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Chaos in the model of repetitive phase transitions with hysteresis:
Application to the self-sustained potential oscillations of lipid-bilayer membranes

induced by gel —liquid-crystal phase transitions
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To clarify the mechanism of chaos generation and the routes to chaos in the self-sustained oscillation
of the electric potential difference between two solutions divided by a lipid-bilayer membrane, a simple
model of the system, the model of repetitive phase transitions with hysteresis, is presented in which oscil-
lation is driven by repetitive gel-liquid-crystal phase transitions with hysteresis occurring in the lipid
membrane and at the same time by a periodic external current. The dynamical property of the system is

completely described by the nature of the function mapping the times at which the phase transition
occurs successively. There exist various kinds of routes to chaos in the model of repetitive phase transi-
tions with hysteresis (RPTH model) such as the period-doubling cascades, the intermittency, the
quasiperiodic-chaotic transition, and the transition to chaos from complete phase locking. When the
values of the system parameters satisfy certain conditions, the RPTH model becomes equivalent to the
integrate-and-6re model and similar to the driven-relaxation-oscillator model. The model also generates
structurally stable chaotic attractors which are never destroyed by a slight change in the values of system
parameters. The attractors appear only for the regions of parameter values where the mapping function
has at least one discontinuous point. This model contains the essential features of evolution behavior in
various kinds of systems which generate iterative phase transitions with hysteresis.

PACS number(s): 64.70.Md, 05.45.+b, 87.10.+e, 87.22.Bt

I. INTRODUCTION

The excitable biomembranes exhibit a number of non-
linear phenomena important for living systems such as
the generation and propagation of a nerve impulse, self-
sustained oscillations of membrane potential in pacemak-
er neurons, and those of proton concentration on growing
cell surfaces. Chaos in the electric potential oscillation
has been demonstrated experimentally and theoretically
in various types of excitable membrane systems. Espe-
cially a systematic investigation of chaos has been made
in the electrically excitable systems driven by a periodic
external current The experimental study has been made
for cardiac cells [1], internodal cells of Nitella [2],
pacemaker neurons of Onchidium [3—5], giant axons of
squids [6—8], Purkinje fibers [9], and ventricular muscles
[9]. The theoretical study also has been done for the
Hodgkin-Huxley neural model [10,11], ventricular myo-
cardial fibers [12],Purkinje fibers [13],and ganglion cells
of Aplysia [14]. There have been also theoretical
identifications of autonomous (nondriven) chaos in vari-
ous kinds of membrane models such as bursting nerve
cells [15,16], cardiac cells [13], pancreatic P cells [17],
and a simple biophysically realistic mode1 of an electrical-
ly excitable cell [18]. The oscillation phenomena men-
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tioned above arise from the electric excitation of biomem-
branes which is driven by various types of voltage-gated
ion channels.

There exists another type of membrane excitation, that
is, the chemical excitation, in which the oscillations of
fiow and chemical potential difference of a transport
species across membrane may occur with or without the
electric potential oscillation [19,20]. These oscillations
are driven by cooperative conformation changes of mem-
brane transport proteins (allosteric proteins) whose ac-
tivity is mostly independent of membrane potential
[21,22]. Recently, we have shown, using a simple model
of the chemically excitable membrane [23], that auto-
nomous chaotic oscillations of ion concentrations around
the membrane surface as well as those of membrane po-
tential can be achieved by an appropriate coupling be-
tween two kinds of autocatalytic ion channels.

In the present paper we show theoretically that the
lipid-bilayer membranes, including neither the voltage-
gated ion channels nor the allosteric (autocatalytic) trans-
port proteins, may produce the chaotic oscillations of the
ion concentrations and of the membrane potential driven
by a periodic external current. Recently, we presented a
physically realistic model of the lipid-bilayer membrane
in order to clarify the mechanism of self-sustained oscilla-
tion of the electric potential across the membrane [24].
The oscillation is driven by the repetitive ge1 —liquid-
crystal phase transitions of the membrane in the model
system. It was also shown there that an appropriate ap-
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plication of electric current across the membrane might
induce the chaotic oscillation. The model, however, con-
tains too many oscillating variables to analyze the
features of the oscillations in detail. Therefore, we intro-
duce here a simplified one-variable representation of the
dynamics inherent in the previous model [24], in order to
make clear the routes to chaos in the self-sustained oscil-
lation of the electric potential between the two solutions
divided by a lipid-bilayer membrane.

The simplified model describes the evolution of proton
concentration on the membrane surface driven by both
the repetitive gel-liquid-crystal phase transitions and a
sinusoidal stimulating electric current. The transitions
are generated by the repetitive adsorption and desorption
of proton on the membrane surface which are induced by
the periodic or a periodic reversal of the direction of pro-
tonic current. It is the essential condition for the reversal
that the ion permeability across the membrane in the gel
phase is noticeably different from that in the liquid-
crystal phase and the phase transition has a hysteresis.
The model is named "the model of repetitive phase tran-
sition with hysteresis" and is abbreviated hereafter to the
RPTH model.

The time dependence of the proton concentration can
be clearly understood by knowing when the iterative
phase transitions occur, because the time dependence is
represented analytically at the time between the succes-
sive phase transitions. Therefore, the dynamical property
of the system is completely described by using the func-
tion mapping the times at which the phase transition
occurs successively. The mapping function f is piecewise
smooth and periodic with a period of unity as
f(r+1)=f(~)+1. Since the function becomes smooth
and monotonic for the sufficiently small amplitudes of the
stimulating current, the proton concentration and the
membrane potential vary with time periodically or quasi-
periodically depending on the values of system parame-
ters. The function becomes nonmonotonic for the
sufficiently large amplitudes. Then the chaotic oscillation
of proton concentration may appear and the quasiperiod-
ic oscillation disappears. The phase locking of the oscil-
lation may occur for quite wide ranges of the parameter
values, that is, a complete phase locking may occur for an
intermediate region of amplitude magnitude between the
two extreme regions mentioned.

There exist various kinds of routes to chaos in the
present model such as the periodic doubling cascades, the
intermittency, and the quasiperiodic-chaotic transition.
The model generates structurally stable chaotic attractors
which are never destroyed by the slight change in the
values of system parameters. The stable chaos has been
observed only for the region of parameter values in which
the mapping function has at least one discontinuous
point. The RPTH model becomes equivalent to the
integrate-and-fire model [25] when the values of the sys-
tem parameters satisfy certain conditions. The dynami-
cal property of the RPTH model becomes similar in some
case to that of the modulated relaxation oscillator models
[26—28]. The bifurcation scheme for the parameter
dependence of dynamical property in the RPTH model
contains the sequence "quasiperiodicity~complete phase

locking~chaos, " which has been found recently in the
modulated-relaxation-oscillator models [27,28].

Although we have derived the RPTH model to analyze
the chaos of self-sustained oscillations in the lipid-bilayer
membrane system, the model contains the essential
features of evolution behavior in various kinds of the sys-
tems which generate iterative phase transitions with a
hysteresis. It is highly expected that the mechanism for
chaotic behavior which we have found may be operative
in those systems.

II. DESCRIPTION OF THE RPTH MODEL

A. Essential features of the yrevious model

Before describing the RPTH model, we explain briefly
the previous model [24] for self-sustained potential oscil-
lations of lipid-bilayer membranes induced by the
gel —liquid-crystal phase transitions in order to make
clear the physical meanings of the RPTH model. The
system considered in the previous model consists of a
lipid-bilayer membrane in aqueous solution which divides
the solution into two regions. The bilayer consists of
neutral and acidic lipid molecules. The ion species con-
sidered in the solution regions are proton H+, hydroxide
ion OH, a single kind of alkaline ion M+, and a single
kind of halogen ion A . There exist four kinds of re-
gions with respect to the ion distribution in the system,
which are the lipid-bilayer membrane, the difFuse electric
double layers in the solution region produced by the
membrane surface charges, the bulk solution regions, and
the outermost solution regions as shown in Fig. 1. The
ionic concentrations in the outermost solution regions are
fixed and the bulk solutions are electrically neutral. The
M+ concentration CM~ in the right bulk solution is no-
ticeably higher than that C~~ in the left bulk solution.
The H+ concentrations C& and C& in the right and left
bulk solutions, respectively, are comparable to each other
and substantially lower than CM . The anion concentra-
tions in the double layers are extremely lower than those
of cations, because the anions are repelled by the negative
charges on the membrane surfaces. Each ionic concen-
tration at the inside of the membrane surface is given by
the product of the concentration of relevant ion at the
outside of the membrane surface with the partition
coefficient between the lipid membrane and the aqueous
solution. Since the partition coefficient is much larger in
the liquid-crystal state of the membrane than in the gel
state, the ionic concentrations in the membrane are
changed drastically by the gel —liquid-crystal phase tran-
sition.

