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The correspondence between statistical properties of decaying states and fluctuations in resonance
scattering is studied in a statistical model with one open channel. The model is described by an ensemble
of random non-Hermitian matrices. The dependence of the correlation length on the coupling parame-
ter both for the S matrix and the cross section is studied numerically. We show that maximal correla-
tions in the scattering arise for a certain value of the coupling to the continuum, reflecting a specific
change in the internal motion of intermediate decaying systems. Also, the Fourier transform of the
two-point correlation function of the S matrix is analyzed both analytically and numerically. The self-
averaging nature of this function is explicitly demonstrated.

PACS number(s): 05.45.+b, 03.80.+r, 24.60.Lz

I. INTRODUCTION

As is well known, the main problem of classical
mechanics is to find the law of motion which is specific
for a given law of interaction. It allows us to exactly de-
scribe the time evolution of any part of the given system.
This problem, in principle, always can be solved in the
case of one degree of freedom. For a long time it was be-
lieved that the problem to extend the same approach to
the general case of an arbitrary number of degrees of free-
dom is only a technical nature. The striking result of re-
cent developments is the discovery of a specific form of
behavior which nowadays is known as dynamical chaos
(see, e.g., [1]). It was found that even for a few degrees of
freedom, the motion gains, under certain conditions,
quite general features which are characteristic of random
processes. This opens a new way for the universal
description of such a motion on the basis of a statistical
approach.

The possibility of chaotic motion for systems with a
few degrees of freedom leads to the important problem of
the existence of a similar phenomenon in microphysics,
where a quantum description should be essentially used.
This problem, termed “quantum chaos,” nowadays at-
tracts considerable attention (see, e.g., [2,3]). Since prop-
erties of quantum systems may be quite different from
classical ones even in the deep semiclassical region [4],
one of the main problems is to find proper quantities to
describe the degree of chaos in quantum systems. The
well-known approach in this direction is related to the
study of fluctuations in energy spectra of closed physical
systems. It turns out that for quantum systems which are
completely chaotic in the classical limit, the fluctuations
of energy spectra have a specific form and may be com-
pared to those of eigenvalues of random matrices [5,6].
Such matrices have been used [7] to describe properties of
nuclear spectra long before the very ideas of quantum
chaos appeared. The efficiency of this approach has led
to the fast development of random-matrix theory (RMT)
[8], which nowadays has many applications in different
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fields of physics (see, e.g., [3,9]). One of the best examples
is the description of spectra of isolated neutron reso-
nances in complex nuclei near the threshold of emission
of a nucleon. Both spectra and widths of nuclear reso-
nances are well described within the framework of the
Gaussian orthogonal ensemble (GOE) of RMT [10].

Strictly speaking, neutron resonances are not true
bound states of nuclei and reveal themselves in the form
of sharp peaks in neutron scattering on nuclei. Such a
strong energy dependence of the cross section implies
that the neutron spends a large time inside the nucleus,
sharing its energy with other nucleons. As a result, an in-
termediate compound nuclei is formed which finally de-
cays with the emission of a nucleon. Such a compound
nucleus may be regarded as a typical example of a com-
plex unstable (open) system. As a convenient approach
to the study of such types of scattering processes, the pro-
jector operator technique may be used (see, for example,
[11]). In this approach, two orthogonal sets of states are
introduced. The first (“intrinsic basis,” labeled by [k )1
represents the internal motion in the compound nucleus.
All states of this basis are essentially bound states and the
wave functions decay outside the interaction region. The
commonly chosen basis in nuclear scattering theory is the
basis of shell-model states as it is described in detail in
Ref. [12]. Another set is used for the asymptotic motion
with energy E before and after reaction (the so-called re-
action “channels” labeled by |c,E )).

In this way, the Hermitian Hamiltonian of the whole
system has nonzero matrix elements within as well as be-
tween each subspace, and can therefore be represented in
the following form:

N M
H='3 |kK)H 1|+ 3 [dE|c,E)E(c,E|
k=1 c=1

M N
+2k2 [dE{V{E) k) {c,El+H.c.} . (1D
c=1k=1

Here, N is the number of basis vectors needed to describe
the internal motion by the intrinsic Hamiltonian H,, with
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sufficient accuracy and M is the number of open channels
for a given energy range. The second part in (1.1) is as-
sumed to be diagonal, provided that one is not interested
in direct processes. Finally, the quantity V; is the transi-
tion amplitude between an internal state k and a channel
¢. This approach is not only restricted to isolated reso-
nances. The amplitudes V{ as well as the density of levels
of the intermediate nucleus typically grow with growing
energy. As a result, the widths of the resonances also
grow, and when they strongly overlap new physical phe-
nomena occur which can be described as well.

