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Theory of reorientational transitions in ferrielectric liquid crystals
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A phenomenological model is proposed for the description of the sequences of ferroelectric, antifer-

roelectric, and ferrielectric smectic phases reported in liquid crystals of the MHPOBC
[4-(1-methylheptyloxycarbonyl)phenyl-4'-octyloxybiphenyl-4-carboxylate] type. The model assumes a
bilayer smectic ordering and a mechanism consisting of an azimuthal reorientation of the molecules at
the transitions. Three helicoidal ferrielectric structures are found to be possibly stable, in which the hel-

ical pitch is shown to vary monotonically as a function of temperature. One of these phases, character-
ized by an azimuthal mode independent from the z coordinate, provides a suitable interpretation of the

presently known results on ferrielectric ordering in liquid crystals. The static and dynamical features of
the transitions are worked out and discussed in view of the available data.

PACS number(s): 64.70.Md, 61.30.Cz

I. INTRODUCTION

Since the first antiferroelectric liquid-crystalline
phase was discovered in MHPOBC [4-(1-methylheptyl-
oxycarbonyl) phenyl - 4' - octyloxybisphenyl - 4 - carboxy-
late] [1], a number of antiferroelectric and ferrielectric
liquid crystals have been found [2-7], such as
TFMHPOBC, TFFMPOBC, TFMHPDOPB,
MHPOCBC, and MOPBIC, which display a variety of
sequences of different dipolar orders. In addition to the
standard ferroelectric Sm-C* phase, at least four types of
new dipolar mesophases have been evidenced: the anti-
ferroelectric Sm-C„' [8], the ferrielectric Sm-C ' phase

[9], and other phases denoted Sm-C, ' and Sm-C„'
[2,10]. Although an extensive set of experimental studies
was performed on the preceding compounds, including
x-ray difFraction [11,12], differential-scanning calorimetry
[2,13,14], dielectric and optical measurements [4,15,16],
and scanning- tunneling microscopy [17,18], no clear-cut
conclusion could be drawn about the phase structures.
This is due to the fact that, on the one hand, x-ray
powder spectra show a smooth dependence of the inter-
layer distances across the observed sequences of phases
[11,19] and, on the other hand, x-ray plates obtained
from oriented samples do not allow one to discriminate
the difFerent structures [19]. Thus, only indirect experi-
ments, such as dielectric [7,20,21] and electro-optical [5]
measurements, or conoscopic figure observations
[4,22,23] could establish unequivocally the ferro-,
antiferro-, or ferrielectric nature of the reported phases.
However, these data do not give any insight about the
molecular steps of reorganization from one structure to
another. In this respect, the phenomenological model
proposed by Orihara and Ishibashi [24] does not discuss
the mechanisms that may lead to a ferrielectric ordering.

The aim of the present work is to show that the whole
set of experimental data concerning these phases can be
understood in terms of an azimuthal reorientation of the
molecular subunits, assuming a bilayer periodicity for the
smectic stacking. Besides, we give a detailed description
of the inhomogeneous structures of the ferroelectric, anti-
ferroelectric, and ferrielectric phases, which were not

considered in the homogeneous model of Ref. [24].
The paper is organized as follows. In Sec. II a theoreti-

cal description is given of the possible dipolar
configurations that may arise in bilayer antiferroelectric
and ferrielectric smectics. Section III contains a discus-
sion of the theoretical predictions of our model and of the
available experimental data reported for antiferroelectric
and ferrielectric liquid crystals.

II. THEORETICAL MODEL

A. Homogeneous case

IP /1+ l2& 7A /1 92 (2)

gz and gz transform, respectively, as the in-layer polar-
ization P =p&+pz and antipolarization A=p| —p2, where

p& and p2 are the polarizations of two adjacent layers.
One can note that under the symmetry operations of Go,
g~ and g„can be distinguished only by the translations
tz E Tz as tz(vs ) =gr and tz(g z )= —g „.

