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Periodic stripe domains and hybrid-alignment regime in nematic liquid crystals:
Threshold analysis
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Recently we investigated the occurrence of static periodic stripes in a hybrid aligned nematic cell. As-

suming that the tilt anchoring was stronger at the planar wall than at the homeotropic wall, we have

found the critical thickness of the cell for the transition from planar to periodic alignment as a function
of the surface energy in the presence of a magnetic field. Here we study, for the same kind of cell, the
critical thickness between the periodic and the aperiodic deformed structure by means of an appropriate
numerical technique. As expected, such a threshold was found to be greater than the asymptotic thresh-

old between planar and aperiodic structures. We performed an experiment, which allowed us to give an

estimate of the surfacelike elastic constant K,4.

PACS number(s): 61.30.Gd, 68.10.Cr

I. INTRODUCTION

In recent papers [1—4] the occurrence of static periodic
stripes in the hybrid aligned nematic layers has been in-
vestigated. Such cells possess homeotropic (H) anchoring
at one of the walls and unidirectional planar anchoring
(P) at the other [5]; moreover, the planar anchoring was
assumed to be stronger than the homeotropic one. In
this kind of cell, three diferent behaviors of the director
(that is, of the local mean orientation of the molecules)
can occur. Since the P anchoring is the stronger one, the
director can assume a uniform distribution parallel to the
easy direction of the planar wall (P) when the thickness d
is lower than a critical one; above such a value, an
aperiodic deformed hybrid alignment of the nematic cell
(HAN) and a periodic deformed structure (PHAN) can
be achieved (see Fig. 1). The periodic pattern in P
oriented nematics was earlier discussed by Bobylev and
Pikin [6] as due to a fiexoelectric coupling with an im-

posed electric field: later, it was observed by Lonberg
and Meyer in the case of strong anchoring [7] and studied

by Miraldi, Oldano, and Strigazzi in P-nematic layers
weakly anchored in the presence of an external magnetic
field [8]. Only recently, the occurrence of the PHAN
structure in a hybrid cell without external field has been
discovered: in this case, the role of the field is formally
played by the cell thickness, but the real cause of the in-

stability is the nonzero saddle-splay rigidity of the nemat-
ic [9,10]. Our previous papers on this subject have been
devoted to the analysis of the transition between the
PHAN and the P configuration. We studied [1,2] the
dependency of the threshold thickness, that is, of the cell
thickness above which the PHAN is allowed, on the elas-
tic constants and on the anchoring strengths [11]. Fur-
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thermore, we also considered the inhuence on this thresh-
old of a magnetic field normal to the cell plates [3,4].

When the possibility of the existence of a PHAN struc-
ture was not known, Barbero and Barberi [12] dealt with
the P-HAN transition, and obtained the threshold depen-
dency on the tilt anchoring strengths. The question now
arises, where is the actual PHAN-HAN threshold? Is it
maybe above the "asymptotic" P-HAN threshold found
in Ref. [12]'? Moreover, is the PHAN structure always
possible? In the present paper we investigate these
points, in the framework of a nonlinearized approach for
a model treating nematics with bulk elastic isotropy
(K=—Kii =K22=K33) in the absence of external fields.

This simplified model is necessary since the theory for the
PHAN-HAN transition is much more complex than the
one for P-PHAN transition.

The aim of our work is to describe theoretically the
PHAN-HAN transition and to compare the model with

preliminary experimental data concerning the nematic
liquid crystal pentylcyanobiphenyl (5CB), which allow an

estimate of the saddle-splay elastic constant F24.

II. THEORY

The distortion free-energy density of Nehring and

Saupe [13], in the case of a nematic liquid crystal having
bulk elastic isotropy, in the framework of the usual first-

order continuum theory [14] is given by

f= ,'K [(divn) +(n.cu—rln) +(n X curln) ]

—(K+ Kz~ )div[n. divn+ n X curln],

where K—:K&& =Kz2=K33 is the common bulk elastic
constant, K24 is the saddle-splay elastic constant, and n is

the nematic director, i.e., the local average of the molecu-
lar long axis. Let us assume a Cartesian reference frame

[xyz], [xy] being the plane coincident with the H wall

zo =0, where the easy direction is homeotropic, whereas z
is the coordinate normal to the substrates. Then the oth-
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n =i cosP cos8+ j sing cos8+ k sin8 . (2)

For the P-PHAN transition, we can expand to the second

er wall, where the easy direction is unidirectional and
planar, is identified by z& =d, d being the cell thickness.
Moreover, at the P substrate the easy direction is parallel
to the x axis.