Using the Hamiltonian (1.1) one can get the standard
representation of the S matrix for resonance scattering
(see, e.g., [12]),

1
E—%

Ve, (1.2)

Scc’(E)zscc'—i 2 ( Vl: )*
kI kl

where the internal motion of the open system with the
influence of the continuum is described by the Green’s
function

__ 1
E—#

The matrix elements of the operator # in Egs. (1.2) and
(1.3) read

S(E)

(1.3)

B 1 VE(EWHE")
Hia=H+ -~ ngdE —E_g

l‘ M
—= 3 (VO*Vf, (1.4)

2 c=1
with P denoting the principal-value integral. Note that
the specific form of the anti-Hermitian part in Eq. (1.4)
provides the unitarity of the S matrix (1.2). Due to the
time-reversal invariance of the systems under considera-
tion in this paper, the matrix elements Hy, as well as the
amplitudes V} are real. As a result, the whole matrix FH
is symmetric.

As was mentioned above, the amplitudes Vi generally
depend on the energy E. For complicated systems like
atomic nuclei, which typically have a large level density,
this dependence is however very smooth as compared to
the sharp explicit energy dependence of the Green’s func-
tion (1.3). Restricting ourselves to a limited energy re-
gion (including, nevertheless, a large number of levels),
one can neglect this smooth dependence omitting simul-
taneously the principal-value integral in (1.4). One then
can treat the operator 7 as an effective Hamiltonian
which is essentially non-Hermitian.

It is useful to diagonalize the effective Hamiltonian to
have the explicit resonance representation of the S matrix
(1.2)

14444

S AE)=8,—iF ——— .
v E—6

(1.5)
The complex eigenvalues 6, =E; —él‘k of # give the

energies E; and widths T'; of the resonances whereas the
complex amplitudes

Vi=3 Vi, (1.6)
1

with ¥{¥' being the eigenstates of 7, have the meaning of

decay amplitudes of unstable eigenstates.

As a result, the above approach gives a very convenient
discretized version of the dynamics of the continuum.
Thus one gains the possibility to use powerful matrix
methods similar to those in the physics of bound states.

In the next section, the model for complex open sys-
tems used in the present paper is described. The model is
based on an ensemble of random non-Hermitian Hamil-
tonian matrices. This is a natural generalization of the
well-known random-matrix approach when describing
the universal statistical properties of closed chaotic quan-
tum systems. This model is assumed to have generic
properties and may therefore be applied to different phys-
ical problems. The main properties of the model which
are already known from previous analytical studies are
briefly discussed in Sec. II.

In Sec. III, the correlation function for the S matrix
and the cross section are investigated numerically. Spe-
cial attention is paid to the dependence of their correla-
tion lengths on the coupling to the decay channels. This
allows us to reveal the underlying relation between sta-
tistical properties of the resonances and the scattering
fluctuations. The latter problem is discussed in detail.

Section IV deals with the time evolution of decaying
systems. The energy averaging is used to evaluate analyt-
ically the asymptotic behavior of the Fourier transform
of the S matrix correlation function. We demonstrate
that this asymptotic behavior is formed as a result of
self-averaging.

I1I. DESCRIPTION OF THE STATISTICAL MODEL

Our interest is in applying the above approach to com-
plicated quantum systems like heavy nuclei, atoms, or
molecules. In this case the internal motion is supposed to
be chaotic. Therefore, one makes some statistical as-
sumptions for the effective Hamiltonian (1.4). As was in-
troduced in [13] and now is commonly used, we take the
Hermitian part H to be a member of the GOE. Corre-
spondingly, the matrix elements H,; are taken as statisti-
cally independent Gaussian random numbers with zero
mean and variance:

,\_ J1/N for k1
((Hkl) )"‘ 2/N fork=1 5 (2.1)