Using the symmetry properties of gz and g„, one can
construct the order-parameter expansion associated with
the observed sequences of phase transitions. It is formed
by three basis invariants (rational basis of integrity [25]},

Let us assume a bilayer stacking of dipolar molecules
and introduce for its phenomenological description the
two axial vectors g| and slz, defined as follows:

vi, =( n, n„,n, „n—„)
'g2 ( n2yn2 nz nz }

where the n;„(i =1,2; u =x,y, z) are the components of
the director in the ith layer, and the space variables (x,y)
and z indicate, respectively, the in-plane coordinates and
the direction perpendicular to the layers. The four com-
ponents of sl, and vl2 span a four-dimensional reducible
representation of the space group Gp =D 8 Tz which is
associated with the parent chiral Sm-A phase. This rep-
resentation decomposes in two irreducible representa-
tions of Gp that are respectively spanned by the planar
vectors
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which are

11 '9P ~ I2 '9A ~ I3 ('9P 'QA ) '9P 7)A cos o' .

where cz is the angle between gz and g~ in real space as
well as in the order-parameter space. The corresponding
order-parameter expansion can thus be written under the
more general form

4H = (ct/2)I, + (a /2)I2+ cI,I2+dI&+

Standard methods of minimization of 4tt [25] yield five
ordered iota sym-metry phases, which are defined by the
following equilibrium values of the order parameter

I. 7Ir WO, 71„ l
=0;

II. lq, =o, lq„leo;
I ri p I

&
I 71 g I

&0 and 71p ll ri g

IV. lriplW 71' l/0 and apl'gg (Ct=7T);

v. lrirl/le& wo and 0 &a &n. .

The smectic ordering corresponding to the preceding
equilibrium values of the order parameter are represented
in Fig. 1. One can see that three types of dipolar orders
may be found. Figure 1(a) coincides with a ferroelectric
monolayer ordering with dipoles remaining paralle1 from
one layer to the other. Figure 1(b) corresponds to an an
tiferroelectric bilayer ordering, with an antiparallel orien-
tation for adjacent dipoles. Figures 1(c)—1(e) represent
the three types of ferrielectric ordering, which can be dis-
tinguished by their tilt and azimuthal angles. Thus,
phase III is a ferrielectric structure in which two adjacent
layers possess a distinct tilt angle and opposed azimuthal
angles for the molecules. In the structure shown in Fig.
1(d) the molecular subunits possess the same tilt angles
but distinct arbitrary azimuthal angles. At last, the fer-
rielectric ordering represented in Fig. 1(e) is character-
ized by distinct tilt and azimuthal angles for the mole-
cules.

In Fig. 2 is represented a section of the phase diagram

B. Inhomogeneous case

When considering the chiral symmetry of the Sm-A
parent phase, the following invariants must be added to
the thermodynamic potential. These were not taken ex-
plicitly into account in the calculations by Ishibashi and
Orihara [24]:

22
871

az

QA

az5I =

BYIpx B'spy

~Py B IP

BY/ BYI

7 Very B
JFA

(5)

We will now introduce the main assumption of our
model, namely, that the transition mechanism between the
uarious phases corresponds essentially to an azimuthal re
orientation of the molecular subunits This mec. hanism,
which assumes that the tilt angles remain largely un-

changed across the phases, will be shown, in Sec. III to be
in reasonable agreement with the available experimental

that exhibits the domain of stability of the 6ve above-
mentioned phases far from the smectic A phase in the
plane of the phenomenological coeScients (d, a —a ).
One can see that the phases are separated by second-
order transition lines and that two four-phase points can
be found at which merge the phases (I, III, IV, V) and
(III, II, IV, V), respectively. One can note also that the
lower symmetry phase (V) may possess a broad range of
stability and that, depending on the actual thermodynam-
ic path, various sequences of ferrielectric and antifer-
roelectric phases can be expected.

