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It is shown that the equations of motion of an ideal Quid with a free surface in the absence of
both gravitational and capillary forces can be effectively solved in the approximation of small surface
angles. It can be done by means of an analytical continuation of both the velocity potential on the
surface and its elevation. For almost arbitrary initial conditions the system evolves to the formation
of singularities in a finite time. Three kinds of singularities are shown to be possible. The first one
is of the root character provided by the analytical behavior of the velocity potential. In this case
the process of the singularity formation, representing some analog of the wave breaking, is described
as a motion of branch points in the complex plane towards the real axis. The second type can be
obtained as a result of the interaction of two movable branch points leading to the formation of
wedges on the free surface. The third kind is associated with a motion in the complex plane of the
singular points of the analytical continuation of the elevation, resulting in the appearance of strong
singularities for the surface profile.

PACS number(s): 03.40.Gc, 03.40.Kf, 92.10.Kp

I. INTRODUCTION

The formation of the singularities in the wave system
in a finite time, or by other words —the wave collapse,
is one of the basic phenomena in nonlinear physics. The
collapses play an essential role in various fields of physics.
In many cases the collapse is the most efFective mecha-
nisin of the wave-energy dissipation.

From the mathematical point of view, collapse means
that the solution of the Cauchy problem for some evo-
lution PDE (partial difFerential equation) exists only for
finite time until some definite moment t = to and can-
not be continued for t & to. At the moment t = to the
solution loses its initial smoothness and a singularity ap-
pears. What kind of singularities will arise depends on
the physical model. For example, for the self-focusing of
light [1] or for the collapse of Langmuir waves [2] the am-
plitude of electromagnetic waves tends to the infinity. In
other words, that is the wave breaking in gas dynamics
described by the well-known Riemann solution (see, for
example, [3]), the first derivative of the velocity becomes
infinite at the breaking moment of time. For sea surface
waves the analogous phenomenon leads to the infinite
second derivative of the surface profile (so that angles or
cones appear on the surface). Checking analyticity vio-
lation is the most sensitive tool for studying that set of
collapses. Loss of analyticity of vortex sheets at the non-
linear stage of the Kelvin-Helmholz instability [4] is such
an example.

In this paper we shall consider how the singularities ap-

pear as a result of the analyticity breaking on the &ee sur-
face of an ideal liquid in the absence of both gravity and
surface tension. The problem seems to be somehow arti-
ficially formulated. This question is very important, nev-
ertheless, for understanding the evolution of the bound-
ary between two fiuids while studying sea surface waves
and the nonlinear stage of the Rayleigh-Taylor instabil-
ity resulting in the finger structure (see, for instance, [5],
and references therein). The problem in this statement
was formulated [6] by one of the authors (V.Z. ) of the
present paper. It was assumed that the singularity for-
mation on the free surface of the ideal fiuid or in a more
general case, for the boundary between two ideal fiuids, is
mainly connected with inertial forces; other factors give
minor correction. This means that if one considers, for
instance, motion of the ideal liquid drop (without both
gravity and surface tension) then on the surface of the
drop there will appear a singularity of the wedge type.
This idea was later confirmed by direct numerical integra-
tion of the Euler equation for the case of deep water [7].
In this paper we present the analytical solution of this
problem based both on the perturbation approach, as-
suming small angles of the surface variations, and on us-
ing the Hamiltonian formalism for the description of the
surface motion. The main conjecture of this paper is as
follows. The formation of singularities on the free surface
for small-angle approximation can be considered as the
process of the wave breaking in the complex plane where
the solution can be extended to. This results in the mo-
tion of both branch points of the analytical continuation
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II. BASIC EQUATIONS

Let us consider an ideal fluid with a &ee surface,
z = rt(x, y, t), that occupies the region —oo ( z

g(x, y, t). We will be interested in an irrotational motion
of a liquid, implying the liquid velocity to be a poten-
tial one, v = VO. In the absence of external fields (e.g. ,

gravitational) the potential C satisfies the nonstationary
Bernoulli equation,

OC 1

Ot 2
+ —(VCi) + Ji = 0,

which combines in a complete closed system, when am-
plified with the incompressibility equation

