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Model equations for two-dimensional quasiyatterns
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Two-dimensional model equations, invariant under the symmetry operations of an infinite horizontal

plane, can undergo a cellular instability to "quasipatterns" of eight- or 12-fold orientational order. Two

different nonlinear selection mechanisms are discussed and related to recent experiments.

PACS number(s): 47.54.+r, 61.44.+p, 47.20.Ky

The appearance of quasicrystalline order has first been
observed in solid-state physics [1]. Only recently have
planar patterns with an eight- or 12-fold orientational or-
der (in the following denoted as "quasipatterns" due to
their quasiperiodic long-range translational order) been
found in a dissipative hydrodynamic system [2,3]. This
was a surprising result since the tilings observed so far
had been either lines, squares, or hexagons. A common
property of these systems is a continuous degeneracy as-
sociated with a rotational symmetry in the horizontal
plane. As far as linear dynamics is concerned, all Fourier
modes e'"' with

I
k I

=k, are equally amplified, but only a
few of them survive and saturate due to nonlinear in-
teractions. The experimental quasipatterns [3] are in-

dependent of the lateral boundaries and are thus likely to
be the result of nonlinear bulk efFects. In this paper we

present two-dimensional model equations with a relaxa-
tional dynamics towards eight- and 12-fold quasipatterns.
The nonlinear mechanisms responsible for the pattern
selection might give an insight into the physics prevailing
in experiments.

The starting point is a two-dimensional Swift-
Hohenberg (SH) -type equation [4] for a real scalar field
u (x,y, t)

a, u =eu —(V'+1)'u —.(u),
where c ( u ) is a general cubic nonlinearity and
V=(a„,a„).The linear operator in (1) gives a stationary
instability at a finite wave number k, =1. The direction
of k=(k„,k~) is infinitely degenerate, reflecting the con-
tinuous rotational symmetry in the x-y plane. In what
follows we study the efFect of various c(u)'s on the pat-
tern selection. The only restrictions upon c (u) are the re-
quirements of space translation, reflection, and rotational
invariance as well as saturation of the instability. In this
sense the simplest c(u} is —,'u [5] by which Eq. (1) be-
comes the original (SH)-equation producing a pattern of
lines [4]. A second known c ( u )
derived by Chapman and Proctor (CP) [6] is
—,'V. [Vu(Vu) ]. It drives a square tesselation rather
than lines. Equation (1) with the SH or the CP non-
linearity is derivable from the Lyapunov functional
X=(1/2)fdx fdy [ —eu +[(V +1}u] +l(u)], with
the positive-definite quartic contribution l(u)= —,'u for

These are gradient equations with t), A„=—BF/t)A„',
where the free energy is

N N
F= —e & IA;I'+-,' g P(8;, }IA;I'IA, I'. (3)

The coupling function P(8}, evaluated at the angles 8;.
between k; and k, is characteristic for the c (u } under
consideration. It determines which pattern is to be
selected. Reflection and rotational symmetry imposed on
c (u) imply P(8) =P(n.—8)=P( —8). Since the number of
resonant cubic interactions between two difFerent critical
modes is twice the number of self-interactions [7], the
coupling function P(8) is discontinuous at 8=0 and 8=m.
with P(8—+0)=P(8~m. ) =2P(0). This fact has not been
addressed by Refs. [8,9] although it has important conse-
quences for the pattern selection process.

Equation (2) allows equal amplitude fixed point solu-
tions of the form IA„I=A, lk„l=k,=l and
+(k„,k }=In—mitt/N, with n, m =1, . . . , N. They
describe regular periodic (N ~ 3) or quasiperiodic (N )3)
patterns of 2N-fold orientational order (e.g., N= 1 lines;
N=2, squares; N=3, hexagons or triangles, depending
on the relative phases of the A„;N=4, octagonal quasi-
patterns; . . .). The corresponding extrema of the free en-
ergy are determined by averaging over the participating
matrix elements [7]

N —1

Ftt= ,'e —g P(—nt—r/N)N (4)

From this expression the leading role of the coupling

SH and —'( Vu ) for CP. The inequality dX /dt
=—fdx fdy(Bu/t}t) ~0 guarantees a relaxational dy-

namics towards the state of minimum free energy. Ex-
panding the solution in N Fourier modes