In this section, only a homogeneous form, given by Eq.
(4), of the thermodynamic potential was discussed. It
does not take into account the influence of the chiral
symmetry of the molecules, i.e., the helicoida/ incom
mensurate character of the structure along the z axis. We
will now discuss a more realistic model that accounts for
the inhomogeneous properties of the phases.
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FIG. 1. Smectic structures
corresponding to a bilayer or-
dering. (a) ferroelectric phase I;
(b) antiferroelectric phase II; (c),
(d), and (e) ferrielectric phases
denoted III, IV, and V in the
text. One elementary unit cell is
represented. On the right-hand
side of each figure the vectors q,
and q& characterizing the tilts in
adjacent layers are given in the
(x-y} plane.
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The Landau-Ginzburg energy of the inhomogeneous
system can thus be written

F= —I +—I +—I +—I +cIIa P 2 a b
1 4 1 2 2 4 2 1 2

Fl
+ I4+ Is —

A, )I6 X2I7 dz,
2 2

(10)

Fl
where the sum runs over the thickness of the sample. In
(10) the terms containing the invariants I, and I2 are re-
stricted to the fourth degree in the order-parameter com-
ponents. Including gz in the phenomenological

0

coefficients, one can rewrite F under the more easily han-
dled form

FIG. 2. Theoretical phase diagram associated with the poten-
tial 4H, given by Eq. (4), in the plane of the phenomenological
coefficients (d, a —a ). The figure represents a section of the dia-
gram showing the domain of stability of the five polar smectic
phases, far from the domain of stability of the parent Sm-A
phase. The transition lines are all of second order, as only the
lowest degree of 4H, which involves the full set of stable phases,
is taken into account. The diagram is constructed following the
method described in Ref. [25].

'2

F= — g++g cos2
1 8
2 Bz

'2

+— (g —g cos2$)
ay

2 Bz

8
(A, ++A, cos2$)

z

data.
One can introduce formally this conical approximation

(i.e., the molecules can turn freely on cones possessing
fixed vertex angles) by using the auxiliary variables

4=(4 +0 +i)j» e=(4 4 +1)/2.
where P; is the azimuthal angle of the ith layer, measured
with respect to the x axis. P has the meaning of the az-
imuthal angle of the polarization within a bilayer,
whereas lt is the angle of the polarization between the
two antiferroelectric sublattices. Thus the form of the or-
der parameter within the ith layer can be written as

'tip = ('gp cosg 'rip sing, )

where, as the result of the conical approximation, the am
plitude rip is assumed to be constant. Accordingly, the

0

mean value of the order parameter within a layer can be
written

vfp
=2rip (cosP cosP, sing cositi )

g„=2qp ( —sin/sing, singcosP),

and the invariants (3) and (5) become

+ cos2$+ cos 2g dz,
a& 1

(g++g cos2$) —(ii, ++li, cos2|1)=C,
z

8 +(g+ —g cos2$)+ g sin2$
a

z2 az

ay . ay
g sin2$+ 2 i(, sin2$ —a, sin2$

z z

b, sin2$ cos—2$ (12)

where C is the first integral value that depends on the
external parameters. It is easy to show that the only
stable solution of (12) corresponding to a helicoidal struc-
ture is

where g+ =(g, +g2)/2, g =(g, —g2)/2, k+ =(A, i
+li,z)/2, A, =(li, , —A,2)/2, a, =a/2 —a/2+p!4 b/4, —
and bi =P/4+bl4 cl4. —

The equations of state expressing the minimization of
F, as given by Eq. (11), using the Euler-Lagrange varia-
tional procedure, are

I, =4rtpocos g, I~=471 Osin g, I3=0,
2 2 P=kz, /=Co, (13)

I4=4g o

Is =49po

am
cos P+

Bz
J

Bd
sin f+

az

sin PBz
J

'2

cos g
c}z

T r

I6= 4rtpo cos g, —I7 = —4' 0
' sin~g .

az 7 pO

where k is the wave vector of the helix and Co is a con-
stant; k and Co do not depend on z but vary in function
of the external variables. In other words, one obtained an
in phase azimuthal -angle P that depends linearly on z,
whereas the azimuthal antiphase angle g is independent of
the z variable. This simplifying result can be interpreted
as the fact that a single wave vector determines the
helicoidal structure of the bilayer phases, i.e., when mov-



V. L. LORMAN, A. A. BULBITCH, AND P. TOLEDANO

8=k g+ —g (14)

which characterizes the chirality of bilayer smectic struc
tares.

In order to represent the phase diagrams in the concen-
tration teinperature (x T) p-lane, where
x =(nti nL )II2(nit—+nt )I is the ratio of right-to-left
handed molecules, let us define the following linear trans-
formation:

ing along z, the angle between the polarization vectors as-
sociated with the two sublattices remains fixed, and thus
the two helices associated with g~ and q~, are dependent
on one another and turn in phase.

