastic constants arises directly from the manifestly aniso-
tropic nature of the coupling between the director fluc-
tuations and the smectic order parameter. For physically
realistic values of the bare elastic constants and correla-
tion lengths, the renormalization of the bend elastic con-
stant and the change in the divergence rate of the perpen-
dicular correlation length become significant at higher
temperatures and mark the high-temperature onset of the
weakly anisotropic region. The lower end of this inter-
mediate scaling region is marked by a change in the char-
acter of the divergence of the parallel correlation length.

where pI=JIqI, p~~ =g~~q~~, and s~~ =g'~~(k~~
—qo). Note that

the leading k dependence in X comes from
qo), ~h~~h cancels the

~~i
In the p«fa«or f«

the integral. This, coupled with the critical behavior:

gI ~ a'~ leaves only nondivergent and nonvanishing fac-
tors as a~O. For small k~~ this linear contribution to
G '(k) dominates the k

~~

dependence in (G )
' and indi-

cates that &~~=1. Thus
v~~ and

p~~
satisfy the scaling rela-

tion v~~~=y/(2 —
I)~~~), consistent with v~~~=y as found in

Sec. VII.
In order to evaluate I)I we examine X(k=kI):

lim X,(k=kI)
a~0

aqogI. d Io (jI I+2pj SI) 1= lim
S'I+biz~,

In the weakly anisotropic region v~/y is reduced from its
isotropic, 3D xy value of 0.5 (neglecting I)„) to one that
approaches —', . Below the weakly anisotropic region v~/y
returns to its high-temperature value of 0.5, and v~~/y be-
comes 1. The weakly anisotropic region is quite broad
(6—8 decades in a, which corresponds to 4—6 decades in
reduced temperature) and the crossover at the high-
temperature end is subtle, which would explain the exper-
imental observation of correlation lengths whose temper-
ature dependence is characterizable by a single exponent.
Several factors affect the location of the onset of strong
anisotropy. Liquid-crystal systems with smaller layer
spacings (larger qo), with smaller intrinsic anisotropies
(smaller g~~o/(Io) ol wltll Softer Splay modes (Smaller IC I)
will have larger values of the crossover temperature into
the strongly anisotropic region. If this lower-temperature
end of the weakly anisotropic region can be accessed ex-
perimentally, the crossover from weak anisotropy to
strong anisotropy should be readily detectable.

Coupled with the onset of strongly anisotropic
behavior should be an intervening first-order transition to
the smectic-A phase. The reduced temperature at which
such a first-order transition would occur, and changes in
the effective value of y due to the coupling between the
director and density-wave fiuctuations, will be discussed
in a separate work.
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APPENDIX

where pI =gIqI, p
~~

=
glq ~~,

and j= 1 or 2 for the contribu-
tions to fI

~~

and gI, respectively. The integrand is in-

dependent of P. The 8 integral can be written in the
form

f (1—V')' V'"

1+(b —1)p

while the p integral becomes
2m +2n

2)rn +n +jdp

(A2)

(A3)

The integrand is then expanded to fourth order in the
perpendicular external momentum, and to second-order
in the parallel external momentum, yielding the results
given in Eqs. (28) and (31).

Calculation of the smectic self-energy as given by Eqs.
(25) involves the evaluation of several integrals of the
type

p'z p~~
n J pit g J (2 )3 ~2+b ~2 (1+p2)m +nj+

(Al)
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