AC =0, (2)

the kinematic relation on the free surface

Oq /BO
Bt (8

—VqV'0
~

= ii„gl+ (7'q)',

of the velocity potential and of singular points of the an-
alytical extension of the surface elevation. When for the
first time the most "rapid" singular point will reach the
real axis it will be just the singularity appearance. Re-
spectively, three possible kinds of singularities are shown
to arise. For those of the first kind, the first derivative of
the tangent velocity on the surface turns into infinity at
the touching moment of time. So does the second space
derivative of the free surface coordinate z = rt(x, t), i.e. ,

, will also become infinite. These are the weak singu-
larities of the root character ( rl

~

x
]

~ ) which can
be assumed to serve as the origin of the more powerful
singularities observed in the numerical experiments [7] or
to represent the separate type of the singularities. These
kinds of singularities prove to be consistent with an as-
sumption about small surface angles. It is shown that
the interaction of two movable branch points of the tan-
gent velocity can lead under some definite conditions to
the formation of the second type of singularities —wedges
on the surface shape. Close to the collapse time the self-
similar solution for such singularities occurs to be com-
patible with the complete system of equations describing
arbitrary angle values. The third type is caused by the
initial analytical properties of rjo(x) resulting in the for-
mation of strong singular surface profile.

@(x,y, t) = 4(x, y, rt(x, y, t), t),

which presents the value of the potential 4 on the free
surface z = q(x, y, t) .The quantities il'i(x, y, t) and

rt(x, y, t) are canonically conjugated, so that the equa-
tions of motion take the standard Hamiltonian form [8];

Og bK
Bt 8 i'

where the Hamiltonian

dz (V'Ci) (g)

coincides with the total (kinetic) energy of a liquid. The
potential C' (and consequently VC), being the solution
of the Laplace equation (2) with boundary conditions (5)
and (6), represents some functional of 4' and rt and can
be determined with the help of the corresponding Green
function.

Let us assume ]VII] (( 1; that means surface perturba-
tions are fairly flat. In such a case one can use a usual
perturbation theory to expand the quantities C and V'C

in series with respect to ]V'rt]. Respectively, the Hamilto-
nian itself can be represented as an expansion in a power
series of canonical variables. We will restrict ourselves
only by quadratic and cubic terms in the Hamiltonian.
In order to find them it is convenient to rewrite K as the
integral over the free surface:

dr~ 4 v„(1+(Vrj)')

1

2
dr& i'

~

—VilV~C ~.
(84

04'i (z) = kA~e '.
l9z

(10)

In this approximation it is sufficient to substitute I7~C
in the Hamiltonian by V'4 . Thus, the only term
remains to be expressed through 4 and q. To find it let
us make the Fourier transform in (2) with respect to r~ =
(x, y). As a result, the Fourier transform of the solution
4 to the Laplace equation (2), subject to condition (5)
at the infinity, is readily found as the following: 4k(z) =
Ape"'. Consequently,

and boundary conditions:

4], —i0.

(4)

Using definition (6) we find with the needed accuracy

= Ak + kl Ak~ gk~ h (ki + k2 —k) dki dk2,

that yields after one iteration

Here v„ is the velocity component, normal to the free
surface z = rt(x, y, t) We have also .assumed here that
the capillarity is absent.

Under these assumptions, let us, following Zakharov

[8], rewrite Eqs. (1)—(5) in the Hamiltonian form. For
this purpose, one should introduce the function

Ai, = @k — ki@i„~,8(ki+. k2 —k)dk, dk2. (11)

The same procedure, making use of relations (10) and
(11), enables to get the Fourier transform of the deriva-

~ 84tive s
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k kg + k~ kk] @~1~2 ky + kg k sky dkg
v =v+ +v( (i9)

Substitution of (12) into the Hamiltonian H (9) and con-
sequent integration by parts give

where v(+~ = H(+~v is a function, analytically extendable
into the upper (lower) half-plane of complex variable x,
respectively, and P(+) = ~(1 piH) are projectors. Then

Hv = i(.(+) —.(-)), (20)
II = — 4'k4dr + — (V@) —(k4') rI dr. (13)

2 2

Here k is the integral operator with the difference kernel,
whose Fourier transform is modulus of the wave vector
k.

provided v -+ 0 at ~z~ -+ oo. After substitution of rela-
tions (19) and (20) into Eq. (17), the latter decomposes
into separate equations for v(+~ and v(

The equations of motion (7) and (8), corresponding to
Hamiltonian (13), acquire the following form:

c)„(+) c)„(+)
+2v (+) = 0.