The self-sustained oscillation of the electric potential
dim'erence P across the membrane which is shown in
Fig. 1 is induced by the repetitive phase transition of the
lipid-bilayer membrane. We consider the case where the
right half of the bilayer repeats the phase transition but
the left half remains in the liquid-crystal state. The gel
state of lipid layers in which the lipid molecules are close
packed is generally stabilized with the H+ adsorption on
ionized polar heads of hpid molecules, while the desorp-
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FIG. 1. Cross-section draw-

ing of the system of a lipid-
bilayer membrane dividing the
solution into the three regions.
Each solution consists of the
outermost solution, the bulk
solution, and the double-layer
region. The electric potential P
and ion concentration C, are
shown for each region.

tion of H+ stabilizes the liquid-crystal state in which the
rnolecules are loosely packed. Therefore, the state of
each half of the bilayer depends on the concentration of
H+ in the diffuse electric double layer. Since the varia-
tions of the H+ concentration is induced by the H+ flux
across the membrane, the change in the direction of the
H+ flux drives the phase transition. One cycle of the re-
petitive phase transition consists of the following process-
es. (i) H+ ions flow into the right half being in the
liquid-crystal state from the left solution. The direction
of H+ flux is determined by the flux of M+ whose con-
centration in any region is overwhelmingly higher than
the H+ concentration. Since the anion concentrations in
the membrane are negligibly small compared with the
cation concentrations, the variation of cation distribution
due to the M+ flux 4M must be almost canceled out by
that due to the H+ flux 4H~, that is, 4M +OH ='O.
When both the lipid layers are in the liquid-crystal state,
M+ ions flow from the right solution to the left one be-
cause CM & C~. (ii) The ionized lipid molecules in the
right half layer are neutralized by the H+ ions flowing
into the layer. (iii) When H+ ions flow enough into the
layer, the state of the layer is changed to the gel state.
When the partition coefficient of M+ between the right
lipid layer and aqueous solution decreases more, largely
due to the phase transition, than that of H+, as assumed
in the model, the direction of M+ flux is reversed, be-
cause the M+ flow from the right solution into the right
lipid layer decreases drastically. (iv) The direction of the
H+ flux is also reversed due to the charge neutrality con-
dition and the H+ ions absorbed on the surface of the
right lipid layer begin being desorbed. After enough H+
is desorbed, the state of the layer returns to the initial
liquid-crystal state.

Since there exists a hysteresis in the phase transition of
the lipid layers, the surface concentration of H+ at which
the transition from the gel state to the liquid crystal state
occurs is less by a definite amount than the concentration
relevant to the reverse transition. This makes the time
interval between the successive phase transitions finite.
An appropriate application of alternating electric current
across the membrane may induce the chaotic oscillations
of the membrane potential.

g
—CBX CBX CXoo +CXoo

X H OH H OH (2.1)

where the suffix X stands for the side L (left) or R (right),

CH and CQH are the averaged concentrations of H+ and

OH, respectively, in the bulk solution on the side X, and
CH" and CQH are the fixed concentrations of H+ and

OH, respectively, in the outermost solution on the side
X and are controllable parameter values. The variation
rate of Ox is given by

dOx
Hm HB +@OHB )dt ur

(2.2)

where m is the width of the bulk solution, NH is the H
flux flowing from the X-side double layer to the X-side
bulk solution, and @Hz and 4QHB are the fluxes of H+
and OH, respectively, flowing from the X-side bulk
solution to the outermost solution region (see Fig. 1).
The fluxes are expressed by using Ox as

vestigate in detail the dynamical properties of self-

sustained potential oscillations of lipid-bilayer rnern-

branes under application of alternating current. The key
factor for the repetitive phase transitions is the H con-
centration FH at the outside of the right lipid-layer sur-

face as mentioned above. Because the ion concentrations
in the double-layer regions are determined by those in the
bulk solutions [24], we consider the time course only of
the H+ concentrations in the bulk solutions and assume

that the M+ concentrations in the solutions have no time
dependence. The M+ concentrations are several orders
of magnitude larger than the relevant concentrations of
H+, while the change in the M+ concentration is almost
equal to that in the H+ concentration, because the mag-
nitude of the M+ flux is almost equal to that of the H
flux. Therefore the relative change in the M+ concentra-
tion is substantially less than that in the H+ concentra-
tion. Furthermore, we are concerned only with the H
concentration averaged spatially over each bulk solution,
because the spatial variation of the concentration is very
small over the bulk solution region.

We derive the equations determining the time course of
proton concentration in the solutions and the phase state
of the right lipid layer. We define the quantity Ox as

B. Derivation of the RPTH model +Ha+ @OHB D X ~ (2.3)

We present the model which keeps the essence of the
previous model but is reasonably simplified in order to in-

where D is an effective diffusion constant and is positive.
Because the H+ capacity of the alkylchain (hydrophobic)
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region of the membrane is quite small, we can reasonably
assume that

@'H +@'H

Then the relation

(2.4)

OL +OR =0 (2.5)

is derived from Eqs. (2.1}—(2.4) for the initial condition
that HL +Ha is zero. When an external electric current J
is applied across the membrane, the relation

G for 8(~) & 1

S(w)= L for 8(r) —1

S(r b,~—) for —1&8(r)&1,

where

OR
—

ORL.8=2 —1,
ORG ORL

J=Josin(2m vt),

(2.9)

(2.10}

(2.11)

J=F(4H +4~ ) (2.6) v=vt, (2.12)

arises from the continuity of the electric current, where
is the flux of M+ flowing from the R double layer

to the R bulk solution and F is the Faraday constant. It
is briefly shown in Appendix A that the H+ flux 4H in

Eq. (2.2) is determined by Ha and J through analytical
functions including Hii and J. The functions depend on
the state of the membrane.

We consider the usual case where ~Hii ~
and J are very

small compared with CH" and F~@it ~, respectively.
Then 4H is reasonably approximated by a linear func-

tion of Hx and J. Thus Eq. (2.2) is reduced to the simple
form

d Hit

dt
=rts+PsHa +ys J (2.7)

where as, Ps, and ys are the constant parameters deter-
mined by the properties of the system. The system pa-
rameters depend on the states of the right lipid layer
through the partition coefficient ~H between the lipid lay-

er and the aqueous solution on the right side as shown in
Appendix A. The state of the right lipid layer is deter-
mined by the charge density o a of the layer as shown in

a previous paper [24]. Because o a depends monotonous-

ly on Ha in the usual case as seen in Appendix A, the
state is determined by the value of Hii. We define the
state index S(t) at a time t as S(t)=G for Hii &Hxo,
S(t)=L for 8 & HiiL, and S (t)=S(t ht) fo—r
HiiL & Ha & Hao, where G and L mean the gel and liquid-

crystal states, respectively, and Hao and HiiL are the
threshold values of OR at which the state is changed from
L to G and from G to L, respectively. Because the phase
transition has a hysteresis, 8RG is larger than ORL .

In order to investigate the effect of external electric
current on the self-sustained oscillation of the membrane
potential, it is enough that we know the dynamical prop-
erties of OR under the current application, because the
membrane potential P is determined by Ha as shown in

Appendix A. We use hereafter the normalized quantity
8 for OR for the convenience of clear understanding. The
equations for e are written as

2rzs+(4o+ Has. »s
~s = (S =G,L),

V gG RL}
(2.13)

(S =G,L), (2.14)

2Jorsrs= (S=G,L) .
V RG RL)

(2.15)

Here, as shown in Eq. (2.11), we choose a sinusoidal elec-
tric current with frequency v as the applied current J.
The parameters As, Bs, and I's correspond effectively to
the proton ffux, the difFusion coefficient of H+ across the
membrane, and the amplitude of external current, respec-
tively, for the state S of the right lipid layer. The values
of BG and BL are negative in the present system, that is,
they mean the damping factors for the oscillation of 8.

As(1 Ts )
—Gscos(2mr) for Bs=0

(2.16)

I exp [Bs(~—Ts ) ]—1 ] Gs cos(2n ~+5s—)
s

for Bs0, (2.17)

where the suf5x S stands for the state G or L, Ts is the in-
tegration constant, and

G, =r, (B'+4 ')-'"
sB

5s ——arctan 2'

(2.18)

(2.19)

C. Mapping function of the transition times

Since Eq. (2.8} can be analytically solved as long as the
state S(r) does not change, the tiine dependence of 8 is
clearly understood by knowing the times at which the
iterative phase transitions occur. Therefore, we derive
here the mapping function for the iterative transition
times. Since the applied force is periodic, the mapping
becomes a kind of circle map. By solving Eq. (2.8) for
S(r) =G and L, we obtain

AG+Bo8+I Gsin(2ni) for $(r) =G
AL +BL8+1 I sin(2nr) for $(r)=L (2 g)

We denote the time of a phase transition from L (liquid-
crystal state) to G (gel state) by rLo and that from G to L
by rGI. The equations

and the state index S(r) is given by 8L, ( ror. Tl. ) = (2.20)
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BG(&LG; TG )=1 (2.21) fs(rRs)=minIr;Bs(7; JIs(rRs))=+I; 7 & rRs I

Ts =Hs(rRs )

1
7Rs I G~cos(2771RS) + I l for Bs

As

Bs
rRs — ln 1+ ( Gscos(2nrRs+. 5s ) + 1B A

(2.22)

are satisfied just after the phase transition. The integra-
tion constants TL and TG are obtained from Eqs. (2.20)
and (2.21), respectively, as

(2.24)

where minI r;QI means the minimum value of r fulfilling
the condition Q. The solutions r of Bs(r;Hs(rRs))=+1
correspond to the times when the transition from S to R
occurs. We can obtain the transition time subsequent to
rRs through the conditions of r & 7Rs and minI r j.