This model has been studied analytically in a number of
papers [14] where the averaged S matrix as well as two-
point correlation functions for matrix elements have been
calculated by using powerful methods similar to those of
quantum field theory. In particular, it was shown that all
statistical properties of the S matrix can be expressed in
terms of the averaged S matrix. Therefore, the fluctuat-
ing part of scattering depends only on the so-called
transmission coefficients which describe the probability of
forming an intermediate compound system. By this, the
important separation of global statistical properties and
local spectral fluctuations has been explicitly demonstrat-
ed.
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Another approach to the same problem has been
developed in Ref. [15]. Namely, attention is mainly paid
to the properties of intermediate states and their relation
to that of the S matrix. In some sense, this approach is
complementary to the previous one and allows us to ex-
tract information only about unstable systems. Thus, one
is mainly interested in the statistics of decaying states and
their complex energies. In [15], it has been shown that
with the increasing coupling to the continuum a drastic
change in internal motion may happen. Therefore, two
dynamical regimes exist with a sharp transition between
them when the coupling parameter exceeds some critical
value. This phenomenon is closely related to the struc-
ture of the anti-Hermitian part of the effective Hamiltoni-
an (1.4). The first regime (weak coupling) corresponds to
the more or less homogeneous distribution of resonance
energies and widths, whereas in the second one (strong
coupling) the clear separation of all states into two
groups appears. In the case of M open channels, M very
unstable states are formed and the remaining N-M states
become almost stable. It should be stressed that chaotici-
ty of the internal motion cannot destroy the coherence,
which is the origin of the formation of short-living states.

This effect of the formation of short-living resonances
has been observed recently [16] in the numerical simula-
tion of nuclear reactions. It is interesting to note that
such kinds of phenomena were discussed long ago by
Moldauer [17]. As a real example of such a broad unsta-
ble state the nuclear analog resonances are considered
(18] (see also [19] where the role of this effect is described
in application to the theory of giant multipole reso-
nances). Some other examples of such a phenomenon in
nuclear physics as well as in solid-state physics were men-
tioned in [20]. Similar effects are also observed in analyti-
cal and numerical studies of the scattering by molecules
[21].

The link between the two mentioned approaches is
clearly revealed by consideration of the time evolution of
the processes passing through the formation of intermedi-
ate unstable systems. The correlation length of the two-
point correlation function defined as the energy difference
corresponding to one-half of its maximal value is of spe-
cial interest. Due to the uncertainty principle, this length
is proportional to the inverse value of the so-called aver-
age delay time characterizing the reaction time. In this
sense, the delay time is a generalization of the lifetime of
unstable systems with well-isolated levels for the case of
strongly overlapping ones. The detailed analysis of the
delay time and its connection to the fluctuations of the S
matrix has been given in [22,23]. In particular, a relation
was established [23] between the probability distribution
of the delay time and the Fourier transform of the two-
point correlation function. Recently, a thorough study of
the time evolution of an instantaneously excited state was
carried out [24] using the explicit form of the correlation
function found in [14].

Statistical properties of unstable states have been sys-
tematically investigated in [15], where the randomness of
amplitudes V§ in addition to that of H;, has been as-
sumed. The reason is that due to the complexity of the
intrinsic motion, a vector H|k ) is very complicated and

can be treated as a random state. Therefore, it has ran-
dom projections on any direction in the total Hilbert
space. The statistical independence together with orthog-
onal invariance in the intrinsic subspace imply that the
amplitudes Vj are of Gaussian character [7]. Assuming
also the statistical equivalence of channels, one chooses
therefore

(vi)=o, <V,§ Vf'> =5,..8,,2v /N . (2.2)

Here, the parameter y determines the strength of the
coupling to the continuum.

For the single-channel case, the joint distribution of
complex energies of the resonances has been derived [15],
showing nontrivial energy-width correlations. One of the
distinctive properties of this distribution is the specific
sort of repulsion between neighboring energies & in the
complex plane. Further studies of some correlations have
recently been performed numerically in [25]. But in both
limits of weak and extremely strong coupling to the con-
tinuum this distribution simplifies, as far as the long-
living states are concerned, to the product of the GOE
joint distribution of energy levels and the Porter-Thomas
distribution of their width. This means in particular that
the long-living resonances cannot overlap strongly in the
single-channel case [15,26]. The short-living resonances
fluctuates very weakly and therefore does not influence
the S matrix fluctuations. That is why one can anticipate
that all fluctuations should depend only on the transmis-
sion coefficient (see below) in full agreement with the
statement of Ref. [14].