—= k4 — k(rtk4) y V(rtV@),t (14)
Equations (21) can be solved by the standard method

of characteristics:

(k@)' —(V@)' . (i5)

v(+) y (+)(z ) (22)

The remarkable property of these equations is the split-
ting off Eq. (15), which involves only variable 4', from
that of (14), which governs the behavior of elevation g.
Such a separation is a peculiarity of the used perturba-
tion order and is being lost in next orders, when g ap-
pears in Eq. (15) as well. Note also that since we assume

]VII] « 1, it is possible to omit the second term in the
rhs of Eq. (14):

*= z + 2F +)(*o)t, (23)

~" = —i(v(+) —v'-)).
t (24)

where functions F(+~ are de6ned &om initial conditions.
According to (19) and (20), functions v(+) are complex
conjugates on the real axis (Imz = 0), so it is enough to
6nd a solution only for v(+~. A shape of surface g has to
be found Rom the equation

—= kC. (16)

For the sake of simplicity consider the one-dimensional
case when functions 4' and i) depend only on z (and t)
and the integral operator k may be presented in the form

where

III. DY'NAMICS OF SIMPLE SINGULARITIES

Let us show on a simple example that Eqs. (21) and
(24) describe formation of a singularity in a finite time.
Let Il (+) (zo) be a rational function with one simple pole
in the lower half-plane,

(IIf)(z) = —P.V. , dz'1 + f(x') P(+)(x ) xo+ ia

is the Hilbert transform (P.V. denotes principle value of
the integral). Then, it is convenient to introduce a new

function v = 84'/Bz, which has a meaning of the tangent
velocity on the free surface. As a result, Eqs. (15) and

(16) can be rewritten as

1 . 1
zo ———(x —ia) y -(x y ia)' —2At

2 4
(25)

where Rea ) 0. Then the dependence xo —zo(z, t) can
be readily found by means of (23),

19v 1 l9
(IIv) —v

Ot 2 Ox
(17)

gg—= —Hv.
Ot

(18)

Remember that the Hilbert transform acts on a function,
analytic in the upper (lower) complex half-plane, as mul-
tiplied by (+i) [respectively, by (—i)]. Such a property
implies that v can be represented as a sum of two func-
tions

that yields the solution of (21) in the form (22)

v(+)(z, t) = 2A

x + i a+ g(x + ia)~ —8At
(26)

Thus, instead of the initial pole at the point x = —ia
there appears a cut, connecting two moving branch points

(27)zi, p = ia + 2V2At. —

It should be noted that the branch of the square root
in (26) [or in (25)] has to be defined in such a way that
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function (26) would have asymptotics v~+i(x, t) ~ A/x
as [z[ —+ oo.

It is seen from (27) that if A ) 0, the cut will expend
over time t parallel to the real axis. In any other case the
points zq q(t) (27) will move under some angle to the real
axis. For this case there exists such a moment tp when
the branch point reaches the real axis, and thereafter the
solution of the problem breaks down. For example, if
A = —1/8, then the cut will spread along the imaginary
axis and reach the real axis at the breaking moment of
time t = to ——1 (for a = 1). We will consider just this
partial solution because as it will be seen further this
situation does not differ in essence from a general one.

Now let us And what kinds of singularities occur close
to the moment of the cut touching the real axis. First of
all show that the profile of v = v~+~ + v~ ~ breaks after
t = tp and becomes ambiguous. It means that for t ~ tp

~ oo at some point z = zq, . For A = —1/8 and
a=1, xb =0.

As it folows from (26) in such a case

—1O'U 1

|9x 2

(28)

It is evident that at the point x = 0 this derivative be-
haves as

g(x, t) = —Im(f(z, t) —f(z, O)) + q(z, O), (33)

where

f(z, t) = g(z+ i)'+ t —(z+i) ln x+i+g(z+ i)~+ t

Again, simple checking shows that both functions rI(zi t)
and

Bq z+i + g(z+ i)'+ t
Bz

™n
2(z + i)

are finite up to t & to. [Here we omitted the derivative
from rt(z, o).]