Because we are concerned with the continuous oscilla-
tion of 8(r), that is, with the iterative phase transitions,
we consider the problem only for the ranges of the pa-
rameters As, Bs, and Gs in which Eq. (2.24) always has
solutions. The ranges are

for Bs&0,

(2.23)

where S takes L or 6, R takes G for S=L and L for
S =G, the upper sign is used for S =L, and the lower one
is for S =G. We use hereafter the double signs with the
same meaning.

We introduce the partial mapping functions fL(rGL)
and fG(rLG), which transform rGL and rLG, respectively,
to the subsequent transition time from L to 6 and that
from 6 to L. A typical situation of time course of e is
shown in Fig. 2(a). The transition time fs(rRs) subse-
quent to ~&& is given by

AL &0 for BL =0, AG &0 for BG=O;

AL
+~GL~ &1 for BL &0,

BL

AG
+~GG &1 for BG &0;

BG

Al
+~GL~ & —1 for BL &0,

BL

AG + IGGI & I for BG &0 .
BG

(2.25)

(2.26)

(2.27)

(

I

0

(a)

I

n

f(rGL ) fG(fL(rGL » (2.28)

The total mapping consists of the alternative application
of the partial mappings fL and fG. Since the right-hand
side of Eq. (2.8) is periodic with respect to r, the partial
mapping functions fs (S =L,G) are periodic as

These are the conditions that the values of Bs(r; Ts) can
pass the threshold (8=1 for S=L and 8= —1 for
S =G) with increasing r.

We introduce the total mapping function f(rGL),
which transforms ~GL to the time of the subsequent tran-
sition from 6 to L and is given by

fs(rRs+1)=fs(rRs)+1 . (2.29)

Therefore, the total mapping function f is also periodic
as

fL fG

1

(b)

FIG. 2. (a) A typical time dependence of the concentration
fluctuation e of H and OH defined by Eq. (2.1). The phase
transitions occur at the times indicated with arrows. The nor-
malized concentration fluctuation e and the reduced time ~
have no dimension. (b) Schematic explanation of the functions

fG, fL, f, g, HG, HL, FG, and FL, and functional relations be-
tween the transition time v.

&& and the integration constant T~ in

Eqs. (2.16) and (2.17).

f(rGL + I)=f(rGL )+ I . (2.30)

rsR =Fs ( Ts }=m'n I
r' Bs ( r; Ts } + 1 l (2.31)

In the case where Bs is negative, Fs(Ts) increases or de-
creases monotonously with increasing Tz depending on

For the convenience of later calculation, we derive an
alternative total mapping function g of the integration
constant TG, which is in many cases equivalent to f and
much simpler. When

~ Gs ~
is not too large (say

~ Gs ~
& 1),

the equation Bs(r; Ts }=+1in the definition (2.24} of fs
has no solution for ~ ~zz, that is, the subsidiary condi-
tion r & rRs in Eq. (2.24) is not necessary. Then the value
of fs(rRs), rsR, is determined uniquely by the value of
Tz so that we can represent ~zz as the function of
Ts Fs(Ts), where
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g(Tp)= HG(—fL, (FG(TI ))) . (2.32)

whether + Asexp( B—s Ts ) is positive or negative, respec-
tively. On the other hand, Fs(Ts) increase monotonous-

ly in the case where Bs is positive. The correspondences
between the sequence of transition times ~GL, ~LG, and

f(rGL ) and the sequence of integration constants TI„TL,
and TG are shown in Figs. 2(a) and 2(b). Since HAGI is
dete~m~~ed umquely by T~ TG Ho(fL, (~GL, }}is also
determined uniquely by TI, as seen in Fig. 2(b). The
transformation from TI, to TG is represented by using the
mapping functiong(T) as TG=g(Tz), where

Eq. (2.28), f becomes monotonic (continuous) only when
both fL and fG are monotonic (continuous). The func-
tion fI is monotonic if and only if dBL /dr 0 for every
1 at which BI (r)= —1. This condition is fulfilled in the
parameter region

(3.1)

as seen from Eq. (2.8}. The reason why Eq. (3.1}becomes
the necessary and sufficient condition for the monotonici-
ty of fL is as follows. It is seen from Eqs. (2.16) and
(2.17) that the equation

Since Hs('res+1) Hs('res)+1 and Fs(Ts+1)
=Fs(Ts)+1, using Eqs. (2.29) and (2.32) we obtain

Bs(&i Tsi) Bs(&i Tsz) = [Bs(&o' Tsi } Bs(&o;Ts2)]

Xexp[Bs(7 1p)] (3.2)

g(Tp+1)=g(Tp)+1 . (2.33)

The mapping given by g(T~} is also a circle map with
modl. The graphic representation of the mapping func-
tion g becomes simpler in many cases than that of f.
However, the use of g gives invalid results for very large
values of ~GG ~

because fG(rIG ) cannot be uniquely deter-
mined by TG for those values. Then we must use f in or-
der to investigate the dynamical properties of 8.

III. DYNAMICAL PROPERTY
OF THE MEMBRANE SYSTEM

UNDER ALTERNATING CURRENT

A. The relation of characteristics
of the mapping function with the dynamical property

The dynamical property of the membrane system un-
der the application of sinusoidal electric current can be
understood through the dynamical property of the iluc-
tuation 8 of the H+ concentration which is determined
by Eq. (2.8). The time dependence of 8 can be described
by the chronological sequence of the transition time ~GL.
Because the sequence is derived by the iterative operation
of the mapping function f, we investigate here how the
characteristic features of f depend on the values of sys-
tem parameters As, Bs,and I's (S =L,G).

First, we summarize the relations between the charac-
teristic features of f and the dynamical property of the
sequence of rGI When the fu. nction f is monotonic, the
rotation number p is defined uniquely. The sequence
[f"(v}] is asymptotically periodic in modulus 1 in the
case where p is rational, while it becomes quasiperiodic in
the case where p is irrational. When f is monotonic and
sufficiently smooth, the measure of quasiperodicity in the
parameter space becomes positive. However, when f has
one or more discontinuous points, the measure may be-
come zero [29]. When f is nonmonotonic, the chaotic se-
quence may appear depending on the parameter values.
Chaos may appear in the dynamical property when the
monotonicity of f is lost by changing the parameter
values, but the quasiperodicity is suppressed when either
the monotonicity or the continuity off is lost.

Second, we consider the dependence of the characteris-
tic features of f on the values of system parameters.
Since the function f consists of fI and fG as shown in

A, +B,—~r, ~

&0, (3.3)

as seen from Eq. (2.8). The function fl(r) becomes
smooth everywhere for AL +BI —

~
I I ~

& 0. When

dBL /dr&0 at the threshold line 8=1, the curve of
8=Bl (r; HL (~„)} crosses this line only once at
r= fL (vz ). It is seen from Eqs. (2.16) and (2.22) or from
Eqs. (2.17) and (2.23) that BI (~;HL(r„)}is a smooth
function of ~„.Therefore, it can be shown by the impli-
cit function's theorem that fL (~~ ) is a continuous func-
tion of r„.On the other hand, if Eq. (3.3} fails, there ex-
ists some region of r where dBL /d~ becomes negative
for r at which BL (r) = 1. Then it can be seen that fL has
a discontinuous point ~c and that fL (r} cannot take any
value between fI (rc —0) and fL (~c+0). Therefore, Eq.
(3.3) is the necessary and sufficient condition for the con-
tinuityof fL.

From the similar consideration for the function fG we
obtain the necessary and sufficient condition for the
monotonicity offG as

A, +B,+ ~r, ~

~0 (3.4)

and the condition for the continuity offG as

holds for arbitrary values of 1 1p and Ts„and Ts2. We
consider the two time courses 81 (r;HL (r„}}and

BL (~;Hl (ra) },where r„nad rz are the transition times
and satisfy the equations 81 (~„;HL(r„))= —1 and

BL(~a;Hl(~ii))= —1, respectively. Because the condi-
tion dBL(r; TI )Id~&0 for Bl(~;TI )= —1 is satisfied
for Eq. (3.1), the inequality BL (~s;Hl. (~„))
& BL {Tg, HL ( Tg ) } [=81 ( 7 a,' HL ( Ts ) )] holds for

Using this and Eq. (3.2) we obtain the relation

BI (~;Hr (~„))& Bl (~;Hl (~~ ) ) for any ~. The next
transition time fI (rs ) determined from

BL (r;Hl (r~ })=1becomes larger than fL (r„)obtained
from BL(r;Hr(r„)}=1.Therefore, the mapping func-
tion fl (r) increases monotonously with r if Eq. (3.1)
holds. On the other hand, if Eq. (3.1) fails, 18I /dr be-
comes negative for some i at which BL (r) = —1. Then,

fl (~z ) may become smaller than fl (r„)even for
ra & ~„,if 18L /dr (0 for r =~„and~s.