/k 'r
u =Q„,A„e " +c.c.„where each k„lies on the criti-
cal unit circle, the temporal evolution of the mode arnpli-
tudes [ A„]is governed by a set of coupled Landau equa-
tions

N

t},A„=eA„—g P(8„)lA I A„, n =1, . . . , N .
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TABLE I. Coupling function P(8)=P(cos (8)) for the first
cubic nonlinearities uV "(u)'. To derive P(x) the expansion

ik -r
u =Q„A„e" +c.c. with ~k„~=k, has been used.
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FIG. 1. Coupling function P(8)=P(cos (8)) for the cubic
nonlinearity: (a) —,

'u' where P(x)=2; (b) —
—,'V [Vu(Vu)']

where P(x) =
—,(1+2x); (c) for Eq. (6) where P(x) =

—,
' (2

+4x —16x~+16x'). Note that P(8) is discontinuous at 8=0,
and 8= ir with P(0) =P(n ) = 1.

+u[0. 1162V —0.0380V ] u (6)

The right-hand side of Eq. (6) derives from a positive-
definite quartic contribution l(u) to the Lyapunov func-
tional. Consequently, the dynamics of Eq. (1) with (6) is
relaxational towards eightfold quasipatterns.

function P(8) becomes evident: Figure 1(a) shows P(8)
belonging to the —,'u nonlinearity. Due to the discon-
tinuity at 8=0,m one gets F, Fz for all N, i.e., the pat-
tern of lowest free energy consists of rolls. For the CP
nonlinearity the coupling function is depicted in Fig. 1(b).
Here, the resulting relation F2 &F~ (for all N ensures the
preference of squares. Obviously, by broadening the
minimum of P(8) [see Fig. 1(c)] one can, e.g., achieve
F4 Fz, thus stabilizing octagonal quasipatterns. Like-
wise, patterns with arbitrary orientational order —the
"turbulent crystals" of Ref. [7]—can be stabilized.

The idea of the following arguments is to design P(8),
by an appropriate choice of c (u). For any c (u) compati-
ble with the imposed symmetry conditions the coupling
function is of the form

—,'P(1) for 8=0,m.

P(cos (8)) for 0&8&m. ,
(8)= '

where P(x) is a polynomial in x. The higher its degree,
the greater the flexibility in designing P(8). Since the re-
peated application of V upon u generates powers of
cos (8) in P(8), we combine c (u) of the form u V2"(u 2).
They derive from positive de6nite functionals

J dx fdy[g„a„V"(u )] . The present choice of c(u)
should be considered as a working example; it is not im-
perative. By inspection of Eq. (4) it can be shown that
P(x) must be of at least third order to achieve F4 &F~
(for all N), i.e., to meet the stability condition for eight-
fold quasipatterns [10]. For this purpose a nonlinear
combination of space derivatives up to 12th is necessary
(see Table I). Figure 1(c) shows an appropriate coupling
function P(8), which results from

c(u)=0.0627u +0.0302uV (u )

The method presented here is constructive and can be
used to design partial differential equations (PDE's) for
periodic or quasiperiodic patterns of arbitrary orienta-
tional order. The analysis shows how a selection mecha-
nism governed by Eq. (2) and an appropriate P(8) can
drive forwards bifurcating two-dimensional quasipat-
terns. The mechanism contends with a single set of
linearly unstable wave vectors ~k~

=k, . Interactions with
a second set of (almost) critical modes —recently suggest-
ed [9] as a possible stabilizing mechanism for
quasipatterns —are not required.

The extreme high-order derivative coupling (6) of the
present model seems to be unphysical, since realistic pla-
nar pattern-forming systems (e.g. , Rayleigh-Bernard con-
vection or the standing surface patterns in the Faraday
instability) generically exhibit simple nonlinearities. On
the other hand, in real (i.e., three-dimensional) systems
the vertical space direction enters the problem and the
horizontal boundary conditions give rise to very compli-
cated dependencies of P(8) in the amplitude equation (see,
e.g., Ref. [11]). In some systems these coupling functions
might be complicated enough to stabilize quasipatterns.
A possible candidate is the Faraday experiment of Chris-
tiansen, Alstrom, and Levinsen [2]. Recently they ob-
served standing surface patterns of eightfold orientational
order. Since the structure is in subharmonic resonance
with the forcing, quadratic terms in the corresponding
amphtude equation cannot appear and Eq. (2) applies.
The eightfold quasipattern is likely to be the result of an
appropriately shaped coupling function P(8). Another
Faraday experiment [12] has been performed with a forc-
ing composed of two frequencies. As a function of their
relative amplitudes r and their phase shift P one either
observes subharmonic squares or subharmonic hexagons
and/or triangles at the onset of the instability. These pat-
terns can also be understood by Eq. (2), since P(8)
parametrically depends on r and P.