The director n may be described by two angles in a po-
lar reference frame [$,8], where the azimuth P is ac-
counted for in the plane [xy] from the x axis, while the
polar angle 8 is measured out of the plane [xy]. Hence

power the reduced free-energy density g =2f /K around
the undeformed planar structure (8=0,/=0) [2], obtain-
ing the parabolic contribution to the reduced free-energy
density actually confined to the bulk in the simple form

gi, =(P +8, ) +(8 —P, )

where the subscripts y, z refer to the derivatives with
respect to the corresponding coordinates.

In fact, the saddle-splay contribution gss goes to the
surface, due to Gauss's theorem, giving rise to the
second-order terms

gss 2(1+&4)[ $08J 0+ 8ogyo+ $ i' i 8i(t'yi ] (4)

z
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where a4 =—K&4/K is the surface-to-bulk elastic ratio and
the subscript j =0, 1 refers to the z0=0, z, =d substrates,
respectively. Moreover, the azimuthal and tilt anchoring
contributions, according to Rapini-Papoular [11], write
to the second-order terms

g~=L~ 0o Leo 8o+Lyi'Pi+Le& 8& ~

where L&
=K/W—&J, Le ——K/Ws, are the de

Gennes —Kleman extrapolation lengths [15,16], W&J, We
being the torsional and tilt anchoring strengths.

The reduced free energy 6 is then obtained as

(a)
6 =Gb+6, ,

Gs= f dY f gs(8y 4y 8z 4z)dz

G, =—f g, (8,$J,8 J,$ )dy, .
0

gs gss+g ~

(6)

A, being the wavelength of the periodic pattern, whose
wave vector P= 2n/Ais p—ara.llel , to the y axis, i.e., trans-
verse to the P easy direction. Close to the P-PHAN tran-
sition, gb and g, are expanded to the second power in the
angles $, 8.

Instead, if the PHAN-HAN transition is concerned,
we have to work around the aperiodic deformed structure
(HAN): due to this fact, it is only possible to linearize
the torques on P, 8 being generally finite and different
from zero.

Linearizing only on P, we obtain a reduced free-energy
density gb actually confined to the bulk in the form

g„=8 +8, + (P +P, )cos 8+2((i) 8, —8 P, )cos 8 .

The saddle splay becomes now

gss 2(1++4)[ $08 o+ ~P osin28o

(b) +$,8y, ——,'P, sin28)] . (4')

FIG. 1. (a) Aperiodic configuration in a hybrid aligned
nematic (HAN) cell, having tilt anchoring weaker at the wall
zo =0 where the preferred direction is homeotropic (H), than at
the wall z& =d, where the easy direction is unidirectional planar
(P); (b) Periodic hybrid aligned nematic (PHAN) cell of splay
type: the leading parameter is the cell thickness d, which plays
the role of an external field.

On the other hand, implementing the Rapini-Papoular
approach, the nonlinear anchoring energy density must
be written in covariant form

fjy = [ —aJ(n. i) +( —1)J+'&J(n k) ], j=o, 1,
where a and b are positive, and ao &bo. We stress the
fact that at the H wall (j =0) there is an easy plane, i.e.,
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[xz], whereas at the P wall (j =1) the easy plane is the P
wall itself. The tilt anchoring strengths 8'&- are derived
by normalizing (7) for P =0, while the torsional anchor-
ing strength W& is normalized by applying to (7) the
condition 0 =0. In fact we have

1a =
—,8'~

with the following boundary conditions:

Leo' .8 p+ sln28p =0
2

I —
1

8„+ sin28, =0 .(91

(15)

b~
=

—,'( —l )~( W~ + We ) .
Now we go back to the nonlinear system (10), whose per-
turbed representation is written

Hence Eq. (7) finally reads

f/= ,'[W+si—n P~cos OJ+( —1)i+'We sin 0, ] (7')
6zz +6yy: 0

P„+P —28,$,tanB=O,
(16)

and the reduced anchoring energy density, linearized
only on t}},, is obtained as

obtained by a simple linearization on e. The perturbed
boundary conditions are obtained as

ger =L~ Pocos Ho L so siil Ho

+L&,'P, cos 0, +Lz, 'sin 0, . (5')

agb a agb B Bgb+
BH Bz BH, By BOy

+B agt B agb

azar', ayah,
'

(9)

Following the usual procedure [17], we linearize only on

P the Euler-Lagrange equations

e,o+L eo' cocos28o+ P oR o (eo) =0,

P, cos—8 +L& 'P cos 6 +e R (8 }=0,
e +L e cos2e, +y„R,(e, )=0,
—P„cos6, L&,'P, c—os 6,+e,R, (8, )=0 .

