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The intrinsic noise in the Couette-Taylor system with axial flow is evaluated experimentally by several
methods, which include a comparison of experimental data with numerical simulations of the amplitude
equation with a noise term and the application of an external source of stochastic perturbations at the in-
let. The intensity of the intrinsic noise is found in our system to be dependent on the through-flow veloc-
ity in the following manner: for large enough through-flow velocities (Reynolds number Re > 2) the in-
tensity of the noise drastically increases with Re, whereas for small Re the noise amplitude is indepen-
dent of Re and reaches a constant value of ~0.02 um/s, which is of the order of magnitude of the
theoretically estimated value for the thermal noise. The amplitude of the intrinsic noise at large
through-flow velocities (Re=3) is found in our system to be larger than the thermal noise by more than
one order of magnitude. Its origin is suggested to be associated with the perturbations of the flow at the

inlet boundary.

PACS number(s): 47.20.—k, 47.60.+1, 43.50.+y

I. INTRODUCTION

The role of the intrinsic fluctuations in a pattern for-
mation near the bifurcation point in systems far from
equilibrium has been the subject of numerous theoretical
and experimental studies for the past two decades [1-3].
Until very recently it was regarded that thermal fluctua-
tions cannot play any significant role in pattern formation
in hydrodynamical systems and that they are unobserv-
ably small due to the extremely small ratio between a mi-
croscopic thermal energy kzT and the macroscopic
kinetic energy of hydrodynamical flows, e.g., in a convec-
tive roll pdv?. The ratio between these values reaches
usually 10-11 orders of magnitude, e.g., for Rayleigh-
Bénard convection [3]. This conclusion was based on
both theoretical estimates [1-3,5] and various experimen-
tal results [2,6-8]. The theoretical estimates suggested
that in order to observe fluctuations of the velocity or
temperature fields, which are caused by thermal fluctua-
tions, on a macroscopic level, one should approach the
close vicinity of the transition where the fluctuations
grow enormously, similarly to the critical behavior in
equilibrium systems. However, this suggestion was con-
sidered unrealizable experimentally due to various
geometrical and thermal inhomogeneities existing in the
real system, e.g., in thermal convection, such as thickness
nonuniformity, imperfections due to finite-size effects, de-
viations from horizontality, various sources of thermal
imperfections in convection, and experimental noise.
These effects lead to a rounding of the transition, mask
the role of fluctuations, and do not allow one to approach
closely the transition point. Therefore a macroscopic
fluid motion, caused by the imperfection and which exist-
ed before the transition, wipes out the contribution of the
hydrodynamical fluctuations [6-8].

A new insight on the role of stochastic effects on pat-
tern formation was obtained in Ref. [2]. The evolution of
patterns in a thermal convection from the basic to the

1063-651X/94/49(2)/1309(11)/$06.00 49

ordered state was studied under boundary conditions
which eliminated the effects of sidewall forcing and pro-
vided evidence of the stochastic nature of the pattern for-
mation process. However, a comparison of the data with
solutions of model equations [5] gives the value of the
noise intensity, necessary to fit the experiment, more than
four orders of magnitude larger than the thermal noise in
the Navier-Stokes equations. Therefore, the thermal
noise fluctuations were ruled out as the driving force of
the pattern formation in a stationary convection.
Nevertheless, it has been reported recently [9] that
thermal noise fluctuations were observed and measured in
electroconvection in nematic liquid crystals. This system
has been shown to be particularly sensitive to noise. The
effect of noise fluctuations is relatively larger because the
elastic constant of a liquid crystal is small and because a
layer of rather small thickness can be used. Electrocon-
vection of traveling waves was observed in this system in
the form of patches of weak convection rolls with ran-
domly varying amplitudes. These patches were shown to
be thermal noise fluctuations on the basis of a compar-
ison with the stochastic Ginzburg-Landau (GL) equation.
Measurement of intensity of the director fluctuations
below the onset of electroconvection [10] also identified
the origin of these fluctuations with the thermal noise.
The above-mentioned experiments were carried out in
absolutely unstable and absolutely stable (electroconvec-
tion in liquid crystals) systems. A different approach to
the measurement of thermal fluctuations is to study them
in convectively unstable systems. In a convectively unsta-
ble system a small perturbation grows exponentially as it
propagates downstream. The noise in the convectively
unstable region therefore experiences an amplification
process. When the system is sufficiently long, even a mi-
croscopic perturbation can be amplified to produce a
macroscopic pattern downstream. Therefore convective-
ly unstable system are more convenient to study experi-
mentally the effect of hydrodynamical fluctuations in gen-
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eral and thermal fluctuations in particular.

One example of a convectively unstable system exhibit-
ing patterns which are possibly attributed to thermal
noise is a quasi-one-dimensional ramped convection
channel with a binary fluid mixture [11]. Patterns of very
small amplitudes exhibiting an erratic spatiotemporal
behavior were observed in this system. The patterns were
interpreted as the amplification of the intrinsic thermal
noise.