From Eqs. (12) and (13) one can deduce that three pos-
sible stable helicoidal structures can be obtained, depend-
ing on the values of the phenomenological coefficients: a
ferroelectric helicoidal structure for /=0, an antifer
roelectric helicoidal structure for /=~/2, and a ferrielec
tric helicoidal structure for m/2) P)0. The possible
phase diagrams corresponding to different values of the
phenomenological coefficients are shown in Fig. 3. The
main features of these diagrams have been obtained from
exact calculation using a procedure given in the Appen-
dix. The various diagrams shown in Fig. 3 are dis-
tinguished by the number

The linear transformation given by Eq. (15) is the sim-

plest transformation that fulfills the condition that the di-

agram must be symmetric with respect to x =0.
In Fig. 3 one can see that the ferrielectric structure is

always located between the ferro- and antiferroelectric
structures. Besides, the diagram contains lines of second-
and j7rst ord-er transitions that merge at three phase
points and also tricritical points.

In summary, the more remarkable result obtained from
the bilayer model presented in this section is that, for the
first time, a ferrielectric helicoidal phase is shown to be
stable in liquid-crystal systems and to possess the follow-

ing specific features. Its helical pitch is modified by the
antiphase azimuthal angle g, due to the coupling between
the wave vector k and g. As g does not depend on the
space variable z but depends on concentration and tem-
perature, the pitch of the ferrielectric helix will conse-
quently be dependent on these external variables. This
intrinsic property does not require any phenomenological
assumption, and especially higher degree terms are not
needed, as in the theory of ferroelectric liquid crystals
[26]. Besides, the temperature dependence of the helical
pitch is monotonic, and Fig. 4 shows the k ( T) depen-
dence for various concentrations in the sequence of or-
dered phases.

B =Box

A = —a&g +b&g++(k )

= ao(T To)+(&o —)'x',

where To is a reference temperature and A,
&p Azo Bp and

A 0 are constants. One can note here that for a nonra-
cemic mixture characterized by x %0, the operation
x~ —x is a symmetry operation leaving unchanged the
properties of the sample except the sign of the helix The.
Lifshitz invariant changes sign under this transformation,
whereas the other invariants in F remain unchanged.

III. DISCUSSION OF THE MODEL
AND COMPARISON TO EXPERIMENTS

Let us now analyze the experimental data obtained on
antiferroelectric liquid crystals in light of our theoretical
model. As noted in the Introduction the whole set of ex-
perimental results reported up to now does not allow a
clear-cut structural determination of the phases. De-
pending on the two configurations found in Sec. II for the
ferrielectric phase, two possible mechanisms associated
with the transition between ordered phases can be pro-
posed, which imply different experimental behaviors.

b)&G
9&o bi o

(a)

g &p

A

(c

e b)&o
9 &0

FIG. 3. Phase diagrams associated with the
Landau-Ginzburg potential F given by Eq.
(11), assuming a helicoidal stable solution, and

different values of the phenomenological
coefficients g and b, . The diagrams are
worked out following a procedure described in

the Appendix. The B and 2 coefficients are
defined by Eqs. (14) and (15) and are propor-
tional to concentration and temperature, re-

spectively. Full lines are limit-of-stability 1ines

and dashed lines are first-order transition lines.
In (a) and (b), dotted-dashed lines represent
second-order transition lines.
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FIG. 4. Temperature depen-
dence of the k vector associated
with the azimuthal angle P of
the polarization for four
different thermodynamic paths
corresponding to different values
of the concentration x. Figures
{b), {c), (d), and (e) correspond,
respectively, to the paths denot-
ed (1), (2), (3), and (4) in Fig. (a).
For path (1) one has two
antiferro-ferri and ferri-ferro
second-order transitions. For
path (2) the ferri-ferro transition
becomes first order. For path (3)
the ferrielectric phase is meta-
stable within the domain of
coexistence of the antiferro and
ferro phases. For path (4) the
ferri phase is unstable.