We now search for a solution of the type [2,4]

e(y, z) =( A si hnPz+8 coshPz)cosPy,

t}}(y,z)=(C, e ' +C,e ' }sinPy .

(17)

and obtain

agb Bgs+
ae,

+
ae

Bg

By BH

0„+6=0,
P„+P —20,$,tan0=0 .

Hence the boundary conditions

=0,

(10)

We stress the fact that the P differential equation in sys-
tem (16) has no constant coefficients. To solve the prob-
lem, we subdivide the cell into N layers of equal thick-
ness. In each layer we assume the values of 8 equal to
the value of the function 6(z) calculated in the middle of
the layer 8,-. This is also the case for the derivative

8,=8„.Obviously this procedure is meaningful only if
N is large enough.

The second equation of system (16) reads

+ Bgb Bgs

BO

B Bgs

o

=0

in the same assumption read

L
—1

0 o+ sin20o+P oRo(0o)=0 ~

ocos Ho+L go cocos Ho+0 oRo(0o) =0

I —1

0„+ sin20, +Q~,R, (0, )=0,
2

)cos 0) Lpl Alcos 01+OyiR i(01 }—=0,

(12)

y(i)+y(i)+H y(() 0 (19}

k("d k ' d. . k(i+1)d k(i+1)d
C(i) 1 i +C(i) 2 i C(i+1) l i +C(i +1) 2 i

2 1 Z

k"C" 'd'+k"C"
(20)

where H, = —28„tan8; for the i layer. Substituting the
second equation of system (18) into (19) we found for
each layer the values of k'&' and k2'. What happens to
the integration constants C", and C2', which change
from layer to layer? We use them to relate the di6'erent

solutions P" at the boundary of the layers (i )
—(i+1),

imposing continuity to the function P and to its first

derivative with respect to z:

where R (0 )=cos 0 —(1+~~)[1+cos20 ], with j =0, 1

at the walls zp =0 zl d, respectively.
In the PHAN regime, but close to the PHAN-HAN

threshold, we look for a solution of the kind

0(z,y ) =6(z) =e(z,y),
where e(z,y) is a periodic perturbation of the HAN struc-
ture described by 6(z). To find 6(z) we have to solve the
equation

8„=0,

k(i +1)d k (i -+ 1 )dk(i +1)C(i+1) 1 i +k(i +1)C(i+1) 2 i
1 1 2 2

where d, is the distance of the interface between the (i)
and the (i +1) layer, from the cell H substrate zp=0.

By the use of a simple linear homogeneous recurrence
relation, it is possible to write the coefficient C" as a
function of the first two integration constants C, ', C2 '.

Writing the last two coeScients C'1 ', C2 ' as a function
of C~~P and C2 ' and substituting the solutions (15) into
the boundary conditions (14), we obtain a linear homo-
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a2(=PLeo,

a =cos28

33= eO& O O»

a24 =a23

a3, =psinh(pd )R, (8,),
a32 =pcosh(pd )R,(81),

k(N)d k(N)d
a33=cos 8,[(k' 'FNe ' +k( )M~e '

)

k ] d
L~)'(F~e '—+MNe ' )],

k(N)d k("'da„=cos'8[(k'"'G,e ' +k(")X„e'

k d
L~, '(G)ve—' +NNe ' )],

a4)=sinh()M )cos28, +Le)pcosh(13d },
a 42

=cosh(Pd )cos28, +L e)P sinh()M ),
k(N d k(N d

a43 L())R)(8, )(e ' FN+e '
M)v)p

k'"'d k'"'d
a44=L())R)(8(}(e ' G)v+e ' Nz)13,

(21}

~here F&, Gz, Mz, and Nz are given by the following re-
currence relations:

geneous system of equations in the arbitrary amplitudes
A, B, C1 ', and C2 '. Such a system admits a nontrivial
solution only if the (4 X4) determinant D is equal to zero,
providing a dispersion relation. The D elements are given
by