The rest of this paper is devoted to a model that is
based on another stabilization mechanism for quasicrys-
tals. The idea has been introduced by Mermin and Tro-
jan [9] and generalized by Newell and Pomeau [7]. The
point is that a quadratic nonlinearity mediates a triad in-
teraction between two critical sets of modes. Two wave
vectors ~ki~ =

~k2~ =k, and a third one ~q~ =q, form an
isosceles triangle, where the angle 5 between k& and k2 is
tunable by the ratio q, /k, (for an octagonal quasipattern
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+—$2Q 1
(7b)

The quantities u, (x,y, t) and u2(x, y, t) model the order-
parameter fields in a bicritical system, where e and p
measure the distance to the respective stability thresh-
olds. The fields are coupled by a quadratic interaction.
The model described by Eq. (7) is motivated by the exper-
iment of Edwards and Fauve [3]: In a Faraday setup
with a two-frequency forcing (toi.co2=4:5) quasipatterns
arise close to a bicritical situation in which the surface
structures associated with the Sco and 4to frequency com-
pete. If yi and yz have the same sign, Eqs. (7}are poten-
tial and the dynamics will be relaxational. In the follow-
ing we put yi =yz=y for simplicity. For y =0 (coupling
turned ou} the CP nonlinearities in (7) drive supercritical
square patterns in u, and u2. As soon as y & 0 (the case

y &0 is recovered by u2~ —uz) a new class of fixed

points can take advantage of the quadratic coupling and
the system undertakes a hysteric backwards bifurcation.
In order to enforce eightfold quasipatterns the vertex an-
gle between two adjacent wave vectors must be tuned to
m /4. Consequently, the value of q, must be
chosen Ik, hk, +il =(2&~2)'~ . To compute the weak-

ly nonlinear solutions of (7) we Fourier expand

u, =+~ iA„e " +c.c. with lk„l=l, k„k„+,
=cos(m/4) and u2=+~ iB„e " +c c with. .lq„l=q„
q„q„+,=q, cos(m/4). The resulting coupled Landau
equations for the amplitudes [ A„],IB„]derive from the
free energy

4
F= g«I A, I'+JulB, I'—)

i=1
4

+-,' g p(8~)}(IA;I'IA, I'+IB;I'IBJI'}

—y(BiA2Ai +B2As Ai+B3AqA3

+B4 A i A 4 +c.c. ) . (8)

The coupling function p(8) is that of Fig. 1(b). To derive
(8) we have assumed y «1, which allows one to neglect
the y corrections in p(8). At this point a remark con-
cerning the work of Newell and Pomeau [7] is in order.
They consider the [B„]as "passive" (or damped) modes
slaved by the "active" (or supercritical) A modes. Thus,
c (u }'s in Eq. (7b) are not required in their model, and the
whole dynamics takes place on the center manifold
B„([A]). The corrections to p(8) arising from the
quadratic interactions are essential in their model, as they
generate the necessary deformations of the coupling func-
tion to favor supercritieal quasipatterns. In the present

this angle must be tuned to fi =m /4).
To introduce a second wave number we consider the

following pair of quadratically coupled CP-like equations,
which become unstable at k, =1 and q, %1, respectively:

B,u, =au, —(V +1) u, + ,' V—[V.u, (Vu i ) ]