In this paper, we perform a detailed numerical study
for the case of one open channel, paying attention mainly
to the relation between the statistical properties of reso-
nances and fluctuations of scattering properties. In the
purely elastic scattering, the latter relation reveals itself
in the most clear way, since in this case the S matrix is
expressed in terms of the complex eigenenergies only
[27,28]. Recently, quasielastic chaotic scattering of elec-
tromagnetic microwaves in an irregular shaped cavity
(which is formally analogous to the quantum scattering)
was investigated experimentally in [29]; theoretical
analysis of these data is given in [30] by using the
random-matrix approach. The case of many decay chan-
nels was considered in [31] both analytically and numeri-
cally, where the distribution of complex eigenvalues of
the non-Hermitian Hamiltonian # was studied in depen-
dence on the coupling and number of channels.

III. AVERAGE S MATRIX AND CORRELATION
FUNCTIONS

In what follows we are using two equivalent represen-
tations of the resonance S matrix. For the single-channel
case, both of them express the S matrix only in terms of
complex eigenvalues of the effective Hamiltonian (1.4).
Therefore, statistical properties of the S matrix as well as
the cross section are totally connected to those of com-
plex energies of resonances. The first representation is
{1.51,
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.1
s (3.1)

S(E)=1—i3

k

Another expression is given in the equivalent factorized
form [27,28]

sE=1 2% (3.2)
= l;[ E—¢, .
Comparing these two expressions in the vicinity of a
given resonance & one can easily find that
6 Kk 67

(V=T —_—.
k k1I;_&Ik 6[{__61

(3.3)
Though complex, the quantities (¥ P=T,e "k satisfy,
due to the invariance of the trace, the condition

S (V) =2ImTrH=3 T, , (3.4)
k k

where the right-hand side is real. It is easy to check that
', =T, provided that the resonances do not overlap (for
Y <<lory>>1).

Using the above representations, we start our numeri-
cal study by considering the average S matrix. It turns
out that for the values of y which exceed the critical
value y.=1 [15], the average S matrix has some charac-
teristic energy dependence, which reminds one of the S
matrix for a wide Breit-Wigner resonance. This is just
the evidence of the segregation of the short-living collec-
tive state which is an intimate feature of the model under
consideration, as was mentioned above. Due to this
phenomenon the total average cross section [32]

o, (E)=2(1— Re{S(E))) 3.5)

can be divided into two parts in a natural way. The first
one, which can be called the ‘“‘shape-elastic” cross sec-
tion, is given by

osp(E)=[1—(S(E))|? (3.6)

and corresponds to the fast “direct” scattering with exci-
tation of the short-living state. The second part,

o E)=1—|(S(E))|?, 3.7)

is the cross section of absorption due to excitation of the
long-living compound states. This quantity is just the
transmission coefficient 7.

Figure 1 represents results of numerical calculations
for the cross sections. The data for the averaged .S matrix
are obtained by diagonalization of 2000 matrices drawn
from the ensemble (1.4,2.1,2.2) with N =100, M =1, and
v=2. Due to our normalization (2.1), all resonances
should be located in the energy region [ —2,2] in the lim-
it of infinitely large N. Therefore, one expects that the
absorption cross section is nonzero just in this region.
The visible deviation in Fig. 1 is due to the finite size of
the matrices. These results are in good agreement with
the analytical expressions obtained in [15] for the limit
N— 0.

It should be stressed that the Breit-Wigner-like wings

3 1 CTt
— 2 .
<
o) Oce
1 1 Oabs
0 L L) L T T
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E
FIG. 1. Total shape-elastic and absorption cross section

(3.5)—(3.7) as a function of energy for y =2. The averaged S ma-
trix is obtained by diagonalizing 2000 matrices with dimension
N =100 drawn from the ensemble (1.4,2.1,2.2).

of the shape-elastic cross section are caused by the
specific choice of our model for which the resonances are
restricted to be within a finite-energy region. For a real
physical system, resonances lying outside this region also
exist. These remote resonances will influence the form of
the wings and can distort or even completely destroy
them. Therefore, to prove the existence of the dynamical
reorganization of the unstable system discussed above,
one needs to find reliable local properties of the spectrum
which give clear evidence for this phenomenon. Here we
would like to point out that the average value of the S
matrix in the center of the considered resonance region,

_1-7
(5(0)) 15y

tends to — 1 for ¥ — o0. This means that the correspond-
ing scattering phase has the value 7/2, which is typical
for the center of a Breit-Wigner resonance.