If the ferro-antiferro transition takes place through
phase III, with a restanding up of the molecules located
in one layer, while the molecules of the adjacent layer
remain practically unchanged or even more inclined [Fig.
1(c)], then one should observe, on the one hand, a non-
monotonic dependence of the interlayer distance as a
function of temperature when going across the sequence
of ferro-ferri-antiferro transitions. On the other hand,
such a mechanism would result in a modulation of the
electronic density along the z axis, displaying a bilayered
periodicity that should be observed in x-ray experiments.
Furthermore, a drastic change of the average tilt angle
with temperature should be detected through electroclin-
ic effect measurements.

The ferro-antiferro transitions through phase IV [Fig.
1(d)] yield opposite experimental consequences, as the
transition mechanism is an azimuthal reorientation of the
directors of two adjacent layers in two opposite direc-
tions, the molecules being inclined by the same tilt angle
8. In this case a smooth dependence of the interlayer dis-
tance should be observed, as well as the absence of any
detectable modulation along the z axis, as the tilt is iden-
tical from one layer to another. Actually, as the struc-
ture factor in x-ray difFraction is proportional to the
square of sin8;, where 8, is the tilt angle in the ith layer,
phase IV should not be distinguishable in x-ray
diffraction observations when going from the ferroelectric
phase I or the antiferroelectric phase II. Here the elec-
troclinic effect should only reveal a very weak tempera-
ture dependence of the tilt.

Let us compare the preceding alternative predictions,
as deduced from our model, with the available data re-
ported for optically pure MHPOBC. The temperature
dependence of the layer spacing d (T) in function of tern-
perature has been measured by Suzuki et al. [11] who
found, by means of small-angle x-ray di8raction, a very
slow dependence of d(T) when crossing C', Cy*, and
C„'. The chevron structure found in the ordered phases
of MHPOBC [27] above 65'C shows also a weak asymp-
toticlike dependence of the in-layer tilt angle 5 within the

sm-C', Sm-Cr', and Sm-C„' phases. The electroclinic
efFect measured by Hiraoka et al. [28] reveals that the ap-
parent tilt angle as a function of the applied electric field

in the three phases displays nearly identical plateaus and
tilt angles, a fact that also favors a very slight tilt depen-
dence on temperature.

The preceding facts are thus compatible with an anti
phase orientation of the subunits in two neighboring lay-
ers, as assumed in our model, and do not confirm the al-
ternative mechanism that assumes a temperature depen-
dence for 8. No traces of modulation with a double or
multilayer periodicity were found in small-angle x-ray ex-
periments on oriented samples, which reveal very similar
diffractograms for the three C*, Cr', and C„' smectic
phases [11,12,19]. This result can be interpreted in the
framework of our model of the ferro-ferri-antiferro se-
quence of phases, in connection with the fact that the
smectic layers are well pronounced in the three phases, as
attested by the observation of third harmonics of the elec-
tronic density in x-ray spectra. Let us emphasize here
that in the three-layer model of the Sm-Cr' phase pro-
posed by Takezoe et al. [29], which is schematized in

Fig. 5(a), the molecules are assumed to possess the same
values for the tilt angle in three successive layers. Such a
situation implies the additional restriction 8, =8r, as the
symmetry of the system imposes only two equal angles
among three successive tilt angles. This condition can be
realized only at one concentration and at one tempera-
ture in the phase diagram, and thus the corresponding or-
dering should be unobservable experimentally. The
configuration represented in Fig. 5(b) has the same sym-
metry as that assumed in the Takezoe et al. [29] model,
but it would imply a temperature dependence of the tilt
angle that has not been observed experimentally.

The discussion of the possible structural configuration
of the Sm-C * phase should also take into account the
conoscopic figures observed under applied electric field
that were found on thick homeotropic cells of MHPOBC
[4,22]. These figures reveal a number of features, namely
(1) a modification under applied field that is attributed to
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FIG. 5. (a) One among the possible three-

layer configurations assumed in the model of
Takazoe et al. [29] for the ferrielectric struc-

ture, using the same notation as in Fig. 1(b).
General configuration for a three-layer model,
without any specific assumption on the tilt an-

gles.

a strong dielectric anisotropy, (2) the fact that in the Sm-

C * phases the optical plane is parallel to the field direc-
tion in the region of low fields and becomes, for larger
fields, perpendicular to the field direction. This latter
fact was used as an argument against the bilayer model.
However, one can show that a strong dielectric anisotro-

py should also allow a similar behavior in the framework
of a bilayer model [30].