+—$191Q2

1
B,u2=pu2 (V—+q, ) ui+ 4 V [Vu2(Vu2) ]

c

model, however, both sets of modes [ A„]and [B„]are
supposed to be close to threshold, i.e., they both are ac-
tive and the dynamics takes place in the whole

f A„]—[B } phase space. From dF/dA„'=0=OF/dB'
one can construct four backwards bifurcating fixed-point
solutions that take advantage of the quadratic cross cou-
pling. We denote them by the indices (4-2)* and (8-8)*.
Within the brackets the first (second} index counts the
number of equally saturated A modes (B modes). The in-

dex pair (8-&) represents an eightfold quasipattern in u,
as well as u2. The quadratic interaction enforces that the
two patterns are twisted by an angle of n/8 relative to
each other. The notation (4-2} represents a periodic pat-
tern with rhombic unit cell in u i (vertex angle n /4) com-
bined with a simple line structure in uz. The signs + and
—denote whether the total phase in a triad interaction
adds to an angle of 0 or n, respectively. A linear stability
analysis of these nonlinear solutions can be carried out
analytically in the case @=@=0(recall that the solutions
are hysteric with finite ainplitude at threshold). One finds
that both 4-2+ and 8-8+ are stable, i.e., minima of the
free energy. Using (8), note that the comparison of the
corresponding values of F,

Fs-s+: (~'~} t' & 2(7} }' =—F4-z+
3 4 i 3 2 4— (9)

proves that the eightfold quasipattern fixed point is pre-
ferred. Other nonlinear solutions, which cannot take ad-
vantage of the quadratic coupling, do not compete close
to the bicriticality since their free energies disappear ac-
cording to F=0(e,p }. A numerical check of the stabil-
ity prediction (9) has been performed by integrating the
ordinary Landau system 8, A„=dF/dA„,B,B„=dF/B„'
at @=@=0and y=0. 1. Starting from random initial
conditions for the A„,B„the long-time solution always
saturates in the eightfold quasipattern.

Following the same construction principle we arrive at
a model system for 12-fold quasipatterns,

B,u, =au, —(V +1) u, +aiui —ui+yu, uz,

B,u2=pu2 —(V +q, ) u2+a2uz —uz+yu, .

(loa)

(10b)

In the absence of cross coupling (y =0) u, and u2 satu-
rate in hexagonal patterns of wave vector k, =l and

k, =q„res ectively. If yAO the value of q, must be
tuned to 2 or (2+v 3)'~ in order to drive the 12-fold
orientational order with vertex angles of n /2 or n /6, re-
spectively. Given a hexagonal solution u2 of wave num-
ber q„Eq.(10a) can be regarded as a single PDE with
space-dependent forcing (e+yu2)u, . That way, 12-fold
quasipatterns have been found by Frisch [13]in a numeri-
cal simulation. We solved the coupled system [(10a) and
(10b)] numerically by a spectral code on a 64 X 64 wave-
number grid with periodic boundary conditions. For
e=p=0.01, a1=a2=y =0.2 we observed 12-fold quasi-
patterns, which did not depend very sensitively on the pa-
rameter values chosen. Figure 2 presents shadow graphs
of the computed patterns together with intensity plots of
the associated power spectra.

The foregoing discussion presents models for forwards
and slightly backwards bifurcating quasipatterns. The
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FIG. 2. Long-time solution of Eq. (10) generated numerically by a spectral code resulting from small random initial conditions

u, (x,y), uz(x, y) =0(10 '). On the left: shadow graphs of the fields u, and uz [axis labels denote length (x) and width (y) of the box
in arbitrary units]; on the right: shadow graphs of the associated two-dimensional power spectra (axis labels denote channels of the
two-dimensional FFT.)

former ones are stabilized by a pure cubic mechanism
[via Eq. (2)] with an appropriate coupling function P(8).
Backwards bifurcating quasipatterns are selected by
means of a quadratic interaction between two sets of un-
stable modes (k, q, ). A situation like this generically ap-
pears in rnulticritical systems close to a bicritical point.
This stabilization is most effective close to the threshold,
where the infiuence of the quadratic cross coupling pre-
vails. The crucial point of this mechanism is the reso-
nance condition for the triad interaction to work, which
requires definite "magic" ratios k, /q, . This, however, is
not very restrictive for systems with many (almost) criti-

cal modes (e.g., the Faraday experiment [4,5]) and/or for
strongly dissipative bicritical systems [3]. In the latter
case the linear growth rate of the unstable modes exhibits
a broad maximum around the critical values so that wave
number adjustments may take place without a consider-
able damping.
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