(3.8)

For the same energy region, the transmission
coefficient is equal to

T(0)=—F— | (3.9)
(y+1)

and both for small and large values of y it appears to be
small

4y, for y <1

T= 4/y for y>1.

(3.10)

As was stressed in [14], statistical properties of long-
living resonances depend only on the transmission
coefficient T itself, rather than on the coupling parameter
v. Therefore, from (3.10) it is seen that both for weak
and strong coupling these properties should be the same,
provided that the values of ¥ are inversely related to each
other.

On the other hand, the transmission coefficient reaches
its maximum value for ¥y =1, which is the critical value
where the sharp transition between two dynamical re-
gimes occurs [15]. Therefore, one can expect some mani-
festations of this phenomenon in the behavior of statisti-
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cal characteristics of the system such as correlation func-
tions for the S matrix or cross section. That is why these
correlation functions have been numerically studied here
in a wide range of the coupling parameter y, paying spe-
cial attention to the y dependence of correlation lengths.
We define the correlation functions for the S matrix and
the total cross section (3.5) as

Csle)=(S(E)S*(E +¢))—|{S(E)|?,
C,(e)=(0(E)o(E +e))—(a(E))*.

(3.11)
(3.12)

Sufficiently far from the edges of the resonance region,
these functions almost do not depend on energy.

In Fig. 2, one can see the normalized absolute value of
the above-defined correlation functions for three different
values of y. To obtain the data, 100 matrices drawn from
the ensemble (1.4,2.1,2.2) with dimension N =400 have
been diagonalized. To improve the statistical significance
of our data, the averaging has been performed both over
the ensemble and the energy. It is well known that these
two kinds of averaging are equivalent because of the so-

1.0
— 081\ (a) y=0.1
e
O 0.6 1
~ ‘\\
:u; 0.4 A AN
O g2 S
0.0 . , —
1.0
— 084 N3 (b) v=1.0
e ™
O 0.6
\ \\\\\\\

o044 T I
S I
0-0 T T T T

1.0
— 0811\ (c) v=10.0
2
O 061 N\
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© 02 T
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FIG. 2. Modulus of the normalized correlation functions for
the S matrix (3.11) (full line) and total cross section (3.12)
(dashed line) for three different values of the coupling parameter
y. The average was taken as an ensemble average over matrices
of structure (1.4,2.1,2.2) with N =400 as well as an average over
energy (for details see text).

called “‘ergodicity” of the matrix ensembles [10]. This
energy averaging was performed over 1001 values within
the interval [ —5d,5d] in the center of resonance region
[—2,2] where d =4/N is the mean spacing of reso-
nances. The data clearly indicate that the correlations
are decreasing with increasing €. As one should expect,
for small and large ¥ the two correlation functions are al-
most identical. For y =1 our results for the correlation
function (3.11) are in good agreement with those given in
[33]. The latter have been obtained by numerical evalua-
tion of a threefold integral which is the exact theoretical
expression given in [14].

To elucidate the y dependence of the correlation func-
tions it is useful to study the correlation length /. Here
we define / as the value of € for which the correlation
function is equal to one-half of its maximum value. In
Fig. 3 two correlation lengths are shown: one for the S
matrix correlation function (/) and one for the cross sec-
tion (/). They are obtained from numerical calculations
similar to that in Fig. 2, but just averaged over 81 energy
values. These two lengths turn out to be proportional to
each other. The y dependence shows maxima for the
critical value y .= 1. It means that for this value of y the
maximal coherence appears in the system which results
in the formation of the collective short-living state. After
its segregation, when y exceeds this critical value, this
states does not influence the fluctuations in the system.
This is why the correlation lengths are decreasing for y
greater than the critical value. Note that the symmetri-
cal form of the ¥ dependence is due to the fact mentioned
above that all statistical properties depend only on the
transmission coefficient, rather than on y itself.

[t is quite clear that for nonoverlapping resonances, the
correlation length actually coincides with the mean value
of the width of long-living resonances. On the other
hand, the latter is well known [34] to be proportional to
the transmission coefficient. It means that the relation

TS R (3.13)
loc d\m
0.4
* % KFx
* * es
0.3 | ) x /
*
* [e) (00) *
Z 02+ 00 o .,
= o o *ok
* / o?© *
° o]
014 £, 00,
0.0 + 0 -
107" 10 10
Y

FIG. 3. Correlation length for the S matrix (/s) and cross
section (/) correlation function (see text) as a function of the
coupling parameter y.
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should hold in the regions of asymptotically small and
large ¥. Actually, the second equality is not provided au-
tomatically by our data obtained for moderate values of
y. It is because of the somewhat arbitrary definition of
the correlation length for a function with non-Lorentzian
form [33] that this is so. In Fig. 4 we therefore show (as-
terisks) the correlation length rescaled to satisfy the
second equality (3.13) for y =0.1.