Only the second derivative,

1= Im
g(z + i)'+ t

1

x+i

(34)

acquires a singularity at x = 0, as t M tp. Close to
the singular point, g can be represented in the self-
similar form [coinciding with that for

& (30) except of
the multiplier 2]:

Ov 1

Bz
(29)

where

where r = tp —t = 1 —t. At the vicinity of ~ = 0 and
z = 0 expression (28) can be represented in the form

6(() = —v2 1+4(2

At the critical moment of v = 0, g looks like

Ov 1 1 ~+ g4x'+ ~'
/4z2 + T2 2

(3o) (35)

Thus, at the critical moment of w = 0 the velocity deriva-
tive looks like

that gives after integration the following behavior of g
and g due to the singularity (35):

OV 1 —1/2
t9x 2

(31)
rI, = —2sgnz z[ ~ + (regular terms), (36)

For the imaginary part of v~+~ the formula, correspond-
ing to (29), has the following form:

4
rI = ——[z~

~ + (regular terms).
3

(37)

(32)

1= ——Im
Bt 2

1

x+i+ g(z+i)'+t

After elementary integration of this equation, the follow-

ing expression for g arises:

this means that this value grows and reaches its maxi-
mum at ~ = 0. Note that expression (32) corresponds to
the maximum of n as a function of x.

In order to determine elevation q, substitute v~+l (26)
into Eq. (18). By virtue of (20), the latter can be written
as follows:

Thus, the function rl(z, t) loses its smoothness, as t m
tp resulting in the appearance of the root singularities
on a free surface profile.

If the constant A is an arbitrary complex number,
the corresponding branch points, generated by the ini-
tial pole, will move under some angle to the real axis.
Putting A = 8e '~ and a = 1, one can And that at the

moment of tp —— . , the cut touches the real axis in thesin' ~
point x~, ——cot y. At the moment of t = tp, quantities
v, g, g, all remain Gnite everywhere. At the vicinity of
xg, and t m tp the values and g reveal the same
asymptotic behavior as considered above.

From this consideration we can conclude that if v~+

has simple poles at the initial moment, then each pole is
being transformed into two moving branch points, con-
nected by a cut. The breaking of analyticity occurs when
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the most "rapid" branch point reaches the real axis. We
will show below that close to the touching point the be-
havior of a solution is the universal one in the framework
of the suggested model (15) and (16), and is defined by
formulas (31) and (35).

IV. CENERAL SOLUTION

In this section we will show that the type of singular-
ities found before follows from the general initial condi-
tions. Let in F(+)(zp) (22) be some analytical function in
the upper half-plane of complex zp with its singularities
in the lower half-plane. To find the solution of Eqs. (21)
one needs to resolve at first Eq. (23) with respect to zp
that we rewrite in more convenient form, introducing z
and zo instead of x and xo, respectively:

z = zp+ 2F(+)(zp)t.

This is a mapping: z ~ zo. In the general case this
mapping will be ambiguous if

&
——0 in some point, i.e.,

If Fp g 0 the leading term under the square root is the
linear one with respect to 7 T. herefore with the needed
accuracy

zp ——zp(tp) + C(x'+ 2Fo~) i, (41)

v = 2Re
~

Fo ——C(x + 2For)
1

tp
(42)

The answer for Bv/Bz, following from this expression, co-
incides with that for simple poles (up to some constant).
To find i) one should integrate Eq. (18) for rI(+):

where C = (F(+)"[zp(tp)])
Such a general form for xo provides in this case the

same self-similar (x' 7) singular dependences for &"
and i) . These follow after the substitution of (41) into
(22) and the forthcoming integration of Eq. (18). With
the same accuracy as in (41), the tangent velocity can be
presented in the form

1+2F(+)'(z, )t = 0. (38)

Solution of (38) gives some trajectory on the complex
plane zp.'zp ——zp(t). The roots of (38) together with (22)
define the corresponding movable branch points of the
function v(+) (x, t)

zb, (t) = z, (t) + 2F(+) (z, (t) )t.