Another example of a convectively unstable system
which exhibits noisy patterns is the Couette-Taylor sys-
tem with an axial flow. This system has been shown
[12-16] to be a very convenient system to study the con-
vective amplification of noise. The noisy patterns are
propagating Taylor vortices (PTV’s) which exhibit a
broad-peaked power spectrum [12,13] and in which the
interface with the Couette-Poiseuille flow exhibits an ir-
regular time dynamics [12]. Recently, Babcock, Ahlers,
and Cannell [16] made an attempt to estimate the
strength of the noise which drives the PTV’s in this sys-
tem. A comparison with numerical simulations of the
stochastic GL equation suggested that the noise-
sustained structures in the convectively unstable region
of this system are the result of the thermal noise
amplification [16].

The suggestion that the patterns in the convectively
unstable region originate from the thermal noise implies
that all other sources of noise except for the thermal one,
such as fluctuations of the velocity field at the inlet, do
not affect the system at all. This rather counter-intuitive
statement motivated us to study in detail the intrinsic
noise in our Couette-Taylor system with an axial flow in
order to determine its intensity and possibly to determine
its origin. It seemed to us that in an open flow system
other noise sources, such as the perturbations that are in-
itiated behind the mesh at the inlet, are much more
effective than the thermal noise.

Several experiments were carried out in order to deter-
mine the intensity of the intrinsic noise, to be described in
this paper. The main result is the following: for
sufficiently large Reynolds number Re of the axial flow
(Re>2) the intrinsic noise in our system is not thermal,
since its intensity increases with Re. It is found by
several independent experiments that the magnitude of
the intrinsic noise in our system reaches at Re~3 a value
which is more than one order of magnitude larger than
the theoretical estimation for the thermal noise. At small
Re, however, the intensity of the intrinsic noise exhibits a
saturation at a value close to the estimated thermal noise
level.

This paper is organized as follows. The theoretical es-
timates of the thermal noise are presented in Sec. II. The
experiments to determine the strength of the natural
noise in the Taylor system with an axial flow are de-
scribed in Sec. III. The results are discussed in Sec. IV.

II. THEORETICAL ESTIMATES
OF THE THERMAL NOISE

The theoretical estimations of the thermal noise that
we were aware of were carried out for the Rayleigh-

Bénard system. Following pioneering work of Zaitsev
and Shliomis [1] and Graham [1], an expression for the
thermal noise level was derived [3] for the two-
dimensional Rayleigh-Bénard system [2], using the
Swift-Hohenberg equation [5]. Babcock, Ahlers, and
Cannell [16] converted it to the expression for the one-
dimensional case, which is appropriate for the Couette-
Taylor system with an axial flow. This system can be
modeled by the complex Ginzburg-Landau equation
(CGL) with a stochastic force f(x,?)

ol A, +S A )=&1+icy) A +EN1+ic,) A,
—g(1+icy)| AP+ f(x,1) , (1
where the complex force term obeys the correlation
(f*,nf(x', 1)) =ahd(x —x")8(t —1') .

The coefficients of Eq. (1) for the radii ratio n=0.75
are [13,17] (up to very small correction due to Re)
70=0.0379, £5=0.0725, S =1.23 Re, and g is of the or-
der unity. The complex coefficients c,, ¢, and ¢, are
very small and can be neglected. € is the distance from
the convective line, defined as e=[Q—Q,.(Re)]/Q.(Re),
where Q. (Re) is the critical rotation speed in the pres-
ence of an axial flow with a value of Re.

Babcock, Ahlers, and Cannell [16] suggested that the
intensity of the noise fluctuations, denoted by alzh, is
given by
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where P is the Prandtl number dependent prefactor typi-
cally of order 1, kg is the Boltzmann constant, T is the
temperature, p is the density, v is the kinematic viscosity,
and k. is the critical wave number at the onset.

F,, is the ratio between the thermal energy and the
kinetic energy p¥2d* per volume d* with a vortex veloci-
ty ¥,=v/d. For the parameters in our system, one gets
Fy,=4.7X10""" and 0,,=8.6X10"". The fact that Fy,
is so small explains why it is so hard to observe directly
the thermal noise fluctuations.

In order to get an estimate for o, in dimensional (ve-
locity) units, we use the relation between the noise power
o2, and the zero-lag correlator 47, defined as the correla-
tion function { A(x,1)4*(x +Ax,t +At)) at zero lag
Ax =0 and At =0 ( 4 is the amplitude of the periodic un-
derlying pattern). One finds [18]

2
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The velocity fluctuations V? are obtained from A’ by
scaling with v/d

v

d

Vi=(2m)? A%, 4)

We note that the prefactor V,, =2 is specific to the
geometry of a thermal convection with free-free bound-
ary conditions and it may be different for our system.



49 EXPERIMENTAL EVALUATION OF THE INTRINSIC NOISE . . . 1311

For €é=~0.01 we obtain
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=3.140, . (5

Substituting the value of o,, we finally obtain for the
thermal noise fluctuations, at €~0.01, V, =0.027 um/s.
We would like to emphasize that this value is a rough es-
timate and can be changed due to, first, a different prefac-
tor in Eq. (4) (which, as will be shown later, is about 1.5
times less in our experiment), and second, a different pre-
factor in Eq. (2) in the relation between o, and F,,. Both
prefactors can reduce the estimated value for ¥, up to an
order of magnitude [19].

III. EXPERIMENTAL ESTIMATES
OF THE INTRINSIC NOISE

A. Experiment

The experimental setup consists of the Taylor column,
the axial flow modification, and the Laser Doppler
anemometer (LDA), which was the main measuring tool.
The details of the design are described elsewhere [14,15].
The column that was used in the experiments has an as-
pect ratio of T'=L/d =48 (L is the length of the
working-fluid region), and radii ratio n=r,/r,=0.77.
The radii of the outer and inner cylinder were R, =4.100
and 3.150 cm, respectively.