One can see from Fig. 4 that the mean width exceeds
the transmission coefficient for all values of y given in
this figure. Note that for y >y,=1 the broad short-
living resonance is not taken into account when averag-
ing. We conclude that the overlapping of long-living res-
onances is not at all extremely small. It is clearly seen
that the ¥ dependence of the correlation length follows
that of the transmission coefficient rather than that of the
mean width. This is in agreement with the connection
between the time delay and the S-matrix fluctuations es-
tablished in [22,23,35].

It is interesting to compare (3.9) with the well-known
formula
—27

T=1—exp R (3.14)

dloc

derived in [36,37] for the case of strongly overlapping res-
onances. It connects the transmission coefficient to an ar-
bitrary value of the mean width (I"). The result is also
presented in Fig. 4 (diamonds) and is in good agreement
with the theoretical curve. Nevertheless, this formula is
not exactly correct. Using (3.9) we find for the mean
width of long-living resonances the expression

) (3.15)

0.0 + - -
107 10° 10t
Y

FIG. 4. Dependence of some characteristics of the model on
the coupling parameter y. The full curve refers to the transmis-
sion coefficient (3.9). The dashed curve represents the mean
width in units of the local mean spacing (d,,c =m/N) obtained
by diagonalizing 100 matrices for each value of ¥ with N =400
drawn from the ensemble (4.1,2.1,2.2). The diamonds corre-
spond to Eq. (3.14). The asterisks give the .S matrix correlation
length rescaled to be equal to the transmission coefficient for
v=0.1.

which is singular at the point of the critical value of y.
Therefore, the relation (3.14) fails in the domain of transi-
tion between two different types of internal motion. This
domain is very narrow because of the logarithm on the
right-hand side of (3.15).

In Fig. 5 we demonstrate how sharp the transition be-
tween these two different regions appears. Plotted are the
values of the three largest resonance widths as a function
of the coupling parameter y. To get smooth curves we
averaged over 20 matrices. One can clearly see how the
width corresponding to the wide unstable resonance in-
creases rapidly (note the logarithmic scale) passing the
critical value ¥, while the remaining widths decrease to-
gether. In Fig. 5(a) data are shown which are taken from
diagonalization of matrices with dimension N =400,
while the data in Fig. 5(b) represent matrices with
N =1000.

IV. FOURIER TRANSFORM OF THE TWO-POINT
CORRELATION FUNCTION

As was already mentioned in the Introduction, the de-
cay law of an unstable state is closely connected to the

10° 5 (a) N=400
= 10"
10-2 _/\
10° § (b) N=1000
2 107
107
0.5 1l.0 1'.5 2.0
v

FIG. 5. The values of the three largest resonance widths as
function of the coupling parameter y are shown. The data are
obtained by diagonalizing 20 matrices drawn from the ensemble
(4.1,2.1,2.2) for different values of the coupling and two dimen-
sions of the matrices.
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Fourier transform of the two-point correlation function
of the S matrix. Here, we are interested in its behavior
for asymptotically large times. This asymptotic behavior
corresponds to small values of € and was analyzed
theoretically in [24] using the analytical results of Ref.
[14]. Taking the single-channel case as an example, we
show below that the same asymptotic behavior can be ob-
tained in a much simpler way by the direct energy
averaging procedure. To make the averaging over energy
it is very convenient to use the Lorentzian weight func-
tion

| 1

e = (e —Er i
The interval I of the averaging should contain a
sufficiently large number of resonances. This amount of
resonances is nevertheless much smaller than the total
amount of them, so that d <<I <<4. The form (4.1) for
the weight function allows one to perform exactly the en-
ergy averaging, provided that one uses the resonance rep-
resentation (3.1) for the S matrix. In the next step,
without any trouble one can get the Fourier transform,
which for times ¢ >>1/I reads

_ 1 * ceol
FIEn=— [ deCglEsere

4.1)

- —ié&
:iZV,fe okt ! — — !
k E—é,ﬁ-él

E—6,—~1

, (4.2)

where Cg(E;e) is the S matrix correlation function
defined in (3.11) but with an energy average rather than
an ensemble one. The only term omitted in (4.2) is pro-
portional to exp( —It /2) and, therefore, is small.

