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Two-temperature kinetic Ising model in one dimension: Steady-state correlations in terms
of energy and energy Aux
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We study the nonequilibrium properties of a one-dimensional kinetic Ising model in which spins in-

teract by nearest-neighbor ferromagnetic interactions and a spin-flip dynamics is generated by contact
with heat baths that are at different temperatures on even and odd lattice sites. The average energy (c, )

and the energy flux between the two sublattices (j, ) are calculated exactly and the two-spin steady-state
correlations are expressed through e and j,. It is found that the correlations can be classi6ed as fer-
romagnetic (for c &0 and j, small), antiferromagnetic (c & 0, j, small), oscillating ferromagnetic (c &0, j,
large), and oscillating antiferromagnetic (c &0, j, large}. We also 6nd a disorder line (a=0, j, arbitrary)
on which all correlations are zero. The character of spatial correlations is shown to be reflected in the
time evolution of sublattice magnetizations: The dynamics is purely relaxational in the ferromagnetic
and antiferromagnetic regime while it is damped oscillatory in the oscillating ferromagnetic and antifer-
romagnetic regions.

PACS number(s): 05.50.+q, 05.70.Ln, 64.60.Cn

I. INTRODUCI'ION

Temperature is not necessarily the best concept for the
description of far-from-equilibrium steady states. This
fact has been tacitly recognized by experimentalists who
often characterize steady states in terms of currents such
as fluxes of energy or momentum [I]. From a theoretical
point of view, however, it is convenient to work with heat
baths. First, it allows the local equilibrium approxima-
tion and thus gives a calculational tool that provides
good description at least for near-equilibrium steady
states. Second, the arbitrariness of possible dynamical
processes is reduced by the conditions of detailed balance
associated with the heat baths. Third, the interactions in
the system can be controlled through the Hamiltonian in
the detailed-balance condition. In view of the above, it is
not surprising that there is a large body of literature
[2—8] on kinetic Ising models in which the steady state is
produced by dynamic processes generated by heat baths
at difFerent temperatures. Although these studies address
specific questions (many of them are concerned with the
possible nonequilibrium effects on phase transitions), the
unifying theme seems to be an attempt to find some gen-
eral features in the description of nonequilibrium steady
states. Unfortunately, these attempts have not met much
success so far.

A possible reason for the failure may be that the results
of these models are usually analyzed in terms of tempera-
tures. When there are several heat baths, we expect that
their temperatures are not the "natural" variables and,
consequently, we should try to analyze the system in

terms of more basic physical quantities such as the aver-
age energy and the fluxes of various quantities, e.g., the
flux of energy. In order to demonstrate the feasibility
and the value of such an analysis, we consider here a
one-dimensional kinetic Ising model (defined in Sec. II) in
which spin flips are generated by heat baths that are at
difl'erent temperatures on even and odd lattice sites. The
model can be solved in the sense that the average energy
(e), the energy flux between the two sublattices (j, ), and
the two-spin correlation function (C„) can be calculated
exactly for the steady state and, furthermore, C„can be
expressed through e and j, (Sec. III). The analysis in
terms of e and j, appears to have the following advan-
tages as compared to the analysis in terms of the temper-
atures. First, the phase space that can be explored is
larger compared to that when heat baths with positive
temperatures are considered. Second, in this enlargened
phase space, we observe a behavior that seems to be a
characteristic feature of nonequilibrium steady states: In-
creasing the energy flux increases the complexity of
correlations.

For this simple model, we can also study the relaxation
to the steady state and, in Sec. IV, we calculate the dy-
namics of the sublattice magnetizations exactly. An in-
teresting feature of the result is that the temporal decay
of the sublattice magnetizations mirrors the spatial decay
of the two-spin correlations. Namely, the character of
the dynamics changes from purely relaxational to
damped oscillatory when oscillations appear in the spatial
correlations.

II. MODEL

Permanent address: Institute for Theoretical Physics, Eotvos
University, 1088 Budapest, Puskin u. 5-7, Hungary.