The column was installed horizontally and was
modified by the axial flow arrangement. The axial flow
was driven by gravity in a closed loop, with the use of a
pump. The average flow rate was measured by precise
flow meters (Rota Model Nos. L63 and L6.3) in the range
from 2X 1073 to 1.5 cm/s with an accuracy of 1X10™*
cm/s. In order to make the axial flow as uniform as pos-
sible in the azimuthal direction, the fluid passed an inlet
chamber before entering the working region between the
cylinders. The inlet chamber was constructed with flow
directors and a stainless-steel net with (0.25X0.25) mm?
mesh size. The net was used as nonrotational lateral
boundaries at both sides of the column. The working
fluid was a mixture of glycerol in water. Typically, the
fluid had a kinematic viscosity of v=3.0cS, which corre-
sponds to a mixture of 32.4% by volume of glycerol in
water at 22 °C. The viscosity of the fluid was determined
from tabulated data [20] and was checked by measure-
ments with a commercial viscometer (Haake CV-100).
The temperature of the fluid was maintained constant to
a level of 25 mK. The temperature stability was
achieved by circulating water in a jacket around the
volume by the use of a commercial refrigerator-heater
circulating system (Lauda RMS6) and by stabilizing the
room temperature to within +1°C. Before entering the
column, the fluid passed through a copper tube which
was immersed in the circulator water basin, so that the
axial flow was stabilized to the desired temperature at the
inlet.

The angular velocity of the inner cylinder was con-
trolled by a stepper motor (Slo-Syn, model MO62-FD09)
via a semirigid coupling. The motor was driven by a
homebuilt electronic driver controlled by a computer.

B. Noise-sustained structures in the Couette-Taylor
system with an axial flow

The Couette-Taylor system with an axial flow is
governed by two control parameters. The first is the re-
duced rotation speed of the inner cylinder
€=(Q—Q,)/Q,, where Q is the rotation speed for the
onset of the Taylor vortices without axial flow and € is re-
lated to € in Eq. (1) through é=(e—e_.)/(1+¢€.). The
second parameter is the Reynolds number of the velocity
of the axial flow Re="¥d /v, where V is the averaged
throughflow velocity and d is the gap size.

The stability diagram for the PTV’s is shown in Fig. 24
in Ref. [14], which will be referred to below as I. The
lower dashed line in this figure is the theoretical curve for
the onset of a convective instability [13,17]
€,=0.000 381 Re”. The upper solid line is the theoretical
absolute instability line [13,17], €,=0.007 89 Re?, above
which the flow is absolutely unstable (region III). The
solid circles correspond to €, which denotes the experi-
mental observation [12,14] for the PTV’s onset, measured
at L =40d. The data points determine the boundary be-
tween region I, where no patterns are present, and region
I1, where the PTV’s are observed. Note that for Re> 1,
€, <€,, which implies that patterns exist in the convec-
tively unstable region. The patterns that exist in the con-
vectively unstable region were shown [12-14,16] to be
the noise-sustained structures (NSS’s). The effect of noise
on the PTV’s in the convectively unstable region is mani-
fested in two ways [12—14]. The first manifestation is ir-
regular fluctuations of the interface separating the PTV’s
from the Couette-Poiseuille flow and the second one is a
broadband in the power spectrum. The PTV’s state in
the absolutely unstable region [12-14], on the other
hand, exhibits a stationary interface between the PTV’s
and the Couette-Poiseuille flow, and a sharp peak in the
power spectrum.

The interface between the PTV’s and the Couette-
Poiseuille flow in the convectively unstable region is
presented in Fig. 17 in I. The solid line across the plot
defines the interface position [12,14]. The irregular fluc-
tuations of the interface give rise to a random modulation
of the velocity amplitude of the PTV’s, as shown in Fig.
16 in I, where time series of the PTV’s velocity in the
convectively unstable region in the vicinity of the inter-
face for two values of the through-flow velocity
[Re=2.74 in (a) and Re=1.55 in (b)] are presented. The
mechanism that generates the NSS’s in the convectively
unstable region was identified [12-14] as a continuous
process of amplification of the intrinsic noise in the sys-
tem. It is our goal to evaluate the intensity of this intrin-
sic noise in our system.