These points should be connected with a set of cuts, pro-
viding for the uniqueness of the function v(+)(z, t). The
choice of these cuts has to be made in such a way that
v(+)(z, t) would have the initial singularities [coinciding
with those for F(+)(z)]. As in the pole case, these mov-
able branch points originate from the singularities of the
function F(+) (zp). At the moment when the most rapid
branch touches the real axis, the analyticity of V(+) (z, t)
breaks, and, respectively, a singularity appears in the so-
lution of system (21). Close to singularity the solution
behaves in a similar way as for pole initial conditions.
Below we give proof of this fact.

At first define the touching time to &om the require-
ment zb, to be real,

Zbr = Zbr.

Assuming w = to —t (( to, and considering a small vicin-
ity of z = xb„expansion of (23) up to the leading orders
gives

where the dependence zp(x, t) is defined by means of (23).
If one translates from the integration over t to the inte-
gration over zp and then integrates once by parts, the
expression for i)(+) can be written in the form

zo(z t)
( )i7(+) — i tF(+)(z ) 2F(+) (zp)

x F'(+) (zp) dxp

Now differentiate i)(+) with respect to z. Then the in-
tegration can be performed completely. As a result we
have the explicit expression for g:

F(+)(x)
i) —Im log (43)

V. VV'EDCE- TYPE SINCULARITIES

where zp ——zp(x, t) is determined with the help of rela-
tion (23). This formula together with (42) lead to the
previous answer which we obtained for simple poles: g
and v become infinite while approaching the singularity,
z' ~ w. It is the general type of singularities for systems
(17) and (18).

F"tp(b'xp) —2F'7.bxp —2Fo7. —z' = 0,

where E" = E"(zp(tp)), hxp ——xp —zp(to), x' = z —xb„
Fo = F"'(zo(to)).

From this equation we find

F'~ ( F'7. ) 2Fo~+ x'
xo = zp(to)+ F„+ I F„ I

+ F„(40)F"tp ( F"tp) F"to

Let us show that the systems (17) and (18) have a
special solution that describes another type of singularity.
This solution arises if Fo = 0. For this particular case
forinula (40) transforms into

F'7. ( F'~ ) ' x'
xo = zo(to)+ F„+ ~ „~ +F"tp (F"tp) F"tp

and, as a sequence, v can be written approximately in
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the form

v = [xp —zp(tp)]F (44)

These dependences give a new kind of self-similar behav-
ior x w that provides the surface singularity of the
wedge type. Indeed, let us substitute (43) into (44) and
consider the asymptotics of g for x'/w m oo. As a
result we get

7r I
g —) --sgn(x ),

where 4( ) is some unknown function, for which
P(+)4 ( ) = 0. Equation (47) [compare with (21)] can be
integrated with the help of the characteristics, defined by
(23):

(48)

On the characteristic xp

(=(i+(2,

which corresponds to the wedge surface profile with the
angle o. = 2arctan —= 103, 7 . This angle is far from
vr and our assumption about small surface angles breaks,
of course, close to the singularity. Nevertheless, the so-
lution obtained above, which represents the intermediate
asymptotics, is of considerable interest because, first of
all, the angle o. is close to that calculated by Stokes for
the critical stationary gravity surface wave for deep wa-

ter and, secondly, the self-similarity x w remains for
the complete system of Eqs. (7) and (8). It is interest-
ing to note that Fp = 0 can be obtained from the initial
conditions with two poles:

F(+)(z) = ip, z+ia z+ia*

where Rea ) 0, Imp = 0.
The dynamics of the branch points generated by these

two poles is also interesting: at the erst moment of time
poles produce two pairs of branch points, two of which
move towards imaginary axis; then they collide; after
collision points move along imaginary axis in opposite
directions; the touching of the real axis by one of these
poles produces the singularity appearance.

(y ——i g(+) (x(x„t'), t') dt'+ 4( '(x(x„t'), t')dt'

is the solution of the homogeneous equation and (2
f (xp) is simply the initial shape of (.

Thus, the problem is separated into two parts and, con-
sequently, there will appear two possibilities. The first
one is defined by the analytical properties of the tangent
velocity only. As will be seen below, the singularities
that arise are almost the same as found in the previous
section. The second possibility is connected with the con-
tribution of (2 that gives rise to the interference of the
tangent velocity efkct and intrinsic peculiarities of the
initial elevation gp(x).