We consider a one-dimensional version of the so-called
two-temperature kinetic Ising model [3(b)]. The state of
the system [o]—:[. . .,o„,cr„+„.. . ], at time t is
specified by stochastic Ising variables o „(t)=+ I assigned
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to lattice sites n =1,2, . . . , X, where X is an even num-
ber. Periodic boundary conditions are imposed, thus
0- ~;+,=o, The spins are in contact with heat baths with

temperatures T, and T, on even an odd lattice sites, re-

spectively, and the spin-flip dynamics is described by the
following master equation for the probability distribution
P([cr jt),:

We shall find a steady state in which (o„o.„+,) is

translationally invariant so that c. is independent of n.
Since the energy needed to flip the spin at site n is
2Jo.„(cr„+&+cr„(), the average rate of energy transfer
to the heat bath at site n is given by

j,(n) = ( —2Jo „(o.„, ,
+o.„,!(((„)

(yn &onon-i&) «no, —&)

—i((„(j o j )P ( [ cr], t ) ],
where the state [o j „diff'ers from [o j by a fiipping of the
nth spin and the flip rates on even and odd lattice sites
are given as follows:

!
1 7it

(((„([oj)= 1 — cr„(o„+,+o„=,), (2)
2w 2

The average energy should be constant in the steady
state, so the energy transfer to the heat bath at odd lattice
sites must be compensated by the energy obtained at even
sites. Consequently, we can define the energy current
flowing from an even site to a neighboring odd site as

j,(2n +1)—j,(2n)

~here

y, = tanh(2J /ks T, ), n even

yo=t anh( 2JI k((T, ), n odd .

For T, =T, =T, Eqs. (1)—(3) define the exactly solvable
Glauber model [9] which relaxes to the equilibrium state
of the Ising model with the nearest-neighbor Hamiltonian
H = Jg„—o „o„+i at temperature T. As soon as

T, W T„however, there is a competition between the heat
baths, each trying to drive the system towards equilibri-
um with the same Hamiltonian but at its own tempera-
ture. As a result, energy flows from one sublattice to the
other and the stationary state that is formed is a none-
quilibrium steady state. As we shall see below, this gen-
eralization of the Glauber model is solvable in the sense
that the relaxation of the one-point correlations ( o „)
and the steady-state values of the two-spin correlations
(o „crk ) can be calculated exactly.

In principle, the time evolution and the steady-state
value of the average of a physical quantity A could be ob-
tained by first solving the master equation for an arbi-
trary initial distribution Po =P( [ cr j,0) and then calculat-
ing the averages through

o

In practice, one derives the equations governing the time
evolution of the correlation functions of interest and the
solvable cases are distinguished by the decoupling of
these correlations from the higher-order ones. The
closed set of equations are then usually solved with ease
as will be seen in the example of the model discussed
above. The equations for (o „) and (o'„ok ) can be de-
rived by following the steps of the corresponding calcula-
tion for the Glauber model [9]. Thus we shall just
present and discuss the results in Secs. III and IV.

Once (cr„crk ) is obtained, the average energy per spin
can be expressed through the nearest-neighbor correla-
tions as

E J(o„~cri)

The two sublattices are homogeneous in the steady state
found in Sec. III, so that j, is also independent of n.

The right-hand sides of Eqs. (5) and (7) are functions of
and r, . Thus we can express these temperatures

through c and j, and consider the latter quantities as the
independent variables. Then all physical quantities of in-

terest can be expressed in terms of c and j, .

Clearly, other quantities may be chosen as independent
variables. An example is the entropy production

(8)
Tt )

and other fiuxlike quantities may be introduced [10]. The
reason we prefer j, is that its definition does not explicit-
ly contain the temperatures of the heat baths and, fur-
thermore, the final results are significantly simpler in
terms of j, .

III. T%0-SPIN CORRELATIONS
IN THE STEADY STATE

Multiplying both sides of (1) by o.(crk and summing
over all configurations [o j, we find that the two-point
correlation functions (o(ok) satisfy a closed set of
diFerential equations

(leak

):

c)(O(Ok )
2r — 4(o'(ok )+y(((cr(+(ok )+( (o(cTk ) )

+yk( (o(ok+( ) + (blok —( ) )

Since there is no process in the system which would rein-
force any inhomogeneous fluctuation on a given sublat-
tice, we expect the steady state to be invariant with
respect to translations by even number of lattice sites.
Then ( o (o (+ ), „. should depend only on m and
whether / is even or odd. Consequently, two types of
correlations should be distinguished:

C', ( odd

'+ ''' " jc', l'. even.
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2C2„=y,(C,„+,+C,„,), 1 n & —,
2

'

2C2„)— (C2„+C2„2)+ (Cr„+C2„2),5 2 5 5

1&n& —.N
2

'

Note that the inhomogeneous terms appear only in the
n = 1 and N/2 equations where Co =Co =CN
=Cz=(cr&) =1. For finite N, these equations have a
unique solution. In the "thermodynamic" limit N~ 00,
this solution can be written in the form (n & 1)

Cz„)= AA, " ', Cr„= A, A,", C2„=A, A,",
where

(12)

1++i—y, y,

y. +y.
A = (1—gl —y, y, ),

2y.y.

A, =—1+1 yo

2 y,

(13)

Clearly, C2„and C2„describe the correlations within the
odd and even sublattices, respectively, while

C2 &

=C2 ]:Cp ] denotes the correlations between
spins on diFerent sublattices. It follows from Eq. (9) that
these correlations satisfy the following set of inhomo-
geneous linear equations:

2C2„=y,(C2„+(+Cr„,), 1 n & —,0 N
2

'

Having expressed the correlation functions in terms of
s and j„we start the analysis by specifying the range of e
and j, where the model is meaningful. If the tempera-
tures of the heat baths are restricted to be positive, then
0&y, &1, 0&y, &1, and Eq. (14) gives —1&E&0,
—

—,
' ~j, &

—,'. A more general view, however, is that the
master equation (1) describes a physical process for all y,
and y, for which the spin-flip rates (2) are positive. This
positivity condition restricts the y s to be in the [—1, 1]
interval. When both y's are negative, we can absorb the
negative sign into the coupling constant J—+ —J and the
model describes a two-temperature kinetic Ising model
with antiferromagnetic couplings. When the y's have
difFerent signs, however, such an interpretation is not
possible and we have to associate the negative sign with
the temperature of one of the heat baths. Such an inter-
pretation is consistent with the usual view that negative
temperature corresponds to an "inverted population of
states" and is higher than the T=+oo temperature.
Indeed, since j,=(y, —y, )/2, one can see that the ener-

gy flux towards the odd sublattice is increasing if we de-
crease y, to zero (corresponding to increasing the tem-
perature of the even sublattice to T, = + ~ ) and then
continue to decrease it to negative values.

In the following we shall take the more general view.
We allow the y's to be from the interval —1 & y„y, & 1

and assume that the interactions are ferromagnetic. This
means that whenever y, &0 or y, & 0, the corresponding
heat bath is assumed to be in an "inverted state" with
negative temperature. For the given range of y's, the
values of e and j, are the interval [ —1, 1]. At a fixed
sAO, however, the possible values of j, are more restrict-
ed as can be seen and calculated from Eqs. (13):

A, =—1+1 ye

2 y.
lj, I

—1 —Is I [1+&1+(I—le I
}']+a' . (17)

The average energy c, and the energy Aux between the
two sublattices j, can now be calculated using (5)—(7),
(12), and (13):

1 y+y (Ql —y, y, —1),J 2y, y,

The maximum value of j, is displayed on Fig. 1 by solid

1.0

(14)
1

Jj.= 2(y. y, ) . —

Inverting the above equations, y, and y, can be ex-
pressed through s and j, and then Eqs. (12}and (13) yield
the correlation function in terms of energy and Aux of en-
ergy. In order to simplify the expressions, we shall set
J = 1 and w= 1 (i.e., we measure s and j, in units of J and
J/r, respectively) and introduce the notation

g =—Ql+(1+a }j,—1 .
0.0

-1.0 -0.5 0.0

E (units of I)
0.5 1.0

Then A, and the amplitudes of the correlation functions
can be written as follows:

26 'g

2+9
BJq BJq

A,=, A, =
GJq+'g CJq

FIG. 1. "Phase diagram" in the plane of energy (c, ) and ener-

gy flux (j, ). Characteristic decay is of correlations in the "fer-
romagnetic" (F) and "oscillating ferromagnetic" (OF) regimes
are displayed in Figs. 2 and 3. The boundary between the two
regimes is shown by a dashed line. The j,=0 axis is the line of
Ising equilibrium, the a =0 axis is a disorder line, and the possi-
ble j, values are bounded by the upper solid line.
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line. The curve displaying the minimum allowed values
of' j, can be obtained by rejecting this solid line through
the c axis. %e shall not be concerned, however, with the

j, &0 region since the j,~—j, transformation can be
obtained by exchanging the temperatures of the sublat-
tices. Then the correlations between odd and even sites
do not change while the odd-odd correlations become the
even-even correlations and vice versa. Indeed, examining
Eqs. (12), (15), and (16), one finds

I odcl

.'~-='. l even

Another symmetry of the correlation functions that is ap-
parent from (12), (15), and (16) is as follows:

C„'( —e, —j, )=( —1)"C„'(E,j, ),
C„'( —

E., —j, ) =( —1)"C„'(c,j, ) .

For the equilibrium case (j,=0), the above relationships
follow from the gauge symmetry of the Hamiltonian, i.e.,
from the invariance with respect to the simultaneous
change of the sign of the interaction and the change of
sign of spins on one of the sublattices. The correspond-
ing gauge symmetry that yields the symmetries of the
correlation functions given by (19) is the invariance of the
master equation (1) with respect to the simultaneous
change of the sign of the spins on one of the sublattices
and the change of the signs of both y, and y, .

Combining (18) and (19) we can also find how the
correlation functions are transformed under the change
of the sign of z:

(20)

FIG. 2. General form of two-spin correlations in the fer-

rornagnetic regime, i.e., in the region denoted by F in Fig. 1.
For this particular example we get c, = —0.5 and j,=0.1. The
correlation function in the AF region at —c, and j, is obtained

by exchanging the squares and the circles and by changing the

sign of the correlations at odd n.

odd sublattice is thus at a lower temperature than the
even sublattice and so the odd-odd correlations are
stronger than the even-even ones.

The region of ferromagnetic correlations is bounded
from the large Aux side by the line:

Thus it is sufhcient to investigate the correlation function
in the r «0, j,~0 quadrant. The behavior in the other
quadrants follow from (18)—(20).

Let us consider first the j,=0 axis. This is the line of
equilibrium and, indeed, one can find from (16) that
k=c, 3 =- —c, and 3,= A„=l and, consequently, the2

correlations are those of the equilibrium Ising model
C„'(e)=C,", (E)=(-E)".

The other axis (e =0) is also special, since it is a disor-
der line v here all the correlations are zero. The vanish-

ing of the two-spin correlations is obvious from (16) since
a11 three amplitudes of the correlation functions are zero
for E =0. The general statement that all correlations van-
ish fol1ows from the fact that c=0 corresponds to
)',,

= —y,, [see Eq. (14)] and one can verify by straightfor-
ward substitution that, in this case, the steady-state solu-
tion of the Master equation (1) is the constant distribu-
tion. With all the states being equally probable, we have
the T= ~ Ising model where all correlations vanish.

Let us consider now the "ferromagnetic" region denot-
ed by F in Fig. l. Although there is no real ferromagnet-
ic order in this region, we use this name to describe the
following observation: The correlations are positive at all
distances (see Fig. 2). The only difference from the equi-
librium Ising correlations is the splitting of the C2„corre-
lations into C2„and C2„. The inequality Cz„Cz„ob-
served in Fig. 2 is consequence of the energy Aux Aowing
towards the odd sublattice [j,=(y, —y, )/2 &0]. The

which is shown as a dashed line in Fig. 1. One can find
from (16) that A. =O on this line and all the correlations
vanish except the nearest-neighbor correlation and the
second-nearest-neighbor odd-odd one. This result can be
partly understood in terms of the temperatures of the
heat baths. First, A, =O means that ),y, =O [see Eq.
(13)]. Further, since j, & 0 means T, & T„we must have

y, , =0, i.e., T, = ~. Since the Gipping of spins is entirely
random on the T= ~ sublattice, there can be no correla-
tions built between the even sites.