Let us finally analyze the contribution to the dielectric
susceptibility and optical response of the azimuthal anti-
phase mode, which in our model is the primary degree of
freedom, in the considered sequence of phases. In order
to investigate this contribution, we assume that the cou-
pling between the so-called Goldstone mode P and the az-
imuthal antiphase mode 1( is weak. Accordingly the heli-

city of the phases has a weak infiuence on the g mode,
and one can write the part of the free energy that depends
on g under the simplified form

the Goldstone mode to y is proportional to the polariza-
tion, decreases in the ferrielectric phase and vanishes at
the ferri-antiferro transition. Consequently the contribu-
tion of the 1( mode to y should become the most impor-

1 F
gl p

I

4H —
—,'a I cos2$+ —,'b, cos 2' . (16)

The phase diagram corresponding to Eq. (16) is shown
in Fig. 6(a) in the plane (a„b, ). The dielectric suscepti-
bility y =BP /BE can be deduced from the field-dependent
potential 4=4H —E P=@H EPo cosl(. On—e finds the
more general form

(b)

AF

l
F l

cu t
2

b1

B~4H

B$2

sin g
B4H—cotang

(17)

which yields in the ferro- (F), antiferro- (AF), and fer-
rielectric (FI) phases

1 1
XF +AF 2( b )

+FI 4( g )
(18) F t

I l

The temperature dependence of g across the three
phases is shown in Fig. 6(b). One can see that the contri-
bution of the azimuthal antiphase mode to the suscepti-
bility diuerges through the second-order ferri-antiferro
transition and reaches its minimum at the ferro-ferri tran-
sition. In fact, the phases are always helicoidal, and the
Goldstone mode is thus present when the local polariza-
tion is dift'erent from zero. However, the contribution of

FIG. 6. (a) Schematic phase diagram associated with the

homogeneous potential @H(f) given by Eq. (16), in the plane of
the phenomenological coefficients (a„bi ). Full, dashed, and

dashed-dotted lines are, respectively, stability lines and lines of
first- and second-order transitions. (b) Temperature dependence
of the contribution of the azimuthal antiphase mode g, to the
dielectric susceptibility y, following Eq. (18). {c) Temperature

dependence of the square of the frequency of the azimuthal anti-

phase mode f in optical response following Eq. (19).
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tant in the vicinity of the ferri-antiferro transition.
Figure 6(c) shows the contribution of the azimuthal

mode to the optical response, which is proportional to
the square of the frequency in optical measurements
co —B~4H /Bg. One finds that

F(k, f}=(k /2)(g++g cos2$)

—k{(A,++A, ) cos2$}+(a,/2)cos2$

+(b, /2)cos 2f . (A 1)

coF- —2(a, +b, ),
co~F 2(a, b —),
coFi-2(bi —ai )/bi .

Thus, in contrast with the dielectric response, the opti-
cal response to the azimuthal mode is identical for the
ferro-ferri and ferri-antiferro transitions. Besides, from
the microscopic point of view, the contribution of the az-
imuthal mode f to the dielectric susceptibility should be
observed in dielectric measurements at very low frequen
cies This .is due, on the one hand, to the general proper-
ty that the order of energy of the azimuthal rotation and
the corresponding relaxation frequencies are small in
liquid-crystal systems and on the other hand, that in con-
trast to usual ferroelectric liquid-crystal phases in which
the relaxation frequency of the azimuthal Goldstone
mode is high due to the helix deformation, here the
homogeneous character of the azimuthal antiphase mode
1( should involve actually low energy and low frequency.

Concerning the applicability of the theoretical phase
diagrams presented in Figs. 3(a) and 3(b), it can be noted
that they differ from the experimental temperature-
concentration diagrams in the fact that the ferrielectric
phase appears experimentally in the vicinity of optically
pure substances [2,3,31], and that the ferri-ferri and
antiferro-ferri transitions are reported to be first order
[8,11,13]. In the framework of our model, such features
can be obtained by considering six-degree terms in 4H.
In this case, it is easy to show that the second-order tran-
sition lines in Fig. 3, would transform into first-order
transition lines, and that the ferrielectric phase will ap-
pear far from the racemic mixture line x =0, in the vicin-
ity of the pure substance at x =+—,'.