C. Difficulty of the direct measurement

A direct measurement of the natural noise in the sys-
tem is quite difficult to perform. One might try to esti-
mate the natural noise of the system by a direct measure-
ment of the velocity fluctuations just behind the inlet
boundary. This approach is rather difficult to carry out,
because of a deficiency of the LDA, namely, the broaden-
ing of the peak in the frequent spectrum of the scattered
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signal due to the flow. This broadening is inherent to
LDA and can be explained in the following manner. The
scattering particles arrive at random times to the measur-
ing volume and the phase fluctuations in time are mani-
fested by frequency fluctuations of the LDA signal. It
was shown [21] that the contribution of many particles
arriving with random phases results in a Gaussian spec-
trum with a standard deviation which is linearly propor-
tional to the velocity of the flow. The broadening of the
peak in the frequency spectrum of the optical signal cor-
responds directly to an uncertainty in the velocity mea-
surement. Therefore, when measuring a fluctuating ve-
locity field, one must take into account the contribution
of the fluctuations which are due to the LDA. Velocity
fluctuations which were recorded by the LDA are
presented in Fig. 1 as a function of Re of the Poiseuille
flow. These velocity fluctuations are composed of both
the inherent LDA fluctuations and the fluctuations due
to the intrinsic noise of the system. No spatial depen-
dence of the measured velocity fluctuations was observed.
Figure 1 shows that at Re=1.0, a value for which the
noise-sustained structures just start to be observable [12],
the measured fluctuations reach a value of about 50
um/s, or rms velocity of about 17 um/s, which is about
three orders of magnitude larger than the estimated
thermal noise. Therefore, it is clear that the dominant
contribution to the measured fluctuations are the fluctua-
tions which are due to the LDA. Figure 1 also shows
that the amplitude of the measured fluctuations increases
approximately linearly (within the error bars) with Re, as
expected from fluctuations which are due to the LDA. In
view of the above considerations, it was clear that the
natural noise in the system should be measured indirect-

ly.
D. Numerical simulations of the CGL equation

An important tool in the study of the origin of noise in
the system was the development of a numerical simula-

0.012

2
Re
FIG. 1. The peak-to-peak axial velocity fluctuations behind
the inlet boundary vs Re, without rotation of the inner cylinder.

These fluctuations result from both intrinsic noise fluctuations
and the inherent broadening of the LDA signal.

w-
S

tion of the model equation. Numerical simulations of the
CGL equation (1) were carried out in order to examine
the effects of the noise on the onset of the patterns in the
convectively unstable region.

Two methods were used in order to model the noise.
The first corresponds to a “boundary noise,” namely, ran-
dom values were chosen for the real and imaginary parts
of the amplitude at the point x =0, at each time step.
The random values were chosen either from a Gaussian
distribution with a standard deviation o, or were distri-
buted uniformly between *n. n, or o,, represents the
noise level. They are related by 02 =n?/3. The noise
level was scaled with time by multiplication with 1/V At
where At is the interval between time steps. The choice
of the x =0 point as the source of the noise was motivat-
ed by the fact that the mesh at the inlet serves as a source
of perturbations. Moreover, a perturbation that is gen-
erated at the inlet has more time to develop along the
column, so the contribution of the inlet is more
significant than the contribution of other points in the
column.

The second method corresponds to a ‘“‘volume noise.”
A stochastic complex term, denoted by f, was added to
the right-hand side of Eq. (1) to take into account the
noise in the system. f has the properties

(flx,0))={f(x,0)f(x",t'))
={f*x,0f*x"t"))=0, (6)
(f*x,0f (x,t)=028(x —x")8(t —1') .

The stochastic GL equation was integrated numerically
by an explicit scheme [22].

In order to compare the two methods by which the
noise can be introduced into the CGL equation, the inter-
face position L, between the PTV’s and the Couette-
Poiseuille flow was determined in the numerical simula-
tion for different values of the noise level, for the bound-
ary noise and for the volume noise. The results of the
simulations are shown in Fig. 2, which presents L, vs the
noise level o,. The open and solid circles correspond to
the averaged value of L, in the presence of the boundary
noise and the volume noise, respectively. It is seen that
the boundary noise is slightly more effective than the
volume noise because the value of L, that correspond to
the boundary noise is smaller than the value that corre-
sponds to the volume noise, for a given noise level. This
observation is somewhat surprising since it means that
the noise which is generated at only one spatial point, the
inlet boundary, has a greater effect than the noise that is
generated throughout the entire system. This numerical
observation was also confirmed by Deissler [23]. We
note, however, that, although data that corresponds to
the boundary noise lies below the data that correspond to
the volume noise consistently for the whole range of o,
the two data sets are separated from each other by ap-
proximately one unit of d. This separation is smaller
than the spatial size of the fluctuations around L,, which
is about one to two units of d. Although in principle
such a difference can be resolved by sufficient time
averaging, in practice the difference between the two ap-
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FIG. 2. The interface position L, vs the noise level o, as
calculated in the numerical simulations, for boundary noise
(open circles) and volume noise (solid circles). Re=3.41 and
€=0.05.

proaches to too small to be important in our study. For
convenience, the boundary noise method was chosen to
be used in the simulations.

E. Onset of patterns

Numerical simulations of the CGL equation were car-
ried out in order to determine the position of the inter-
face between the PTV’s and the Couette-Poiseuille flow at
a given Re for various values of €. The interface position
was determined, similar to the experiment [12,14], at a
point where the amplitude decayed to 10% of its satura-
tion value. The results of the simulations were compared
to the experimental data for €, corresponding for the
PTV’s onset, as a function of Re and downstream dis-
tances z/d (changing z/d is equivalent to changing the
aspect ratio I'). The experiment was carried out as fol-
lowing: for a given Re value, () was increased quasistati-
cally from below 1.(Re). At each () the axial velocity
was measured as a function of time with the LDA. Be-
fore measuring we waited sufficient time in order to let
the convective patterns advect away. This waiting time
was typically several horizontal traverse times
7=(T'/Re)r, where 7,=d?/v is the viscous diffusion
time.