We start to analyze the first contribution to (. It is

easy to understand that the integration of the function
C ( ) along characteristics (48) with forthcoming appli-
cation of the operator P(+) equals zero. It is enough,
therefore, to integrate only 4(+) in (47). In fact, the
situation is even more simple, because we are interested
in the solution behavior only close to the moment of tp.
This implies that instead of (48) one may use its expan-
sion

VI. FLOATING SINGULARITIES

]

tp
(49)

The new singularities are connected with a possibility
of exact integration of Eq. (14) taking into account the
second term in its rhs. For this reason let us represent
q(x, t) as a sum of two functions r)(+) (x, t) and g( ) (x, t)
Then from (14) follows an equation for r)(+),

where xp is the coordinate x' at r = 0. Formula (49)
shows that close to the singularity some additional mo-
tion arises, as compared to case (18). Nevertheless, the
character of singularity remains the same:

1
flax Re[C(x'+ 2Fpr) '~ ],

8tpIrnFp

og(+)
+ 2P(+)(v(-)„(+)) ,~(+)

Bt
V 'g (45) yielding at t = tp,

Furthermore, it is convenient to introduce instead of g(+)
+ ~~(+)a new function ((+) by means of q(+) = ~& and to

integrate (45) once

(46)

Here ( is a function, for which P(+)( = ((+). Omitting
then in both sides of (46) the operator P(+), we arrive at
the equation for (

It is very important that the singularities obtained be-
long to the weak ones [see (36) and (37)], which do not
destroy our basic assumption about small values of an-

gles, ~V'q~ && 1. Note also that the self-similar asymp-
totics of the form (34) is admitted by the complete set of
Eqs. (7) and (8).

We now proceed to the homogeneous part of the solu-
tion (2 ——f (xp). One can show that the elevation g(+) is

defined as

8( o)(
( —) .y(+) + c(—)

t9x
(47)

- (+)
(+ ) c)xp df

c)x dxp
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Since at the initial moment of t = 0,

Bzp
X —Xp)

|9X

the exact form of g2+ may be written as follows:

we get the Grst kind of singularities of the root character.
One should pay attention to the fact that for the second
kind of singularities our assumption about small surface
angles breaks. Close to the time t = t we should use in-
stead of reduced Eqs. (14) and (15) the complete system
(7) and (8).

&(+)(x, t) = dX'OO

2vri x' —x —i 0

c)zp(x', t) (+),
VII. CONCLUDING REMARKS

Passing to xp as a new variable of integration, this inte-
gral reduces to the form

(zt)=(+) 1 dXp (+). ~p (*o)
2vri c z'(zp, t) —z —i0 (50)

where B is real, and Imb ( 0. Then integral (50) is found
explicitly

iB
z —z'(b, t) z —b —2F(-) (b)t

'

From this expression we see that the pole of g(+) is mov-
able with the "velocity" 2F( )(b), being some regular
function. Therefore if ImF( )(b) ) 0 then there exists
such moment of time t, when r)2(z, t) will be infinite.
Evidently

nfl
t~ =—

2F"(b)

Here b" = Im b, F"(b) = Im F(b).
Close to this time i)(z, t) has the Lorenz form,

B(b"+ 2F"t)
[z —b' —2F'(b) t] + (b" + 2F"t)rj z, t

with z' and contour C, both defined &om (48). The
contour C initially coincides with the real axis during
the time it is being deformed so that it is going partly
through the lower half-plane. The motion of contour C
towards singular points of g(+) (zp) will define obviously
the behavior and the singularity formation of function
rI(z, t) for real z. To clarify this situation let us assume
that i7(+) (zp) has one pole in the lower half-plane,

iB
&(+)(z )

Xp —6'

In conclusion, we would like to pay attention to the
symmetry properties of Eq. (15) or its analog (21). If one
introduces instead of v(+) two new functions, namely, its
real and imaginary parts, v(+) = u/2+in, then Eq. (21)
(for real z) transforms into the system (compare [9], [10]):

Bn 8+ —(nu) = 0,
Bt Bz (51)