Above line (21), we have A. (0. According to Eq. (13),
this means that y, y, &0, i.e., one of the heat baths is at
positive while the other is at negative temperature. In
this region, both C„' and C„' decay through oscillations of
period four lattice spacings as shown in Fig. 3. It is re-
markable that the plot seems to be rather chaotic, al-
though there is a simple underlying structure to it. %'e
call these correlations "oscillating ferromagnetic" (and
denote the region above the line j,= —2E by OF) be-

cause, apart from the oscillations, we also see that the
dominating nearest-neighbor and second-nearest-
neighbor correlations are ferromagnetic. Note that the
corresponding region for s &0 is denoted by OAF (oscil-
lating antiferromagnetic) since there the nearest-neighbor
and the dominating second-nearest-neighbor correlations
and antiferromagnetic [see Eq. (20)].

Looking at the "phase diagram" and the correlation
functions in Figs. 1 —3, we can observe the following two
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0.5 more, m, (t) and m, (t}satisfy the following equations:

0.4

A

0.2 ~

V
0.1

Q
/ Il

/
/

0.3—
/

/
/

1 odd
1 even

~m, = —m, +y, m„~m, =y, m, —m, . (24)

m (t)=a'+'e + +a' 'e (a=o,e), (25)

The solution to these equations is a sum of two exponen-
tials

0.0
with the rates of relaxation given by

-0.1 (26)

FIG. 3. General form of two-spin correlations in the oscillat-
ing ferromagnetic regime, i.e., in the region denoted by OF in

Fig. 1. In this actual example we set c= —0.2 and j,=0.5. The
correlation function in the OAF region at —c and j, is obtained

by exchanging the squares and the circles and by changing the
sign of the correlations at odd n.

IV. DYNAMICS OF SUBLATTICE MAGNETIZATIONS

The equation for the time evolution of the average
magnetization at site n is obtained from (1) by multiply-
ing both sides by cr „and summing over all configurations

Thus, if an initial state had homogeneous but distinct
sublattice magnetizations

& o2„+&&, 0=m, (0), &o'2„&, o=m, (0), (23)

then each remain homogeneous at all times. Further-

features that appear to be rather general characteristics
of driven systems. (i) When the system is ordered
( ~

s
~

= 1}it cannot be driven. Indeed, the maximum avail-
able energy flux is j, '"—(1—

~s~ ) and the character of
correlations does not change as a result of driving. (ii)
The range of available flux values increases as the order
decreases in the system ( ~

s
~
~0) and the correlations be-

corne more complex at large fluxes.
Note that the above conclusions appear naturally in

the c,j, representation. It would have been much more
difficult to arrive at similar conclusions using the temper-
atures of the heat baths. Indeed, had the model been ana-
lyzed in terms of positive temperatures of heat baths, the
most interesting regions of the phase diagram, namely the
OF and OAF regions, would have been left out of con-
siderations.

The interesting feature of results (25) and (26) is that the
purely relaxational behavior in the F and AF regions
(r,r, )0) changes over to damped oscillatory relaxation
in the OF and OAF regions (r,r, (0). As it was shown
in Sec. III, a similar changeover takes place in the spatial
dependence of the two-point correlation functions. Thus
we see here an explicit example of what is otherwise well
known, namely, the coupling between the dynamics and
the statics in a nonequilibrium steady state is much
stronger than in an equilibrium system where the Hamil-
tonian in the detailed balance condition determines all
the static correlations. Another remarkable feature of
the dynamics is that ReI + is a constant (1/r) in the OF
and OAF regions. Thus the exponential envelope of the
damped oscillatory relaxation is fixed in the whole oscil-
latory region. While this is interesting, we believe it is
not a general feature; it is just a consequence of the sim-
plicity of the model.

V. FINAL REMARKS

We should emphasize that the descriptions of the two-
temperature model in terms of c and j, or in terms of T,
and T, are equivalent, provided we allow for negative
temperatures. Indeed, we switched between the two
descriptions frequently finding one or the other to be
more convenient in explaining various features of the re-
sults. Thus one might argue that Secs. II-IV contain no
more than an exact calculation of both the two-spin
correlations in the steady state and the relaxation of sub-
lattice magnetizations towards the steady state. We be-
lieve, however, that there is a more general point to our
calculation. Namely, it shows that it is possible and
perhaps useful to analyze nonequilibrium steady states in
terms of local physical quantities such as energy and en-

ergy flux instead of using external parameters such as the
temperature of heat baths.
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