The experimental data and the results of the simula-
tions are presented in Fig. 3. The open symbols corre-
spond to the experimental data (circles, squares, and tri-
angle correspond to downstream distances of z/d =40,
30, and 20, respectively) and the solid circles correspond
to the numerical simulations. The dashed lines corre-
spond to a fit of the experimental data to the following
equation [24], which gives the relation between the onset
of the patterns and the values of T and S
2

€ =7l "'SIny— —io—lny (7)

Equation (7) is derived by solving the linear part of the
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FIG. 3. The pattern onset €; vs Re for different aspect ratios.
The open symbols denote the experimental observation for the
pattern onset at I'=20 (triangles), 30 (squares), and 40 (circles).
The dashed lines are the result of the fit by Eq. (7). The solid
circles denote the result of numerical simulations of the stochas-
tic CGL equation with o, =1.2X 107>,

CGL equation (1). The parameter y is defined as the ra-
tio between the perturbation initial amplitude and the
amplitude of the pattern at z=TI", where the onset of pat-
terns takes place. The fit to the experimental data yields
[14] y=181. (We note that Babcock, Ahlers, and Can-
nell [13] obtained in a similar procedure, however, at on-
set and not at 10% of saturation as we did here, a value
of ¥ =590 for their data and for I'=100.) The value of
o, that matches the experimental data, in the range
2.5<Re<4.5, was found to be 0, =1.2X 107>, If we as-
sume that the same ratio between the velocity fluctua-
tions i70 and the noise strength o, as in Eq. (5) holds,
then one obtains from Eq. (5) ¥,=0.38 um/s. Both
values for o, and P, are larger by more than an order of
magnitude than the estimated value for the thermal
noise. Since the results of the fit either by Eq. (7) or by
the numerical simulations of Eq. (1) is a one parameter fit
(y or o,), the estimated level of the intrinsic noise turns
out to be independent of Re in the range 2.5 <Re <4.5.
A different experiment shows below that the noise is
strongly dependent on Re in this range. This insensitivity
may be explained by the fact that only one point on the
interface was used to fit the data.

F. Experiments with external noise

A different approach to obtain the intensity of the in-
trinsic noise was to introduce an external source of noise
with a variable intensity to the system and to measure its
effect on the PTV’s in the convectively unstable region.
Our objective was to deduce the intensity of the intrinsic
noise from the extrapolation to a zero value of the exter-
nal noise amplitude. In order to examine experimentally
the effect of noise on the system, we have used the motion
of the inlet lateral boundary as a source of perturbations.
The motivation for the choice of the inlet stems from our
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assumption that the experimental noise of the system is
generated mainly at the inlet boundary. Moreover, a per-
turbation that is generated at the inlet has more time to
be amplified as it propagates downstream than one gen-
erated at any other point along the column, and therefore
the inlet is more significant to the generation of the
NSS’s.

The intrinsic noise of the system is random in nature.
In order to produce a random perturbation which imi-
tates the natural noise, an axial motion of the inlet
boundary was activated by a random signal, generated by
a computer. The boundary, a stainless-steel ring with a
mesh of 0.25? mm? grid size, was connected by two rods
to a stepper motor. The motor was driven by pulses ap-
plied by a random number generator routine. In each
pulse the motor was activated for a number of steps n,
that was distributed uniformly between 0 and some
specified number n_,,, back and forth. n_,, which
determined the amplitude of the generated perturbation,
corresponded to a traverse distance of n,,, /200 mm of
the inlet boundary. The frequency of the steps was 333
Hz, which corresponds to a velocity of the inlet boundary
of 1.67 mm/s. A typical spectrum of the function (1),
for n,, =300, is shown in Fig. 4, where P(f) is the
square root of the power spectrum. We used as a mea-
sure of the noise level the averaged value of the spectrum
P(f), which will be denoted by P(f). There is a linear
relationship between P(f) and n,,,, as shown in Fig. 5.
This choice of quantifying the noise level is arbitrary, and
in the following we will discuss the way by which P(f)
was related to physical units. The time between pulses
was also random, so that the generated perturbations will
not be correlated, and was distributed uniformly between
0 and 0.92/f,=19.3 s, where f, is the frequency of the
PTV’s for the specific Re of the experiment, namely,
Re=3.0. The measured axial velocity near the inlet
boundary is presented in Fig. 6, in the presence of the

10000
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P(f)

0-1 —
0.0 0.4

f

FIG. 4. The square root of the power spectrum of a sample
of 1024 numbers, between 0 and n ,,, =300, that are chosen by a
random number generator routine. The f axis was normalized
to be between O and 1.
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FIG. 5. P(f), the averaged value of the spectral amplitude, vs
Mmax- The slope is 7.786.

mechanical noise with P(f)=2141. As is seen from this
figure, the mechanical noise generates perturbations with
a random amplitude, which correspond to the observed
“spikes” with random peak-to-peak velocities values.
The power spectrum of the measured axial velocity is
presented in Fig. 7. It seems to be uniform in a wide
range of frequencies.