The mapping function fL is continuous if and only if
dBL /dr & 0 for every r at which BL (r) =1. This condi-
tion is fulfilled in the parameter region



1326 YAGISAWA, KAMBARA, AND NAITO 49

A, —B,+/r, /
O. (3.5) ~spAs= (S =L,G), (3.6)

The function fG becomes smooth everywhere for
AG

—BG +
~
I G ~

(0. Thus the mapping function f
defined by Eq. (2.28) becomes monotonic in the parame-
ter regions where Eqs. (3.1) and (3.4) are satisfied, and f
is continuous in the regions where Eqs. (3.3) and (3.5) are
satisfied.

We divide the parameter space into three regions as
follows on the basis of the characteristic feature of f.
The function f is monotonic and continuous in region I,
monotonic and discontinuous in region II, and nonmono-
tonic in region III. The chronological sequence of the
transition time ~GL is quasiperiodic or asymptotically
periodic in region I. It may be asymptotically periodic in
almost al1 parts of region II and chaotic or asymptotical-
ly periodic in almost all parts of region III.

We can define similarly the three parameter regions
also by using the feature of the alternative mapping func-
tion g given by Eq. (2.32). However, the regions based on

g are not necessarily equivalent to the corresponding re-
gions based on f even in the parameter region where the
use of g is quite reasonable. For example, when f and g
are discontinuous, it may happen in some region that g is
monotonic but f is nonmonotonic. This occurs in the
case where f is monotonic within the range of f (r) but
not monotonic over the whole range of ~. Although the
parameter values corresponding to such cases are
classified into region III by using f, they are classified
into region II by using g and the chronological sequence
of TG obtained by using monotonic g is not chaotic. Thus
the classification into region III through f does not
necessarily mean that the solution is chaotic. The
c1assification of parameter values through g gives a more
detailed information about the dynamical property of the
system than that through f does. However, the use of g
becomes invalid for some region of the parameter values
and the representation for the classification of parameter
regions through g is much more complicated than that
through f. Therefore, we adopt hereafter the
classification of the parameter regions obtained through
f, though we also use g in order to investigate the dynam-
ical property of the system in detail.

Bs= (S =L,G), (3.7)

r, ,I = (S=L G), (3.8)

where A&p, B&p, and I &p are the quantities inherent in the
system and Jo and v are the amplitude and frequency of
the current. In the present section, we sweep only two
parameters at the same time, where one is chosen among
i4gp Bgp and I &p and the other is done among Jp and v.

8 (r;H (r))=+1,
Bs(fs(r);Hs(r ) ) =+1

(3.9)

(3.10)

hold for every r by the definitions of Hz and fz,
we obtain the relations BG(ri,'HG(ri))=1 and

BG{r,;HG(ro))= —1 by substituting r=ri and ro into
Eqs. (3.9) and (3.10), respectively for S =G. Substituting
Eq. (2.16) into these relations, we obtain

(3.11)

1. Phase shift

In the parameter region where BG and BL ~ 0, chaos is
generated mainly by the mechanism that is referred to as
"the phase shift. " In order to make our consideration
easy, we fist treat the simple case of BG =BL =0 and
I L

=0. The results for BG=BL =0 are almost straight-
forwardly applicable for the cases of BG & 0 and BL & 0,
unless ~BG~ and/or ~BL ~

are not so large. Region III,
where the chaotic sequence of ~zz and ~GI may occur, is
given by the condition ~I G~) —AG. We can know the
property of the mapping function g in the special case as
follows. We take ~p as the initial value of ~LG and obtain
the sequence of rk (k =0, 1,2) by using fG and fL as
r, =fG(ro) and ri= ft (r, ). We define also Tk by
TI, =HG(r„)for k =0, 1,2, where they satisfy the relation

g {Tp )= T2 ~ We derive here the relation between Tk and

Tk+, for k =0 and 1. Because the equations

B. Mechanisms of chaos generation

We have stated in Sec. III A that chaos may appear in
region III ( At —Bz —~I'I

~
(0 or AG+BG+

~

I 6 ~
)0) of

the parameter space where the mapping function f is
nonmonotonic. On the basis of the analytical considera-
tion and the numerical calculations, we describe the
mechanisms of chaos generation and show in what parts
of region III the chaotic sequences of ~GL can be usually
obtained. When we scan the parameter space for the pur-
pose mentioned, it is difficult for us to change indepen-
dently the six parameter values ( Az, Bz, I z for S =L, G).
These parameters consist of two kinds of quantities where
one is inherent in the membrane systems and the other
comes from the eternally applied current. In order to
change the two kinds of quantities independently, we
represent the six parameters as

r2=f1 (r, )=r, + 2

L
(3.12)

By using Tz=HG(r2) and Eq. (3.12), Tz is expressed in

terms of T& as

2T =HG ~+
L

HG HG (T, )+——1 2

AL
(3.13}

where HG '(T~ ) means the inverse function of HG(r, ).
Thus the mapping function g ( To) is denoted by

We also substitute Eq. (2.16) into the relations
BL (rz,'Hz(r, ))=1 and BL(ri,HL(ri))= —1, which are
derived by substituting r=r, into Eqs. (3.10) and (3.9) for
S =I.. Then we obtain
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2 2
g(To)= T2 =HG HG To +

AG Al
(3.14}

n=g Il = 3

We consider first the dependence of g on the values of
AL and AG and secondly that ofg on I G. In the special
case where 2/AL is equal to an integer n, Eq. (3.14) is

simplified as

2
g(To) =To+n-

G

(3.15}

by using the equation HG(r+ n )=HG(r)+n, which is de-
duced from Eq. (2.22). The sequence of T generated by g
is quasiperiodic when AG is irrational, while it is periodic
when AG is rational. The periodic solutions are neutrally
stable. In the case where ~1"G~) —AG and 2/AG devi-

ates slightly from an integer n, some bifurcation takes
place. By substituting 2/Ar =n+Iu, (~IM~ &1) into Eqs.
(3.13) and (3.14), we obtain

T2 HG(Hr (Ti }+p)+n

g(T) =HG HG T 2

AG
+p +n .

(3.16)

(3.17)

We show graphically the alternative mapping function g
given by Eq. (3.17) for p= —0. 1 and 0.1 in Figs. 3(a) and
3(b), respectively. In the case where Iu&0 and ~p, ~

&&1,
the inequality g (TD —0) &g(TD+0) holds at the discon-
tinuous point TD and the derivative of g becomes positive
everywhere as seen in Fig. 3(a). Then, the iterative
operating of g usually generates chaos, as shown in Fig. 4,
because the average of the derivative of g exceeds unity.
On the other hand, when p )0 and

~ p ~
&& 1, the absolute

value of average of dg( T)/dT becomes less than unity as
seen in Fig. 3(b), because the inequality

g ( T~ —0) & g( T~+0) holds at TD. Then it is rare for the
system to generate chaos as shown in Fig. 4.

Now we consider the efFect of I G to the chaos genera-
tion in the case where BG =BL =0 and I L =0. In the pa-
rameter region where ~I'G~ &) —AG and the use of g is

C)

6-
bs

II

C'J

C&

7
bO

II

OJ

TO Tp

(b}

FIG. 3. Graphical representation of the mapping function g
in the case of AG= —1, BG=O, and I 6=5: (a) 2/AL =2+@,
where p= —0. 1. The inequality g(TD —0) &g(TD+0) holds at
the discontinuous point TD and the derivative of g is positive
everywhere; (b) 2/AL =2+p, where @=0.1. The inequality

g ( Tz —0) &g( TD+0) holds and the average of the derivative of
g is less than unity.

V (Hz)
f1. 5

FIG. 4. Phase diagram for the dynamical property of the
RPTH system in the case of Az p=1 Hz, 81p=O Hz, BGp=O Hz,
I Lp=O Hz A m I Gp=3 X 10 Hz A m, and Jp = 1 X 10
Am 2 (see Ref. [24]}. The remaining parameter values are

swept through the range of —2 Hz& AGp&0 Hz and 0.2
Hz&v&1. 8 Hz. The range belongs to region III. The black
areas indicate the chaos generation while the white ones indi-

cate the attraction by the stable limit cycles. The relation

2/Az =n +@=2v (~p~ & 1}holds in this case, where n is an in-

teger shown in the figure.

reasonable, chaos with a large value of Lyapunov ex-
ponent is generated for most values of p, as seen around
the region of AGo=0 Hz in Fig. 4. This comes from that
~Idg(T)/dT~ becomes larger than unity in the region as
shown below. The derivative is represented as

dg (To } dT2 dT2 dHG(12)

dTo dTo dTi dr2

dHG(r, )
(3.18)

r

because dT, /dTo 1 and de/dr, =l as seen from Eqs.
(3.11) and (3.12). Using Eqs. (2.22) and (2.18), we obtain

dHG(7) I 6=1+ sin(2n. r) .
d~ AG

(3.19)

We now define rc by using the relations sin(2mrcI
= —AG/I'G and I Gcos(2@re)&0. We further define

'TD, which is slightly less than ~c, by using the relation
cos(2m') cos(2mrc)=—2m AG/I G. Because r, is the
minimum solution ~ of the equation
e (r;T )=A (r—T )

—(I /2m. )cos(2nr)= —1,
must lie between rD+k and rc+k, where k is some in-
teger. In the case of ~1 G~ &) —AG, the approximation
~sin(2~rD)~=[1 cos (2~v—~)]' ='2lmAG/I GI' is ap-
plicable. Then, we obtain ~dHG(r, )ldr, ~

&2~m.l G/
AG ~

' from Eq. (3.19). On the other hand,
~dHG(r2)/de~ is of the order of ~I G/AG~ for most
values of IM, because r2=r, +2/AL and 2/A~ =n +p.
Therefore,

~ dg ( To }/d To ) becomes of the order of or
larger than ~I G/AG~'~ for most values of p.