Since the interval I contains many resonances, one can
neglect I'; as compared to I in the denominators in (4.2).
This is not possible for the wide resonance that appears
when y exceeds y,=1. However, the corresponding
term is exponentially small for the considered time and
can be omitted. Therefore, for arbitrary values of ¥ one
gets

~ I —i6 1
FIE;N)=SPV}—F——¢ 7k
% “(E—E )*+1D

where the sum is taken over all resonances but the wide
one. Averaging over the whole energy region, one finds
the energy-independent expression

1 re oy — T 2 Tiby
Fi=—- [~ dEF(E;0) % fe L@

One can see that the interval I dropped out of the expres-
sion for F(t). The asymptotic behavior of the Fourier
transform is given by some sort of self-averaging. For
large times, the cross terms in the squared modulus in
(4.4) cancel each other out due to the randomness of the

phases E{ —a,, and one obtains

-T

F(t)= K (4.5)

2 =2
va 2 Tie
We would like to stress that even small fluctuations of
GOE levels are enough to provide this cancellation at
asymptotically large times. As was pointed out above,
for small and large values of ¥ the quantities T'; coincide
with the resonance widths I';,. Since for these cases they
are distributed in accordance with the Porter-Thomas
law

1 r
(M=———=exp |~ | » (4.6)
P vt P A 1
one can approximately write
F()= [ "dr p(rre "
( fo p e
L N 4.7)

d (1+2(T)?

This result is in accordance with that obtained in [24]. In
particular, it gives the ¢t °/? dependence for asymptoti-
cally large times, in agreement with the general asymp-
totic formula given in [33]. On the other hand, for values
of ¥ near y, the quantities ', differ from the widths, and
their distribution is, in essence, unknown. Therefore, for
this case one cannot explicitly estimate the sum in (4.5).
For numerical calculations of the Fourier transform,
the expression (4.4) is used where the quantities V} are
computed according to (3.3). Figure 6 presents numerical
data for the normalized Fourier transform (fluctuating
line) for one matrix taken from the ensemble (1.4,2.1,2.2)
with N =400 and ¥ =0.1. The dependence (4.7) is shown
by the smooth line. As one can see, Fig. 6 clearly reflects
the self-averaging nature of the calculated quantity.

10" 1

F(t)/F(0)

107 1
107 1
5
10 ' r )
10" 10° 10" 10°
t d/27

FIG. 6. Normalized Fourier transform of the S matrix corre-
lation function. The fluctuating curve is obtained numerically
from the expression (4.4) using (3.3) by diagonalizing one matrix
of the ensemble (1.4,2.1,2.2) with N =400 and y=0.1. The
smooth curve is given by (4.6) and normalized as explained in
the text.
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FIG. 7. Same as Fig. 1 but for three different values of the
coupling parameter ¥ and averaged over 100 matrices of the en-
semble (1.4,2.1,2.2) with N =400.

Large fluctuations in Fig. 6 are removed by averaging
over an ensemble of matrices (see Fig. 7). This averaging
was performed over 100 matrices.

In Figs. 7(a) and 7(c), the very good correspondence be-
tween the numerical data and analytical formula (4.7) is
seen in the entire region of its validity. As should be ex-

pected, these two curves practically coincide. Figure
7(b), where the case y=1 is given, demonstrates, in
agreement with the above discussion, a clear deviation of
the numerical data from (4.7). Nevertheless, our data
demonstrate that the asymptotic behavior at extremely
large times has the same form as in (4.7) [24]. Due to the
fact that the expression (4.7) is not valid for small times,
this function was normalized in the asymptotic region
td /27 >>1.

V. CONCLUSIONS

In this paper, we have thoroughly studied the fluctua-
tions of elastic resonance scattering, as they reflect the
statistical properties of the underlying intermediate reso-
nance states. The scattering model under consideration
is based on the random-matrix approach. The data ob-
tained are in good agreement with previous analytical re-
sults and demonstrate clearly the existence of a critical
value of the coupling to the continuum corresponding to
a certain reorganization of the intrinsic motion of the in-
termediate complicated decaying system.
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