The following experiment was carried out. For fixed
Re and €, the mechanical noise was applied to the system,
at several values of the noise level P(f). P(f) was in the
range between 234 and 2335 (30 <n,, <300). For each
P(f) value the position of the interface between the
PTV’s and the Couette-Poiseuille flow was determined by
an analysis of the pictures of the PTV’s state that were
grabbed with the vidicon camera. In order to determine
the interface position several methods were used [12,14].
One method that was used in the analysis is the demodu-
lation of the optical signal in order to eliminate the fast
oscillations and to obtain the profile envelope. The inter-

0.08 1
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o

~
L
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FIG. 6. The axial velocity measured near the inlet boundary
in the presence of the mechanical noise with P(f)=2141, vs
time, for Re=3.0 and without rotation.
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FIG. 7. The power spectrum of the velocity shown in the
preceding figure. The frequency is nondimensionalized by scal-
ing with the PTV’s frequency f,=0.0478 Hz.

face position was determined as the point that corre-
sponds to a value of the demodulated amplitude larger
than some specified threshold. We used in the analysis
also root mean square (rms) and integral methods, name-
ly, the threshold was set to be a specified fraction of ei-
ther the root mean square value of the velocity of the
PTV’s near the outlet, or a fraction of the integral over
the rms velocity along the column. The latter
specification of the threshold was mainly used because it
is less sensitive to spurious intensity variations.

The values of L, as a function of P(f) for €=0.034 at
Re=3.0 are shown in Fig. 8. The circles are the data and

P(f)

FIG. 8. The interface distance from the inlet L, vs the
strength of the external noise, for Re=3.0 and €=0.034. The
circles correspond to the experimentally measured L, vs P(f)
and the solid line is a logarithmic fit to the data. The dashed
line correspond the numerical simulations of L, vs o,, obtained
from the numerical simulations. The arrow at Ly =17.2d indi-
cates the value of L, measured without external noise. The
value of o, that corresponds to L is 0,0=2.1X107°
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the solid line is a logarithmic fit. The dashed line is a re-
sult of numerical simulations of the stochastic GL equa-
tion with the boundary noise of strength o,. In the simu-
lations the interface position was determined for given Re
and €, and for different values of the noise strength o ,.
The interface was determined, as in the experiment, at
the point where the velocity amplitude was decreased to
10% of the saturation value. The dashed line is only a
part of the data obtained in the simulations. The com-
plete L(o,) data set is presented in Fig. 9.

It is seen from Figs. 8 and 9 that the noise level deter-
mines the position of the interface between the Couette-
Poiseuille flow and the PTV’s. Increasing the noise re-
sults in perturbations with larger initial amplitude, which
grow to produce a pattern with an interface positions at a
shorter distance from the inlet. The interface position
without mechanical noise was measured to be at
L,=17.2d, at the arrow’s position in Fig. 8. The dis-
tance L, corresponds to a noise level with a value of
P(f)=P,y(f), which is equivalent to the natural noise in
the system. From the comparison of the experimental
data and the numerical simulations we obtain two things.
First, the arbitrary units of P(f) can be scaled with the
units of o,, which are related to the noise more directly.
On the basis of this data and the data with €=0.029 we
can find a relation between P(f) and o,. Second and
more important, we find that the intrinsic noise in the
system corresponds to o, =2.1X1075, for €=0.034. A
similar comparison for £=0.029 yields o, =1.2X107°.
The plot of L, vs P(f) and o, for this € is shown in Fig.
10. The velocity fluctuations estimated from o, and the
relation (5) is on average f)o=0. 52 pm/s.

In conclusion, the estimated value of the natural noise
is close to the value obtained in Sec. III E. We note that
this experiment was carried out at Re=3.0. A different
procedure to measure the velocity fluctuations of the in-
trinsic noise is described in Sec. III G.

10 ~°
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FIG. 9. The interface position L, vs o, from the numerical
simulations, in a wide range of the noise amplitude, for Re=3.0
and €=0.034. The circles are the calculated data and the solid
line is a logarithmic fit.
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FIG. 10. The interface distance from the inlet L, vs the
strength of the external noise, for Re=3.0 and €=0.029. The
symbols are the same as in Fig. 8. In this case L,=22.7d and
0,0=12X107°.

G. Noise evaluation from the PTV’s profile

The existence of the PTV’s in the convectively unstable
region is due to the continuous intrinsic noise, whose
main source is assumed to be the inlet boundary. An in-
crease of the boundary noise, for example, by mechanical
means as described above, shifts the interface between the
Couette-Poiseuille flow and the PTV’s towards the inlet,
as shown above. Since a given noise intensity at the inlet
determines the position of the interface, one can in prin-
ciple deduce the noise intensity at the inlet from the value
of the interface distance from the inlet. In order to put
this principle into practice we carried out the following
procedure. First, a measurement of the spatial profile of
the PTV’s state in the convectively unstable region was
carried out. Then the data for the velocity amplitude was
fitted to the solution of the GL equation and the velocity
amplitude at the inlet was obtained from the fit. There
are two possibilities to carry out this procedure. First,
one can use the stochastic time-dependent GL equation
(1) to fit the data, and, second, one can use the stationary
deterministic GL equation to fit the experimental spatial
profiles of the PTV’s. The latter method follows from the
obvious observation that at a given value of the noise in-
tensity at the inlet the time dependence of the interface
results just in a noisy modulation of the velocity ampli-
tude around an averaged stationary profile. The longer
averaging, the closer to the stationary averaged profile.
Therefore, by averaging Eq. (1) for a long enough time
one gets the stationary GL equation for the rms real am-
plitude B

0SB’ =€B +EB" —gB? (8)

where prime indicates differentiation with respect to x.
(The complex terms are negligibly small and therefore
were not considered in the equation.) The value of the
velocity amplitude at the inlet boundary, which corre-
sponds to the intrinsic noise at the inlet, can then be de-
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duced from the fit by a procedure that is outlined in the
Appendix.