In the case where BG =BL,=0, I I =0, and
~l G ~

& —AG, chaos occurs usually in the two kinds of
parameter regions: (i} 2/AL is slightly smaller than an
arbitrary integer and (ii) ~I'G~ &) —AG. The chaos gen-
eration arises from the reason that the absolute value of
average of dg(T)/dT exceeds unity. In the outside of
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I G/A&=I I /AL as shown in Fig. 6.
The Lyapunov exponent (X ) used in the present paper

is calculated by

X:—lim —g ln
1

" ' df(r)
n~oo n o d q——f (q )

n —1= lim-
n~oo n 01' =

dg(T)
d

(3.20)
T=g (Tp)

where ~o and To are the initia1 values of ~GL and TG, re-
spectively, and f (ro) and g (To) are the values ob-
tained after m times applications off and g, respectively.

2. Orbit localization

Chaos detected by our numerical calculations in the re-
gion of BL & 0 and BG ~ 0 are usually caused by the phase
shift. However, there exist some chaotic solutions origi-
nating from the other mechanisms, although the parame-
ter regions where these types of chaos occur are very nar-
row. We describe the two unique mechanisms detected
so far in the present and following subsections.

It may occur for some parameter values that an invari-
ant set (attractor) of the mapping functions f and/or g
consists of a definite number of narrow intervals of vari-
able (J„J2,. . . , Jv) as shown in Fig. 7 where N = l.
This means that the chronological sequence (orbit) of rzs
is localized within a definite number of narrow intervals.
In order to make clear the chaos generation mechanism,
first we consider the feature of discontinuities in the func-
tions f(r) and g(T). When Fs(Ts) defined by Eq. (2.31)
has a discontinuity at Ts = Tso the values of Fs(Ts) de-
pend linearly on Tz in one hand neighbored region of Tzo
but change as ~Ts —Tso~'~ in the opposite-hand neigh-
bored regions of Tgo as shown in Fig. 7. By using the
definition fs(res) =fs(T& ), and Eqs. (2.28) and (2.32), it
is shown that fs, f, and g have the analogous feature
around their discontinuous points. This means that their
mapping operation around the discontinuity is linear on
the one side and square-root-like on the other side.

Next we consider the case where a finite number of in-

FIG. 5. Phase diagram in

the case of ALp=1. 2 Hz, AGp= —0.8 Hz,
B =0 Hz, B =0 Hz, I =3X10
HzA 'm, and JO=1X10 Am . The
remaining parameter values are swept through
the range of —8.5 X 10 Hz A ' m

&I 1p&1 5X10 HzA 'm and 01
Hz & v&0.9 Hz. The range belongs to region
III. The black areas indicate the chaos genera-
tion while the white ones indicate the attrac-
tion by the stable limit cycles. The relation

2/Al =1+p=5v/3 holds in this case. The
diagram has a complicated structure with a
kind of self-similarity in the vicinity of the hor-
izontal line given by I L /AL = I & /A~.

x
OJ

E

I

C&

unimoda1
tYpeuni 555oda 1

type
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t 's"

"G

AL Ag

—8-I'I i
I0. 1

g ~

I5
'1 .

L

(Hz

these regions the chaos generation is possible but rare, as
seen in Fig. 4, where chaos sometimes arises from the or-
bit localization mechanism described later.

Next we consider the case where BG =Bi =0, 1 I %0,
and ~l G ~

)—AG. When ~I I ~

( AL, that is, fL(r) is con-
tinuous, Eq. (3.15) holds also in this case for 2/AL =n.
The parameter dependence of chaos generation derived in
the case of I L =0 is also generally applicable as shown in
Fig. 5. When ~I I ~

) AL, the chaos generation depends
on the signatures of I 6 and I I . In the case of I I I 6 & 0,
the dependence derived for I L

=0 is still usable for the
region where

~
I I ~

is close to AI, but it becomes inappl-
icable as

~
I I increases. Then the investigation on the

map g shows that chaos generation is stopped by a
tangent bifurcation. In the case of I LI G &0, chaos is
generated in the broader region compared with the case
of I L I G & 0 as shown in Fig. 5. On the hyperplane
determined by I G/AG =I ~/AL in the parameter space,
g ( T) becomes a translational map similar to the mapping
given by Eq. (3.15). It is seen in Fig. 5 that the phase dia-
gram in the vicinity of the hyperplane has a rather com-
plicated structure with a kind of self-similarity.

Finally we consider the case where BG &0 and BL &0.
The consideration made for the case of BG =BL =0 is al-
most applicable to the present case. Chaos can be gen-
erated by the phase shift in which HG loses monotonicity
and fL shifts rGL to rLG so that the absolute value of
average of dg(T)ldT exceeds unity. The conditions for
the parameters AG, AL, I G, and I I under which chaos
occurs usually are similar to those in the case of
BG=BL =0 as seen in Fig. 6. However, in the case of
BG (0, Eq. (3.11) does not hold and T, becomes a mono-
tonic function of To with a discontinuous point. Al-

though the discontinuous shift is small in the region near
BG =0, it broadens as

~ BG ~
increases. Therefore, the

Lyapunov exponent of g ( T) decreases and the chaos gen-
eration region becomes narrower as

~ BG increases.
When ~BG~ is large enough, chaos becomes extremely
rare. In the cases where at least one of BL and BG is

nonzero, there appears no characteristic complexity in
the phase diagram at the vicinity of the hyperplane
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x
6

I

C&

0-

unimodal phase
type shift

appears on the left side of the discontinuity. It seems
diScult, unlike the cases of the phase shift, for us to give
a simple description of the parameter regions where
chaos tends to occur by the present mechanism, the orbit
localization.

C)

L

rL rG

Ap AG

0. 3 0. 5 0. 7
V &Hz)

tervals (J„J2,. . . ,J„)are mapped into themselves by an
operation of g. If g is discontinuous at T=TD, the
derivative of g becomes proportional to IT —TDI
around TD on one side as shown in Fig. 7. When at least
one component J„ofthe invariant set contains this quite
steep gradient, chaos can be generated from the large
slope of g around the discontinuous point that is usually
an inner point of J„.In the case of Fig. 7 the steep slope

FIG. 6. Phase diagram in the case of AL p
= 1 Hz, A Gp

= —1

Hz BIp= 0.05 Hz BGp= 0.05 Hz I go=4 X 10 Hz A ' m',
and Jp=1X10 Am . The remaining parameter values are
swept through the range of —8X10 Hz A ' m & I «&2X10
HzA 'm and 0.25 Hz&v&0. 75 Hz. The range belongs to re-

gion III. The black areas indicate the chaos generation, while

the white ones indicate the attraction by the stable limit cycles.
The diagram has no particular complexity in the vicinity of the
horizontal line given by I I /AL, =I z /AG.

3. Unimodal type

When chaos is generated by the mapping function f
whose graph is smooth and unimodal like the graph of
logistic maps, we refer to the generation mechanism as
the unimodal type. We show one example of such a func-
tion f in Fig. 8. The function f becomes smooth and uni-
modal only in some confined interval and the sequence of

is confined within the interval. We can see the
period-doubling cascades in the neighborhood of the
chaos region as in the case of the logistic maps.

The unimodal type has been detected when the rela-
tions Ir&l »I A&I, Ir, I

&
I
+ &&+B&I, and r, rz &0

are satisfied, where R =6 for S =L and R =L for S =G.
A typical example for S =G and R =L is shown in Fig. 5
where AG= —0.8 Hz/v, BG=O, I G=3 Hz/v, Ai=1.2
Hz/v, BL =0, and rL =I3X10 Am Hz] rLp/v.
The values of Irz I

seem to be limited in a very narrow
range close to

I
+ Az+Bz I

as seen in Fig. 5, in which f
is smooth but has a large slope within the confines of the
interval. It is shown in Fig. 5 that the unimodal type of
chaos appears in pairs of small areas of the phase dia-
gram by the side of the phase-shift areas. This type of
chaotic orbits can be obtained also for negative values of
BL and/or BG as seen in Fig. 6 unless their absolute
values are very large, although it becomes rare as IBsfs
increase.