As a final remark, let us emphasize that the homogene-
ous potential 4H given by Eq. (4) used in our model is as-
sociated with a four dimensional -representation of the
symmetry group of the smectic-A phase, but depends
only on the three variables ~fair), ~il„~, and a and the
fourth variable remaining free. Accordingly in dynami-
cal spectra one should observe in the more general case
three normal modes, and only one Goldstone mode, and
not only two normal modes as pointed out by Zeks, Blinc,
and Copic [32].

The phase diagram associated with F(k, g) is the bifur-
cation diagram corresponding to the family of functions
F(k, 1(}with the six parameters g+, g, A, +, A, , a„and
b &. The corresponding equations of state are

'2
A, ++X

+g
(A3)

The antiferroelectric phase is given by the equilibriuin
conditions (sin2$=0, cos2$= —1) and the stability con-
dition

a+-
a, )b, +2k,

A,
+ —

A,

2

(A4)

For the ferrielectric phase one has sin2$%0 and

2k', + —k2g —a, b, cos2$—=0 . (A5)

The region of stability of this latter phase is limited by
three curves: the so-called discriminant curve, or line of
stability with respect to homophase fluctuations [25,33],
and two other curves that represent the stability lines
with respect to heterophase fluctuations of the ferro-ferri
and antiferro-ferri phase transition [25,33]. These two
lines are given by Eq. (A2) and by the limit of stability
condition

dF dF dF
a1(' ak'

which can be written

2sin 2/[bi(g++g cos2$) —2(A, —kg ) ]=0 . (A6)

The discriminant curve coincides with Eq. (A6), which
can be solved by changing the variables in order to locate
the most degenerate singularity at the origin [33]. The
relevant change in variables is here

dF
ak

=k(g++g cos2$) —(A, ++A, cos2$) =0,
(A2)

dF + 2

Bg
=sin2$(2k', —k g —a bc—os2$) =0 .1

The ferroelectric phase corresponds to the equilibrium
conditions (sin2$=0, cos2$=1) and to the stability con-
dition

APPENDIX

q=A. —g k,
A = —a,g +b,g++(A, )

B=A, g+ —g A,
+ .

(A7)

In this appendix we describe the procedure that allows
us to work out the phase diagrams of Fig. 3. When sub-
stituting the stable solutions (13) in the Landau-Ginzburg
potential {11),one gets by integrating with respect to the
z variable,

Aq —b&B —
q =0, b&B —Zq =0,

and the discriminant curve is given by

(A8)

Consequently, one gets the boundary of stability lines
under the simple parametric form
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4g 3 —27$2B2=0 (A9) ~ =big'+~'/[(g' —g )(g'+g (A12)

which are semicubic parabolas represented in Fig. 3. The
stability curves with respect to heterophase fluctuations
can be written using the same change in variables (A7).
One gets

A =b, (g++g )+B /(g++g )

for the ferroelectric phase boundary line and

& =b, (g+ —g )+&'/(g+ —g )'

(A10)

(Al 1)

for the antiferroelectric phase boundary line. The corre-
sponding parabolas coincide with an equality in Eqs. (A3)
and (A4) and are second order t-ransition lines Th. e ftrst
order transition line between the ferro- and antiferroelec-
tric phases is given by the condition Ff„„=F,„„f„„.It
has the form

3 =(b, /2)(3g++g ),
& 1,2

=+(b
1 /2)(g ++g ) (g +g

(A13)

One can note that the phase diagrams of Fig. 3 are
symmetric with respect to the line B =0. The B parame-
ter reAects the inhomogeneous part of the Ginzburg-
Landau potential and characterizes phenomenologically
the chirality of the bilayer smectric phases under con-
sideration.

The coordinates of the specific points of the phase dia-
grams in Fig. 3 can also be calculated algebraically, as,
for example, the point of intersection of the first-order
ferro-antiferro transition line with the ferro-ferri second-
order transition line. It is given by
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