a(1 =0,
a)2=pR (8 ),
a)3=(k( ' L&—')cos 8o,
a)4=(k2 ' L—~')cos 8

coming from the continuity condition of the azimuth P
and of its derivative ((),. The dispersion relation D=O
provides d as an implicit function of P. In fact we obtain
a function d(P, a4, L+,L() )w. hich for given values of the
elastic ratio sc4 and of the azimuthal- and tilt-
extrapolation lengths L&,L& provides the correspon-
dence between the possible wave number P of the trans-
verse periodic pattern and the cell thickness d when (I) is
small: this means close to the PHAN-HAN but also to
PHAN-P transition. In other words, the vanishing of D
given by (16) recovers also the threshold PHAN-P [2]. In
particular, such a threshold d is the minimum of the
curve d(P}, whereas the threshold PHAN-HAN, d„cor-
responds to the maximum of the same function, provided
both situations correspond to minima of the cell reduced
free energy G. In Fig. 2 the thresholds d, d, are report-
ed vs the elastic ratio x4, for difFerent values of the tilt an-

choring strengths Le., when the azimuthal anchoring is
negligible (L& = ao). Note that all lengths are normal-
ized by the asymptotic HAN-P threshold d:Leo L—())—
[12].

III. EXPERIMENT

Our experiments have been made using the liquid crys-
tal pentylcyanobiphenyl, 5CB (purchased from EM In-
dustries, Inc. ), which exhibits the nematic phase at room
temperature. All sample preparations and measurements
were performed at room temperature. To provide a hy-
brid aligned film with zero anchoring in the horizontal
plane, a small drop (1—10 mg) of the nematic has been de-
posited on an isotropic liquid substrate, which does not
dissolve the liquid crystal. As a substrate we have used
glycerine, providing the tangential orientation of the

I ' I ' I

4.0

Fi =f F( 1+g Mi 1
. F() =f()

G;=f G; )+g N; 1, G()=g(),

M; =m, F; 1+n,-M, , Mo =mo,

N m 6 —1+m N. —1 No no

with

k(i+1) y (i) k(&')d,.
e

k(i+1) ) (i+1) k((+))d
1 i

(22)

2.0

as

I (i+1) I (i)
2 2

k(i +1) k(i+1)
2 1

k"'d.
2

k (i +1)d
I i

(23)

0.0
-0.4 -0.2 0.0

K4
0.2 0.4

I I I I I I I

m,-=
k(i) I (i+1)

1 1 e '

k(i+1) k(i +1) k«+ &)d
2 1

k(') —k('+1) k2 d,.
2 1 en. =i k(i+1) k(i +1) k(i+l)d

2 1 e I i

FIG. 2. PHAN-P threshold d~ and PHAN-HAN threshold

d, as function of the saddle-splay —to —bulk elastic ratio
a4—=X2&/E for different values of the reduced tilt anchoring
strengths

Leo�/d,

,L» /d, ', normalized to the asymptotic
threshold HAN-P d =Leo —Lzj, at the H and P walls, respec-
tively, for no twist anchoring (L& =L&& = 00 ).
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director n at the lower film boundary, which acts as a P
wall. Such a feature has been checked up independently
by suspending small liquid crystalline droplets in a
glycerine matrix: these drops display bipolar structure
which implies the tangential boundary conditions [18,19].
The upper boundary of the film has been left free; thus
the director orientation was nearly normal to it, provid-
ing an 0 wall (see Fig. 3). The box with glycerine and
nematic layers has been enclosed in order to minimize the
contamination. Because of the nonzero contact angle,
the spread nematic drops have a nonflat profile. The
average thickness d of the liquid crystalline film has been
estimated by the measurements of the drop weight and of
the surface area of the spread film (typically 20—50 cm ).

It was found that the HAN configuration, which is uni-
formly oriented in the horizontal plane, is unstable with
respect to the appearance of the periodic domain pattern
(PHAN) when the film thickness d is smaller than a first
critical value d, . For the 5CB-glycerine interface
d, =0.4+0. 1 pm. On the other hand, for d smaller than
a second critical value d, the unidirectional (at least in
the horizontal plane) P structure is found to be more
stable with respect to PHAN. In our case of nonAat
droplets d was estimated to be less than 0.15 pm. The
observed domain textures are shown in Figs. 4 and 5. A
periodic stripe pattern appears in sufficiently thin films;
the periodicity of the structure strongly depends on the
film thickness and decreases as one moves towards the
drop edge. If the nematic drop is thin, then the spread
nematic layer has thickness d (d, everywhere. This is
the case of Fig. 4, where the drop shows the stripe pat-
tern everywhere except a narrow periphery region with
almost unidirectional orientation along the normal to the
drop border (x axis). On the other hand, if the nematic
drop is thick enough (Fig. 5) the central part has d )d,
and the domain structure appears only at the periphery
where d & d & d, . The domains are elongated along the
normal x to the film edge. The domain textures depend
on the orientation of the crossed polarizers of a micro-
scope with respect to x. To describe these textures it is
convenient to use the notation n„ for the horizontal
component of the director field at the lower boundary of
the film, i.e., at the P wall z& =d. If one of the polarizers
is oriented along the x axis, the domains appear as bright
regions interrupted by thin dark lines of extinction (see

FIG. 4. Small 5CB drop, viewed through crossed polarizers.
The PHAN-P line, where the cell thickness is d~, is close to the
boundary of the drop. Bar length is 125 pm.