We have not yet searched exhaustively the parameter
space in order to obtain not only the two unique types of
chaos mentioned above, but also any other unique types
of chaos.

TD+0. 5

at tractor

TD-0. 5
TD-0. 5

I

TD TO+0. 5

Tg (mod ]. )

FICx. 7. Chaotic attractor of g in the case of Alp=1. 91 Hz,
A = —0.09 Hz, B =0 Hz, B =0 Hz, I =1X 10
HzA 'm, I Gp=1X10 HzA 'm, Jp=0 2X10 Am
and v=0. 59 Hz. The values of TG and g(TG) are plotted in
modulus 1. Chaos is generated by the orbit localization and the
attractor consists of a single interval J& that contains the
discontinuous point TD in its interior. The derivative of g be-
comes very large at the left side of TD.

o L—
0

(mod 1 )

FIG. S. Graphic representation of the mapping function f in
the case of AL, o=1.2 Hz, AGo= —0.8 Hz, BL,o=0 Hz, Bgo=0

I so= 1X10 HzA 'm, I Go=1X10 HzA
J0=3 X 10 Am, and v=0.22 Hz. The function f is smooth
and unimodal on the attractor, which is indicated by the frame-
work.
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4. Chaosin the region where'& &Oand/or BI &0 I I t t

We have described so far the chaotic solutions in the
parameter region where both BI and B& are nonpositive,
because it is the case in the membrane systems. Howev-
er, there may be some other physical systems whose
property is described by Eq. (2.8) for BG)0 and/or
BL &0. Therefore, we would like to describe briefly the
chaos generation mechanisms in the case of BG & 0
and/or BL & 0. We refer to those mechanisms as "the ac-
celeration" in the lump, because the term Bse in Eq.
(2.8) accelerates the change of 8 when Bs is positive.

There exists a tendency that the chaos generation area
increases in region III as Bs increases. In order to verify
the tendency, we consider the dependence of the deriva-
tive of the partial mapping function fs on Bs. The
derivative is represented as

C'4
I

E

I o

Bso {'Hz }

~ 0

dfs(r~s)
d~RS

Ts

d7RS

dTs

d +SR
(3.21)

where Ts =Hs(rzs ) and vs~ =&s('r~s). Using Eq. (2.23),
we derive

dTs 2n Gssin(2m'res+ &s )=1+
drys ~s+Bs[Gscos(2m '„~+5& ) + 1]

(3.22)

The relation between Ts and ~sR is obtained from Eq.
(3.10) for r= vs„as

Bs
Ts rsvp ln 1+ I Gzcos(2nrsz +&s ')+ 1 lBs As

(3.23)

Thus we obtain

Ts 2m Gssin(2mrsR+~s)=1+
d rs„As+Bs{Gzcos(2~v~~ + 5& )+1]

(3.24)

When Gs (1, the absolute value of the denominator in

Eq. (3.22) becomes smaller as Bs increases, but that in

Eq. (3.24) becomes larger as Bz increases. The second
term on the right-hand side of Eq. (3.22) becomes dom-
inant depending on the value of ~RS in region III. When

fs has discontinuities, that is, AL +BI —
l
I I (0 for

S =L or AG —BG+ I G l
)0 for S =G, the second term

on the right-hand side of Eq. (3.24) also becomes dom-
inant. Thus the slope of fs given by Eq. (3.21) often be-

comes steeper as Bs increases within such regions. The
same tendency can be observed even in the region of
lGzl ~ 1. Because the Lyapunov exponent of the system
may increase with Bs, the tendency to generate chaos is
enhanced with increasing Bs. It is seen in Fig. 9 that the
chaotic sequences of ~Rs are obtained in a broader area of
region III as Bss increase.

When Bs is positive and fixed, the Lyapunov exponent
in the case of BR (0 tends to becomes smaller compared
with that for BR & 0. When BR (0, the area where chaos
is generated decreases with increasing lB& l.

The signs of I G and I L also a8'ect the tendency to the
chaos generation. In the case of I zI L (0, the numerical

FIG. 9. Phase diagram in the case of ALp=1 Hz AGp= 1

Hz, I Lp=1X10 HzA 'm I op= 1X10 HzA 'm, and
v=1 Hz. The remaining parameter values are swept through
the range of BLp=BGp 0 Hz &Blp & 1 Hz, and 0
Am & Jp &5X10 Am . The black, white, and hatched
areas indicate the chaos generation, the attraction by the stable
limit cycles, and the quasiperiodicity, respectively. Because the
parameter values do not satisfy Eqs. (2.25)—(2.27) in the dotted
area, the continuous oscillation of 8 does not occur there. Re-
gions I and III are indicated. The chaos area increases as B,&
increase.

calculation shows that chaos covers most the part of the
parameter region where both of fG and fL have discon-
tinuities, that is, lf'Gl & AG+BG and r& I

& —&I,
+BL. This is because dg(T)/dT becomes larger than
unity for most values of T in the region. On the other
hand, when I GI L &0 and BG and BL are sufficiently
small, chaos is rather rare in the region where both fG
and fi are discontinuous. This comes from that
ldg ( T)/d Tl becomes less than unity for most values of T
in such cases. However, in the parameter region where
both fI and fG are continuous, the distribution of the
chaos generation area scarcely depends on the signs of
I G and I L.

C. Stable chaos

The present system contains the stable chaotic attrac-
tors which are never destroyed under any slight changes
in the parameter values as seen in Figs. 4—6 and 11. The
reason why the structurally stable chaos occurs in the
system is as follows. When chaos is generated by the
phase-shift mechanism, the derivative of g ( T) usually be-
comes positive (or negative) at every T. Thus the abso-
lute value of dg (T)IdT becomes uniformly larger than a
certain positive number e, where e exceeds unity in some
pats of the parameter regions. In such parts, the
Lyapunov exponent of g clearly exceeds unity and the se-
quence of T becomes chaotic. Because the condition that
the inequality ldg (T)IdTl & E holds for any values of T
cannot be broken by any slight variations of the parame-
ter values, the chaos becomes structurally stable.
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The same statement may also hold even if e 1. In the
case of 0 & e ~ 1, the sequence of T may settle in a stable
limit cycle or a chaotic attractor depending on the pa-
rameter values and the initial condition. When g has a
chaotic attractor with the positive Lyapunov exponent
and the inequality ~dg ( T) ldT~ & e holds uniformly on the
attractor region, it is highly possible on the basis of the
numerical verification for various relevant cases that
~dg ( T)/dT~ exceeds unity uniformly on the attractor for
a suSciently large value of N, where g means the map-
ping function made by the N times iterative operation of
g. The chaos also becomes structurally stable in such
cases. If the minimum value of N satisfying the inequali-
ty is relatively small, the stable chaos occurs usually over
a large area in the parameter space without any windows
of nonchaotic solution. On the other hand, when the
minimum value of N is not small, the very narrow areas
(windows) in which the stable periodic orbits appear
through tangent bifurcations are sometimes inserted in
the chaos area. However, the interweavement of the win-
dows is not dense in the parameter space unlike the logis-
tic maps and the sine circle maps. There exists no
periodic-doubling cascade within these windows either.

In the present system, the structurally stable chaos
arises from the characteristic feature that the mapping
function f (r) or g (T) may have discontinuities. In gen-
eral, the stable chaos is possible also in continuous one-
dimensional discrete systems. For example, a smooth cir-
cle map p such that p(x +n) =p (x)+n for every x may
generate the structurally stable chaos if ~n~ &1. When
~
n

~

~ 1, the stable chaos may be generated if the mapping
function has nondi8'erentiable points within the chaotic
attractor, such as the tent map or the one-dimensional re-
turn map of the Lorentz system. The stable chaos can be
generated also in smooth dynamical systems of higher di-
mensions, as seen in the Ruelle-Takens picture [30] for
the route to chaos, in which a perturbation destroys the
motion on a 3-torus and induces the transition to chaos.

Because f or g is piecewise smooth, the derivative of f
or g can be obtained at each point through approaching
at least from either its right or left side. We now refer to
the point as "the critical point" at which the derivative of
the function obtained by approaching to the point at least
from one side becomes zero. If f or g has a chaotic at-
tractor which contains no critical points, the chaos is
probably structurally stable for the aforementioned
reason. When the chaotic attractor contains one or more
critical points, the chaos is probably structurally unstable
because of the reason described in Sec. IV A. If the map-
ping function is smooth everywhere on the chaotic at-
tractor, the attractor contains probably at least one criti-
cal point for the reason described in Sec. IV A too.

In the case where BG &0 and BL 0, the chaotic at-
tractors are generated usually through the phase shift or
the orbital localization and most of them have no critical
points. If the chaotic attractor is of the unimodal type, it
:ontains one critical point. In the case where BG 0
a,nd/or BL ~ 0, the appearance of chaotic attractors
which contain no critical points becomes less frequent as
BG and/or BI increase, although the chaos generation as
a whole becomes more frequent. This comes from the

fact that it becomes more difficult as BG and/or BL in-

crease that the value of dg (T)ldT does not vanish over
the whole attractor range.