1. PTV’s profile with external noise

We first carried out an experiment in which Re and €
were constant and the level of an external noise was
varied. For given Re=3.06 and €=0.034 and for various
values of the external perturbation (n,, =100, 150, 200,
and 250 which correspond to F(f)=779, 1168, 1558, and
1947, respectively) the velocity amplitude along the
column was measured and fitted to the solution of the GL
equation, by the following procedure. At every spatial
point the velocity was recorded as a function of time for a
period of time long enough to observe the velocity ampli-
tude modulations. (This period of time was typically
30/f,, where f is the PTV’s frequency.) At every spa-
tial point the rms value of the amplitude, found from the
velocity time series, was taken as a data value which cor-
responds to this point along the profile. The data for the
velocity amplitude was fitted to Eq. (8).

A typical plot of the profile is shown on Fig. 11, for
which P(f)=1947. The solid circles are the measured
data and the solid line is the result of the fit. For each
profile the interface position L, (the distance for which
the amplitude reaches 10% of its maximum value) was
measured. A plot of the L, as a function of the velocity
amplitude at the inlet 90 is shown on Fig. 12. The circles
are the measured points and the solid line is a logarithmic
fit to the data. The arrow points out the value L of the
interface position which corresponds to the profile associ-
ated with the PTV’s state with the same Re and €, name-
ly, Re=3.06 and €=0.034, and without an external
mechanical noise. Extrapolating the fitted line to L,
gives that the value of the velocity amplitude of the in-
trinsic noise is 170 =0.24 um/s. The relation between V),
and the value of o, (that was found in the experiment de-
scribed in the previous section and was carried out at the
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FIG. 11. The velocity amplitude of the PTV’s vs distance
from the inlet for Re=23.06 and €=0.034, with external noise of
P(f)=1947. The solid line is a fit to the GL equation. The fit
gives for the rms velocity amplitude at the inlet V,=8.06 pm/s.
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FIG. 12. The interface position L, vs the velocity amplitude
of the external noise at the inlet, deduced from the fits to the
GL equation. The circles are the data and the solid line is a log-
arithmic fit. The arrow points out the interface distance that
corresponds to the profile without external noise, for which
P,=0.24 um/s (Re=3.06 and €=0.034).

same Re) gives an experimental analog of Eq. (5)
Vo=1.450, . )

The different prefactor is probably explained by the fact
that the relation (5) was obtained for the Raleigh-Bénard
convection with free-free boundaries. Thus, if one takes
the relation (9) instead of (5), the estimated value for the
velocity amplitude due to the thermal fluctuations at
€~0.01 will be ¥,~0.013 um/s.

2. PTV’s profile without external noise

A different experiment that was based on the same
measurement procedure was to vary Re without applying
an external noise to the system. This experiment allows
us to find dependence of the noise intensity on the
through-flow velocity in a relatively simple and direct
procedure.

The measurement procedure was the following: for
given Re and € we measured the spatial velocity profile of
the noise-sustained structures in the convectively unsta-
ble region. Re was set to the desired value and € <€, was
tuned to obtain a spatial profile which had an interface
position at about half of the column’s length. A typical
plot of the measured velocity amplitude and the corre-
sponding fit to Eq. (8) is shown on Fig. 13 for Re=3.5
and €=0.0367. The circles correspond to the data and
the solid line is the fit resulting from the numerical solu-
tion of Eq. (8). The fit in this case gives for the rms value
of the noise at the inlet ¥;=0.27 um/s. The procedure
of the velocity amplitude measurements and fitting to the
GL equation was carried out for various values of Re. A
plot of the velocity amplitude of the fluctuations 170 \
Re is shown in Fig. 14. At large enough through-flow ve-
locities (Re>2) the intensity of the noise increases with
Re. For small through-flow velocities, however, the in-
tensity of the noise is saturated at a value of ¥,~0.02
um/s, which is close to the thermal noise level, according
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FIG. 13. The velocity amplitude vs the distance from the in-
let for Re=3.5 and €=0.0367, without external noise. The
solid line is a fit to the GL equation. The fit gives for the veloci-
ty amplitude at the inlet f)o=0.27 pm/s. A typical error bar is
shown.

to our rough estimate. This dependence of f>0 on Re sug-
gests that in our system the intrinsic noise is not thermal
for large Re. It has probably a hydrodynamic origin and
is produced by the mesh at the inlet boundary. For small
Re, however, the perturbations become small enough and
reach a level which is comparable with the thermal fluc-
tuations. We would like to stress again that the noise lev-
el at the inlet increases about 15 times when Re increases
from about 2 up to 3.5.

IV. DISCUSSION

Several methods of the experimental determination of
the intrinsic noise intensity in our system were presented
above. These methods took advantage of the fact that
the convectively unstable region is very sensitive to noise,
so that patterns of macroscopic size are generated in a
process of noise amplification.