Fig. 6). Alternatively, the thicker neighboring part of the
film (where d )d, ) looks like a dark field due to the uni-

form alignment of n along the x axis. When one rotates
the sample between the crossed polarizers, the dark thin
lines in the domain region move and extend, and the tex-
ture transforms into an alternation of broad dark and
light stripes (Fig. 6). Such a behavior is similar to that
observed by Livolant and Bouligand for columnar phases
of some bipolymers [DNA and poly y-benzyl L-glutamate
(PBLG)] with sinuous undulation [20]. However, as
shown by the use of a quartz wedge, the geometry of n

is different (see Fig. 6).
Each domain consists of two parallel subdomains with

equal thickness but opposite inclination on n with

respect to the x axis. At the boundary of the subdomains
n is parallel to the x axis and thus coincident with n„
in the neighboring uniform part of the film. The angle 0.
of the n, inclination compared to the x axis grows from
+=0 at the subdomain boundary to some maximal value
a=a~ at the central part of the subdomain. As the
thickness of the film decreases, one observes (i) reducing
of the domain periodicity k; (ii) appearance of disloca-
tions with the Burgers vector equal to k, and (iii) nu-

cleation of new domain generation with smaller periodici-

ty and with new preferable orientation x', which is tilted
with respect to the x axis (see Fig. 7). Sometimes the

air

0
IY

X

9lycerine

FIG. 3. Crude representation of the spreading of the nematic

droplet profile.

FIG. 5. Precursor of a big 5CB drop, viewed through crossed
polarizers. The PHAN-HAN line, where the cell thickness is

d„is towards the drop center. Bar length is 150 pm.
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point. For this type of film and for a temperature of
24.5 'C the PHAN structure occurs starting with

d, =0.48+0.05 pm and A, =180 pm. The thinnest film

possessing PHAN structure we were able to identify had
d=0.02+0.01 pm and A, =2 pm. Films thinner than
0.02 p,m still possess birefringence but it is dificult to dis-
tinguish a periodic pattern.

0.8
I I t I ) I I 1 I f l ) 1 t t I I I t t 1 t t 1

(o)
Q

0.6

IV. DISCUSSiON

A. Degenerated torsional anchoring

Due to the isotropic nature of both the surrounding
media, glycerine and air, the boundary conditions for n
were degenerated in the fi1m plane. Really, a11 the hor-
izontal orientations of the nematic lines which keep the
same polar angles have the same energy. This means that
in the Bat film the torsional extrapolation lengths L& at
the air side and L&& at the glycerine boundary are
infinitely large. Thus the boundary conditions (17) and
consequently the dispersion relation D=O—see (21)—
become simp1er, and it is easy to estimate the saddle-
splay elastic constant F24. Let us assume that the tilt an-

choring strength Lac at the upper side is W& = 1 X 10
N/m. Since for 5CB we have E =7 pN, Leo=0. 7 pm is

obtained. From our experimental data (dz «0.02 p,m,

d, =0.48 pm), we derive from the dispersion relation
D =0, in the first case a numerical relation ~4 vs Ls, pro-
viding d, is approximatively equal to the experimental
value, and in the second case another numerical relation
a4 vs Ls„providing d [see Figs. 9(a) and 9(b)]. By sim-

ple inspection of this figure, we can see that d, deter-
mines the values of Lei =0.35 and that d„«0.02 gives
—0.012~a4&0. The symmetry of the PHAN aHows

also the second estimate 0.988 & x4 & 1.0, since the values
+ ~1

—
2~4~ and —

~1
—2a4~ correspond to the same struc-

ture. Note that s4 is deeply affected by the value of d .
Our estimate of ~4 is consistent with the NMR mea-

surements in con6ned geometry by A11ender, Crawford,
and Doane [26], who obtained for 5CB, according to our
notations, 1+~4=1.0+0.6, i.e., ~4= —0.6—0.6.