Bu c)u o)—+u ——(2n') = 0,
Bt c)z c)z

(52)

i@, + -4..+
~

4 ~' 4 = 0,
2

where the wave function 4 is connected with "density"
n and "velocity" u by the following formulas:

4' = ~n e', u = 4 .

which describes a gas with negative pressure. In such a
gas dynamic representation the quantity n playing the
role of the "gas" density will increase due to the negative
pressure. At first glance, such gas has to be compressed,
and a solution of Eqs. (51) and (52) appears to form a
singularity of the collapse type with density n turning
into infinity in a finite time. Such speculation, however,
seems to be irrelevant, because the analyticity violation
takes place earlier than formation of collapse. In this
sense the requirement of analyticity proves to be more
essential for the dynamics of systems (17) and (18). It is
just the analyticity breaking that leads to the singularity,
corresponding to a usual wave breaking in gas dynamics.

It is worth noting that systems (51) and (52) may
be obtained as a semiclassical limit of the nonlinear
Schrodinger equation (NLSE)

which transforms at t = t, into the b function:

rl(z, t) = Barb
~

x —b'+b"t', „F'I

Thus, the proper singularities of the analytical function
g(+), not generated by the velocity Geld and existing ini-
tially, remain during the time and occur to be movable.
(It easy to check this statement for an arbitrary case and
not only for poles. ) It gives new types of singularities of
the free surface, generally speaking, of the arbitrary kind
appearing due to the proper analytical properties of the
initial pro6le of the elevation. What kinds of singular-
ities will appear 6rst depends on the initial conditions.
If, for instance, the initial elevation is equal to zero then

x ndx=40,
Bt2 (54)

where

n3
dx

3

It should be underlined, however, that the analogy with
the semiclassical NLSE is not complete. Unlike Eq. (53),
where the quantity ~4[2 = n is always positive, the "den-
sity" n in Eqs. (51) and (52) may have either sign. Never-
theless, the found correspondence between the two sys-
tems reveal many novel features of (51) and (52). In
particular, one can write the virial theorem [13];
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is the Hamiltonian for systems (51) and (52). Since the
NLSE of the form (53) relates to the so-called critical
one [the latter means that the collapse takes place only
starting from the power ]@ in (53)], systems (51) and
(52) inherit from (53) two additional symmetries of the
Noether type [14] and [15]. These are scaling transfor-
mations

n(z, t) = —n(Az, A' t), (55)

u(z, t) = —u(Az, A' t), (56)

and "lens" transformation,

n(z, t) = n(z', t'), (57)

u(x, y) = — — + u(x', t'),
2(tp —t) tp —t

(58)

where z' = ztp(tp —t), t' = ttp(tp —t), and tp and
A are arbitrary parameters.

Transformations in the form (55)—(58) mean that n
and u obey the same equations as n and u do. Besides,
these transformations remain active to be invariant and,
therefore, generate new integrals of motion. They appear
just as one integrates twice Eq. (54) (compare with [15]).
It should be noted that such types of symmetries have
been known in usual gas dynamics, in fact for hyperbolic
cases. Use of them has been made in both implicit and
explicit forms in papers [11], [12]. It is unlikely that
systems (51) and (52) belong to the elliptic type that

manifests in its negative pressure.
In this paper we did not touch such a question as the

stability problem of the collapsing regimes. The first
regime of the root character according to the analysis
performed in Sec. IV will be obviously stable in the
framework of truncated systems (17) and (18). For the
complete system, however, this is the question as well as
for two other regimes. It should be emphasized again that
from the very beginning we assumed the angle of the sur-
face (]V'rl]) to be small, and therefore, we cannot pretend
to understand the full description of all types of possi-
ble singularities, as described by the complete system of
Eqs. (7) and (8). However, the solutions corresponding
to the weak singularity regime turn out to be consistent
with the applicability condition of the truncated equa-
tions (15) and (16).

In our opinion there exist two possibilities of what role
the root singularities will play in the general dynamics —-
either the singularities serve as an origin of more powerful
singularities observed in numerical experiments or repre-
sent new type of singularities.

One should also note that the self-similar asymptotics
for the wedge type of singularities are allowed by the ex-
act system of equations. We believe therefore that just
this type of singularity was observed in numerical exper-
iments [7] (see also [6]).
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