% 0.5
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0.2 -
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Re

FIG. 14. The rms velocity amplitude at the inlet, deduced
from velocity profiles without external noise, vs Re.
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The first method that was described above was based
on a comparison between the experiment and numerical
simulations of the GL equation with a stochastic force,
for the onset of the NSS’s in the convectively unstable re-
gion, in the range of 2.5 <Re<4.5. The analysis gives
for the noise fluctuations o,=1.2X107° that corre-
sponds to the velocity amplitude IA/O =0.17 um/s, accord-
ing to Eq. (9). This method is based on the fit of the ex-
perimental data and numerical simulations at one point
on the spatial profile, namely, the point where the ampli-
tude reaches 10% of its saturation value. This method is
not sensitive to the dependence of the noise level on Re.

A different method, which was carried out at Re=3.0,
was based on the comparison between experiments and
numerical simulations to find the interface position as a
function of an external noise intensity. This method
yielded after extrapolation o, =1.65X10"" in average,
which corresponds to a noise level of 170 =0.24 um/s, ac-
cording to the relation (9). This method has also the
disadvantage of comparing the data and the simulations
at only one point on the profile at different values of the
noise level.

We then presented another method to deduce the noise
level at the inlet boundary. This method was based on
the fitting of measured full velocity profiles along the
column to the GL equation. Measurements of velocity
profiles at several external noise levels and at a fixed
Re=3.0 were first carried out. An extrapolation to zero
external noise yielded for the intrinsic noise fluctuations
at Re=3.0 a value of f>0 =0.24 um/s.

The most important result was obtained from the mea-
surements of velocity profiles along the column without
external noise at different Re values. This method to
deduce the intensity of the intrinsic noise in the system is
based on the detailed measurement of the rms velocity
profile. An evidence for two different sources of noise
was discovered by this method in our system. It was
found that there is a crossover at Re~2, below which the
intensity of the intrinsic noise is saturated at a constant
noise level independent of Re and above which the noise
fluctuations drastically increase with Re. The amplitude
of the noise reaches at Re=3.0, a value which is more
than an order of magnitude larger than the theoretical es-
timation for the thermal noise. The latter result is sup-
ported by several different experiments carried out at
larger Re and described above. The origin of the noise at
large Re can be attributed to the perturbations of the flow
which are generated behind the mesh at the inlet bound-
ary. At Re=2 the intensity of the noise reaches a level
which is close to the thermal noise. We would like to
stress here the importance of the possibility to deduce in-
formation on the microscopic noise fluctuations from
measurements of macroscopic structures.

As was pointed out above, it was found in the numeri-
cal simulations that the boundary noise is more effective
than the bulk noise. The inlet boundary is therefore the
most important source of noise for large Re. By chang-
ing Re one can tune the noise level in the system down to
the microscopic level at small Re. We note that the satu-
ration value of the noise at small Re is 170:0.02 um/s,
which is about the theoretical estimation for the thermal

noise ¥, ~0.013 um/s, according to the relation (9). (We
are aware of the fact that the calculation of the thermal
noise was based on the Rayleigh-Bénard convection, and
therefore a correction by some numerical factors for the
Couette-Taylor flow can be expected [19]). We note that
Babcock, Ahlers, and Cannell [13,16] have found in their
Coutette-Taylor apparatus that the intrinsic noise at
Re=3 was at the thermal noise level. It is conceivable
that the value of Re at which the intrinsic noise reaches
the thermal level is not universal and depends on the par-
ticular apparatus.
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APPENDIX: DATA FITTING
WITH THE SOLUTION OF GL EQUATION

First we wish to justify the use of the stationary GL
equation (8). We note that indeed the profile of the
PTV’s state is not stationary, as was demonstrated else-
where [14]. The time-dependence of the interface results
in modulations of the velocity amplitude along the
profile. This, however, merely causes a larger scatter of
the profile measurement data. The typical measured
profiles that are shown in Figs. 11 and 13 demonstrate
that the interface fluctuations do not influence the shape
of the profile too much. Therefore, the stationary GL
equation, Eq. (8), may be used to fit the data.

The GL equation was shown [25] to have a front-type
solution for the rms amplitude B. This solution satisfies
the following boundary conditions:

ax (+0)=0.

The solution was obtained by a numerical integration
using the Runge-Kutta method of fourth order [22]. For
given € and S that were used in the experiment, the in-
tegration was carried out along a finite length 0=<x < L.
The initial point of the integration was at x =L, integrat-
ing in the_direction x =0 with the boundary conditions
B (L)=\/?/g and dB(L)/dx =0. The integration in the
opposite direction, from x =0 to L, failed to produce the
desired profile. This asymmetric behavior of the solution
is due to the fact that the solution is stable in one direc-
tion (with x =0 a fixed point in the phase space of B and
OB /dx) and unstable in the opposite one. We found that
the integration length L is a parameter that shifts the
front along the x axis, and therefore tunes the healing
length of the front.

Our goal was to fit the measured data points to the nu-
merical solution of the GL equation. In order to do this,
we integrated Eq. (8) for successive values of L, where L
was varied at small intervals. For each value of L the ex-

B(—x)=0, B(+w)=Ve/g ,
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perimental data points were fitted by the numerical solu-
tion with an overall multiplying factor as the fitting pa-
rameter and a least-squares fit to the solution was calcu-
lated. The solution that had the smallest variance was

chosen as the appropriate one. For this solution
B(x =0)=B, was obtained, and this value was taken to
be the velocity amplitude associated with the noise at the
inlet boundary.
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