In order to recover the experimental results for the
droplets with nonfat boundaries, it is necessary to take
into account a possible breaking of the azimutha1 anchor-
ing degeneracy at the upper surface, due to the so-called
geometrical anchoring [4,21]. Really, for a nematic film

with parallel upper and lower surfaces, all the horizonta1
orientations of the nematic hnes which keep the same po-
lar angle 0 at the film surfaces but di6'erent azimuthal an-

gles P have the same energy. However, this physical de-

generacy can be removed by the geometrical factor,
namely, by the boundary curvature and the gradients of
the film thickness d. Let us consider this point in greater
detM1.

8. t"eometrical anchoring
at the inclined air-nematic interface

In experiments with nematic drop placed on the
glycerine surface we deal with the so-called wetting re-
gime [22], when the liquid crystal forms a film of some
profile d(r). The dependency of the film thickness vs the
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FIG. 9. Threshold thickness for the HAN-PHAN (a) and for
the P-PHAN (b) transition as a function of ~4 for Leo =0.7 pm
and Lz& ranging, with a step of 0.05 pm, from 0.20 (curve a) to
0.45 pm (curve P).

distance r between the Glm center and the point of obser-
vation is very complicated to describe and measure even

for the simplest case of a usual liquid drop spreading on a

rigid surface, see, e.g. , the review article by de Gennes

[23]. Using the liquid crystal instead of a simple liquid

and a Quid (glycerine) substrate instead of a rigid one, the
situation is not improved. However, one could expect
that the nematic film will also consist of two diferent
parts: the central macroscopic part, which is spread by
the Laplace pressure due to the curved interfaces and a
thin precursor part of submicrometric thickness, which
extends ahead of the spreading drop and whose thickness
is governed by long-range forces, see, e.g. , [24]. The sin-

gle point of our interest here is the evident fact that the
inclination angle y of the upper nematic interface with

respect to the lower one strongly depends on the distance
r between the film center and the point of measurement:

y is exactly 0 for r =0, approaches zero in the precursor
tail, and takes some maximum value yM in the intermedi-

ate region between the macroscopic and the microscopic
parts of the film (see Fig. 3). The q)iestion is—how will

the director line be oriented in this intermediate regions
For the sake of simplicity let us assume that (i) the 1ower
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i.e., with the horizontal axis x normal to the film edge.
This corresponds to the experimental observation: n

and the x axis are parallel in the vicinity of the critical
thickness d, . The geometrical azimuthal anchoring
strength has been previously estimated for d -d, to be

L&o =10—100 pm [4].
As we can see from our experimental results, the

threshold d measured for nonflat droplets (d &0. 15 pm)
is larger than d measured for the flat films (d 80.02
pm). This dift'erence is a natural result of the nonzero
geometrical anchoring in the case of a nonflat profile.
Taking for the values of L z, and ~~ the values obtained in

the Hat geometry, and analyzing the threshold d as a
function of the geometrical anchoring L&c (that is un-

known close to d ), we estimate the last parameter to be
10 pm. In this case the value of d is greater for nonfat
droplets than for Aat films in accordance with experi-
ment.

V. CONCLUSION

The appearance of a PHAN configuration of splay type
(due to the tilt anchoring strengths) was considered,
against the usual HAN structure. For the sake of sim-

plicity, the bulk elastic isotropy was assumed. The
behavior of the PHAN-HAN threshold d, and of the
recovered PHAN-P threshold d were predicted theoreti-
cally vs the surface-to-bulk elastic ratio ~4 and the tilt

and azimuthal anchoring strengths.
Experiments were performed on films and droplets of

5CB wetting a glycerine substrate. The PHAN pattern,
appearing in both cases, allows a measurement of d(P),
providing the critical values. By assuming L at the
5CB-air interface at room temperature to be kept at the
same value (2 pm) as obtained in Ref. [9] for the same ex-

perimental conditions, two crossed best fits at both
thresholds provide an estimate of L&& at the 5CB-

glycerine interface and of the saddle-splay —to —bulk ratio
tc4 =K&4/IC. The latter value was found to be

K4= —0.012——0.0, consistent with the only measure-

ment of ~4 in the same material reported in the literature

[26]. Furthermore, second and third domain generations
of PHAN as well as square lattices of point defects were

observed: a theoretical model explaining such a

phenomenon (and the influence of E2~) is almost com-

plete.
Moreover, experiments with 5CB cells in the presence

of a magnetic field either preventing or favoring the
PHAN configuration are under way and will be published

elsewhere.
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