D. Routes to chaos

First we summarize briefly the routes to chaos [31]
which exist in the present system on the basis of the cal-
culated results in the preceding subsections. Second we
describe in detail the bifurcation that appears under the
variation of the amplitude Jo and/or frequency v of the
applied current in the two regions where chaotic attrac-
tors may be generated by the two main mechanisms, the
phase shift and the acceleration.

The types of route to chaos confirmed in the present
system are (i) period-doubling cascades [32—36], which
occur in the case of unimodal type f or the case where
the values of BL and/or BG are positive, but we have not
yet detected the cascades in the region where B& 0 and
I's &0 for S =L and G; (ii) intermittency [37,38], which
occurs independently of the sign of Bz, because the inter-
mittency appears just before a tangent bifurcation occurs
[37] and the disappearance of chaos due to the tangent bi-
furcation takes place in the present system independently
of the sign of Bs, (iii) the U sequence [39,40], which
occurs in the case of unimodal type f or in the regions
where the values of BL and/or BG are positive, because
the U sequence is a universal feature of the unimodal
mapping functions; (iv) the quasiperiodic-chaotic transi-
tion [41—43], closely related to the sine circle maps,
which occurs in the region of BL &0 and/or BG &0 as
shown below (the periodic-quasiperiodic-chaotic se-
quence suggested by Ruelle and Takens [44] cannot occur
because the Ruelle-Takens picture is applicable only for
the system whose Poincare section has at least two di-
mensions); and (v) the transition from quasiperiodicity to
chaos via complete phase locking, which occurs in the re-
gion where chaos is generated by the phase shift as shown
below.

1. The region ofBz (0 and I z & 0 (S=L and G)

As Jo is increased, the system passes from region I to
region III via region II in which the complete phase lock-
ing may occur, that is, the measure of quasiperiodicity
may vanish as shown in Fig. 10. The figure shows the
typical route to chaos in the case of Bz (0 and I &)0
(S=L and G). When we increase Jo along the line of
v=0. 75 Hz in Fig. 10, the dynamic state of the system is
changed as the following sequence: (i) mostly quasi-
periodic for 0 Am ~ Jo 0.32X10 4 Am 2; (ii) com-
plete phase locking for 0.32X10 Am (Jo&0.775
X10 Am where g is monotonic but a gap exits in
the functional values of g(T); (iii) mostly chaotic for
0.775X10 Am & Jo &1.24X10 Am where the
values of g ( T) overlap double and the derivative of g ( T)
is positive everywhere; and (iv) periodic for
Jo 2 1.24 X 10 A m, where a tangent bifurcation
takes place at Jo ——1.24 X 10 A m

The transition from the quasiperiodicity to the chaos
via the frequency locking can be observed also in the sine
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I II
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~ ~~' a. ~

0. 5
0

~o (1 0 Am )

circle maps, as the nonlinearity is gradually increased.
The complete phase locking is restricted to the transition
line in the parameter space beyond which the map loses
monotonicity. However, in the present system, the com-
plete phase locking occurs over a finite width, region II,

FIG. 10. Phase diagram in the case of ALp=1. 6 Hz,
Agp= —0.4 Hz, 8«= —0.32 Hz, BGp= —0.08 Hz,

I Lp=1X10 HZA 'm', and I Gp=1X10 HzA 'm . The
remaining parameter values are swept through the range of 0
Am & Jp &1.6X10 Am and 0.5 Hz&v&0. 9 Hz. The
black, white, and hatched areas indicate the chaos generation,
the attraction by the stable limit cycles, and the quasiperiodici-
ty, respectively. Regions I, II, and III are indicated. Region II
separates the quasiperiodicity area from the chaos generating
area.

in the parameter space, so that the quasiperiodicity is
separated from the chaos by a finite distance in the phase
diagram as seen in Fig. 10. The transition from the
quasiperodicity to the chaos via the complete phase lock-
ing does not occur in the integrate-and-fire model [25]
and the simple drive-relaxation-oscillator model [26] but
does in the modulated-relaxation-oscillator models
[27,28].

We show a diagram of attractor bifurcation due to the
variation of Jo in Fig. 11. Most of the region of
0.775X10 Am &Jo&1.24X10 Am is covered
with the stable chaos as seen from the graph of Lyapunov
exponent in Fig. 11, even though the chaos is interwoven
with the windows of stable periodic state through the
tangent bifurcation. There exist the chaotic attractors
which cover only a few narrow intervals of TG as seen in
Fig. 11, although most of the chaotic attractors cover the
whole range of TG in modulus 1. We explain in detail
how the chaotic attractors are divided into a definite
number of subbands in Appendix B.

2. The region ofBs )0 (S=L and 6)

When Jo is increased, the system passes directly from
region I, in which the quasiperiodic sequences of ~zz are
observed frequently, to region III, in which chaos can be
observed. This is because as Jo is increased, the function

f loses monotonicity earlier than it loses continuity as
seen from Eqs. (3.1) and (3.2)—(3.5). Since f is smooth at
the boundary between these two regions, the routes to
chaos belong to the same types as those which have been
found in the sine circle maps [45]. Therefore, we can see
the period-doubling cascades, the U sequence, etc. also in
the present system. However, when we increase Jo fur-
ther, f loses continuity besides monotonicity, unlike in
the sine circle maps. In such reigns, the stable chaos can
be generated when the attractor does not contain any
critical point of the mapping function f.

IV. DISCUSSION

A. Instability of the chaos
in smooth one-dimensional discrete systems

7

Jp (1 P Am )

FIG. 11. Attractor bifurcation diagram obtained by increas-
ing Jp from 0.75X10 to 1.25X10 Am along the line of
v=0. 75 Hz in Fig. 10. The distribution of TG —TD in modulus
1 on the attractor (above) and the Lyapunov exponent (below)
are plotted against the value of Jp. The first 500 iterations have
been discarded to avoid the transients and the subsequent 5000
iterations are used. The Lyapunov exponent becomes negative
when the chronological sequence of TG is attracted by a stable
limit cycle. There exist the chaotic attractors which cover only
a few narrow intervals of TG, although most of the chaotic at-
tractors cover the whole range of TG in modulus 1.

If h is a one-dimensional real function that satisfies
h (x +1)=h (x)+m for each x where m =0 or 1, like the
logistic map or the sine circle map, and the iteration of h

generates chaos, the chaotic attractor may be structurally
unstable for the following reason. In general, chaotic at-
tractors generated by one-dixnensional smooth functions
usually have inner points, i.e., their fractal dimension is
one. If h has a chaotic attractor C containing inner
points, it can be proved that C is composed of a finite
number of closed intervals and that h is nonmonotonic
within at least one of those intervals. Because h is
smooth, there exists at least one point xc in C at which
the derivative of h vanishes, that is, h has a critical point
in C. If the chaotic attractor C contains a critical point
x~, the chaotic orbits within C should pass near x& re-

peatedly because of the recursiveness of chaotic orbits.
Thus it is highly possible that x& can become a periodic
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point by an arbitrarily small perturbation. In the case
where xc is periodic, the orbit containing this point is su-

perstable because of the chain rule of difFerentiation.
Therefore, the attractor C may be replaced by a stable
periodic orbit due to an arbitrarily small perturbation,
that is, the chaos will be densely interwoven with the win-
dows of stable periodic orbits in the bifurcation phase di-
agram.

On the other hand, the stable chaos in the one-
dimensional discrete dynamical system becomes possible
if the mapping function contains at least one discontinu-
ous or nondifferential point such as the function f, be-
cause the chaotic attractors need not contain any critical
points. The stable chaos has been observed also in an au-
tonomous electric circuit system, where the one-
dimensional mapping function is piecewise smooth and
has no critical point.

1 B

1
(AG+BG),

IG
AG+BG

(4.2)

(4.3)

(4.4)

(4.5)

we can see that the RPTH model is equivalent to the
integrate-and-fire model

dQ ou +S I 1+B—cos(t) },dt

u(t+0)=0 if u(t)=l .

(4.6)

(4.7)

By using the functions f in the special case of
fL(r)=v, we consider the dynamical properties of the
integrate-and-fire model. It can be verified that the orbit
of ~IG is confined in a certain interval E in modulus 1

and the use of g is always reasonable if K contains 7 LG.
Therefore, we can use g in this special case with no ex-
ception. The dynamical properties of the sequence of TG
generated by g are represented in the space of the param-
eters AG, Bo, and I G as follows. (i) For the case of
BG &0, the quasiperodicity is observed for a parameter

B. Relation of the RPTH model

to the integrate-and-Sre model

The RPTH model described by Eqs. (2.8) and (2.9) be-
comes equivalent in the special cases to the integrate-
and-fire model studied by Keener, Hoppensteadt, and
Rinzel [25]. The time course of the RPTH system is de-
scribed by the iterative application of the mapping func-
tion f, which consists of the alternate mappings of two
firing functions fL and fG. In the special cases where the
equation fL (r)=fG(~)modl or fL (r)=~modl holds for
each r, the iteration of f virtually produces the same se-
quence of r as only that of fG. Then, transforming the
time ~, the variable 8 and the system parameters AG,
BG, I G in Eqs. (2.8) and (2.9) as

(4.1)

set of positive measures in region I where
~1 G~

~ —AG+BG. The complete phase locking occurs
in regions II and III where ~I'G~ & —AG+BG, because

fG is discontinuous and monotonic within E mod 1 even
in region III. This system generates no chaos. (ii) For
the case of BG =0, because the equation

g ( TG ) = TG —2/AG holds for each TG, the sequence of
TG becomes quasiperiodic for the irrational values of AG,
while it becomes periodic for the rational values of AG.
The orbit is neutrally stable in the latter case. (iii) For
the case of BG & 0, the quasiperiodicity is often observed
in region I where ~I'G~ & —AG —BG, while chaos be-
comes possible in the complementary region III. Chaos
covers a major portion of the parameter region given by
the inequality ~I G~ & —AG+BG, in which fG becomes
discontinuous.

The integrate-and-fire model could not generate any
chaos in the case of positive damping (BG (0) suitable
for the usual physical systems. However, by applying the
present system to the problem, we can obtain a simply ex-
tended version of the integrate-and-fire model which may
generate chaos even for the positive damping. When the
partial mapping function fL is given by

fL (r) =~+const, (4.8)

chaos may appear in the present system as seen from the
consideration about the chaos produced by the phase
shift in Sec. IIIB1. By representing this situation in
terms of the integrate-and-fire model, we obtain the ex-
tended version where only Eq. (4.7) is replaced by

u(t+to)=0 if u(t)=1 . (4.9)

Here to is the fourth parameter of positive value and
means a finite resetting time.

C. Relation of the RPTH model
to the modulated relaxation oscillator models

Christiansen and co-workers [27,28] have presented the
two models in the integrate-and-fire scheme, which are
the relaxation oscillators with modulated firing thresh-
olds and generate the complete phase locking (CPL) and
chaos. In one of the models [27], the resetting time is
zero as the conventional integrate-and-fire model but
periodic modulation is introduced on the upper and
lower thresholds. In the other model [28], even after the
system variable reaches an upper threshold, the variable
decreases with a finite relaxation time until a lower
threshold is reached. The upper threshold is modulated
periodically whereas the lower one is kept constant.

The RPTH model is physically more similar to the
model [28] with a finite resetting tiine than to the model
[27] with abrupt resetting, because the RPTH model also
has the resetting dynamics. One of the main differences
between the model with a finite resetting time and the
RPTH model is that the modulation, which induces vari-
ous nonlinear phenomena, is introduced on a threshold in
the former model whereas it is done on the applied
current in the latter model.

An interesting point in the modulated relaxation oscil-



1334 YAGISAWA, KAMBARA, AND NAITO

lator with a finite resetting time is the coexistence of CPL
and chaos in a region of the parameter space. The coex-
istence occurs also in region III of the RPTH model.
However, there is a following qualitative difference be-
tween them. In region III of the RPTH model, the map-
ping function f is always simultaneously nonmonotonic
and discontinuous when Bs & 0 (S =I. and 6), that is, the
positive damping occurs both for the I. and the G states,
as seen from Eqs. (3.1) and (3.3)—(3.5). Thus CPL and
chaos always coexist in the parameter region for the posi-
tive dampings. In the modulated relaxation oscillator
model, there exists a region in the parameter space where
the map is nonmonotonic but continuous for the positive
dampings and the route from quasiperiodicity to chaos
appeared in the sine circle maps is observed. In the
RPTH model, this route is possible only when BL and/or
BG is positive (negative damping) as denoted previously.

When a temperature modulation is applied to the
present system of two solutions divided by a lipid-bilayer
membrane, the values of the threshold 8~6 and O~L for
the phase transition are changed with the temperature.
Then the RPTH model becomes equivalent to the relaxa-
tion oscillator with a finite resetting time whose upper
and lower thresholds are simultaneously modulated, in
the case where I G

=I L =0. The dynamical property of
the RPTH model under the temperature modulation will

be described in a forthcoming paper.

APPENDIX A

We show here that the electric potential li) across the
membrane, the charge density o.x of the polar head layer,
and the H+ flux 4H are described in a reasonable ap-
proximation by analytic functions of the concentration
fluctuation Hx of H+ and OH defined by Eq. (2.1) and

the applied current J.
The charge density O.x is represented as

R and T have the usual meani. ngs, e& and e are the
dielectric constants of the solution and the membrane, re-
spectively, 1 is the width of a lipid layer, Pd is the poten-
tial difference between the right and left surfaces of the
membrane as shown in Fig. 1, and the upper sign ( —)

and the lower sign (+) are used for X =R and I., respec-
tively. Equations (A2) and (A3) are derived from Eq. (6)
in a previous paper [24] by using the following approxi-
mations. The concentrations C„(x,t) of ion v in the bulk
solution regions are replaced by the averaged concentra-
tions C„,because the spatial fluctuations of C, (x, t) is
small over the regions. Because CH is much smaller
than C~, we consider only the terms up to the linear
with respect to CH /CM . Finally Cllr is replaced by
CM", because the relative deviation of CM from CM" is

quite small compared with that of CH from CH". Be-
cause CoH in Eq. (2.1) is given by Ka, /CH, where Kll. is
the ion product of water, it is seen from Eqs. (2.1) and
(Al) —(A4) that crx, CH, YH, and Y~ are implicitly
represented by using the analytic functions of HR and pd.

The difFusion potential pd is also determined by HR as
follows. The flux 4„ofthe cation v (v=8, M) from the
right double layer to the right bulk solution is nearly
equal to the rightward flux of cation v across the mem-
brane because of the flux continuity and is represented as

=D, ~ Z, exp
2k~ T Zv exp

(A5)

where D is the diffusion coefficient of cation v in the
membrane, e and kz have the usual meanings, and Z,
and Z, are the concentrations of cation v at the inside of
left and right membrane surfaces, respectively. The in-
side surface concentration Z, is represented by using the
outside surface concentration Y as

F/1I.M(X—

1+KH YH
(Al) Zx xyx

v v v (A6)

by assuming the Langmuir isotherm for the adsorption of
H+ on the lipid polar heads [24], where YH is the con-

centration of H+ at the outside of lipid-layer surface on
the side X, gx is the fraction of acidic lipids on the side X,
AIM is the areal density of lipid molecules, and KH is the
association constant in the adsorption process of H+.
We neglect the adsorption of M+ because KM is extreme-

ly small compared with KH. The surface concentrations

YH and YM in the double-layer regions are approximated
by those in the thermal equilibrium state [24] as

where ~, is the partition coefficient of cation v between
the lipid layer and the aqueous solution on the side X.
The value of K is dependent definitively on the state of
the lipid layer. Substituting Eq. (A5) into Eq. (2.6), we
obtain

2

2F H H M M+~D mZL +D mZL )

CBx
YX H

[(pr +( X~)l/2+ grl/2)2

YX [ ( ~ +CXoo )I/2+ pr1/2
I

2

(A2)

(A3)

X(DHZH+Dllrzllr )

1/'2

where CM" is the fixed concentration of M+ in the outer-
most solution to the side L,

H H M M(DmZR +DmZR ) (A7)

I ~m

8R Teq 21

2

(A4)

Thus it is seen from Eqs. (Al) —(A7) and (2.1) that Pd and
are determined implicitly by Oz and J.

The membrane potential P is represented as
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(() =6+Os —{()s (A8) go(T+Z;a, b) =a+bT+Z, (BI)

(A9)

Therefore, P is also determined by ea and J.

APPENDIX B

We describe how the chaotic attractors are divided
into a few narrow intervals (subbands) in modulus 1 as
shown in Fig. 11. We call this type chaos a subband at-
tractor. We use the following piecewise linear function

go for the mapping function g in order to simplify the
problem

as shown in Fig. 1, where Ps and Ps are the surface po-
tentials at the left and right solution regions, respectively.
The surface potentials are produced by the membrane
surface charges ~x and is denoted as

' 1/2 ~ 1/2
2RT

I I+ x + x
S F gXoo gXco

M M

where T is the variable with
~ T~ (—„Zis an arbitrary in-

teger, and a and b are the control parameters. In the case
where b & 1, the range of go overlaps and the iterative
operation of go generates chaos. A subband attractor ap-
pears when the value of a is close to an irreducible frac-
tion whose denominator n satisfies the condition of
1 & b" & 2. Then the attractor consists of n subbands in
modulus 1 and the sum of the measures of the subbands
is b"—1. When the inequality 1&b "&2 holds for m
(m ) 1},each subband can be further split into (m +1}
pieces. The similar statement holds also for the iterative
operation of g whose derivative is not a constant func-
tion. The variations of J and v in g correspond to those
of a and b in go. Keener [29] also studied this type of
chaotic attractor using the one-dimensional piecewise
smooth functions with positive slopes.
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