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The Lorentz-covariant Lagrangian for an ideal relativistic flow is constructed in the Eulerian coordi-
nate. In contrast to the Lagrangian of nonrelativistic flows in the Eulerian formulation, for which the
continuity equation is required to be externally imposed as a constraint [Mittag, Stephen, and Yourgrau,
in Variational Principles in Dynamics and Quantum Theory, edited by W. Yourgrau and X. Mandelstam

{Dover, New York, 1968)], this Lorentz-covariant Lagrangian automatically yields the continuity equa-

tion as well as the equation of state. In addition, the relativistic generalization of the Bernoulli equation

can also be derived from the present formulation.

PACS number{s): 47.10.+g, 03.50.Kk, 03.40.6c, 95.30.Lz

I. INTRODUCTION

There is a great deal of interest in hydrodynamics [1]
using a variational approach, be it in the area of the ordi-
nary fluid (Navior-Stokes equation), the superfluids, or
even the X-Y model of the magnetism [2]. The formula-
tion usually involves an identification of the appropriate
Lagrangian for the system. Once found, the equation of
motion will follow. In addition to the basic interest in
theoretical physics for constructing the variational for-
mulation, it can also potentially be quite useful in stabili-
ty analyses [3]. More importantly, the Lagrangian for-
mulation can be used to construct new theories in com-
posite systems, where the original system is coupled to
additional constituents. When all the pieces of the La-
grangian belonging to various components are known,
the dynamics of the composite system can then be de-
rived correctly. One example in the context of relativistic
fluids is the mixture of fluid and neutrinos in the superno-
va explosion [4]. A relativistic fluid Lagrangian is also
needed to describe the dynamics in the product of heavy-
ion collision [5].

For nonrelativistic fluids, the X-Y model has been well
studied, and its Lagrangian is derived from an elemental
theory by expanding the small misaligned angle of the
magnetic moment; the corresponding Quid motion turns
out to be potential fiows by its very construction. How-

ever, the flows may contain vortices, but only in the form
of point vortices corresponding to singularities in the
field. The Landau theory of the superfluid is more or less
similar to the X-Ymodel in the sense that by constructing
it also applies to a potential flow. The primary
differences are, first, the fluid has a thermodynamical
property, such as pressure; and second, the fluid consists
of an invicid superfluid component and a viscous normal
fluid component, both of which are coupled together.
With the introduction of pressure into the theory, one
needs also to consider both the energy transport (or equa-
tion of state) as well as the evolution of density. Using
the squared-flaw velocity ta construct the intuitive kinet-
ic energy, and the fiuid internal energy as the potential
energy, one can construct a primitive Lagrangian. How-

ever, such a Lagrangian contains neither information
about the thermodynamical property nor the mass con-
servation. Therefore one has to build either the equation
of state or the continuity equation as a necessary con-
straint into the primitive Lagrangian to yield an effective
Lagrangian.

If one ignores the complication arising from two com-
ponents of the fluid, and retains only one component, a
situation relevant to our later discussions, then the
effective Lagrangian of a one-component fluid, which
reduces to the irrotational Navior-Stokes equation, reads

L,tr= ,' p V ',p—P—— +V.(pV)

where p is the Lagrangian multiplier for the continuity
equation [1].

As the aforementioned two theories are derived from
relatively simple original models, the way in which the
appropriate Lagrangians were found is relatively unam-
biguous. However, it was not so easy for the ordinary
fluid, because the ordinary fluid usually it not a potential
flow and has vorticity, a commonly observed property in
liquids such as water [6]. While in the X-Y model the
vortex is pointlike and its circulation is quantized, the or-
dinary Quid has extendedly distributed vorticity whose
circulation can be of any arbitrary value. This problem
was at one time rather bothersome, and has only been
solved in the Lagrangian coordinate [7], where the ob-
server moves with the Quid. For the Eulerian-coordinate
formulation upon which the field theary is based, the ap-
propriate Lagrangian was not known for almost a decade
after the discovery of the Lagrangian-coordinate formu-
lation. Only in the 1960s did people recognize that
Kelvin's theorem of invariance of the circulation also
should have been implemented as a constraint in the
effective Lagrangian [8], similar to the way the continuity
equation is built inta the effective Lagrangian described
above.

Concerning the relativistic flows, a Larentz cavariant
Lagrangian in the Lagrangian coordinate has indeed been
constructed [9]. As in the nonrelativistic case, the La-
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grangian coordinate has the advantage of not having to
impose mass conservation explicitly, as its formulation
uses mass conservation as the starting principle for
defining a fluid element. As for the Eulerian-coordinate
Lagrangian, the simplest way to work it out is by analogy
to Eq. (1), explicitly building the constraints into the
primitive Lagrangian [10], which is simply the Lagrang-
ian of a noninteracting gas. However, both formulations
can be rather cumbersome. The latter involves introduc-
ing additional fields, the Lagrangian multipliers, into the
Lagrangian and thus in the equations of motion. The
former has to deal with integration of the deformation
matrix along fluid trajectories; moreover, since the field
theories are mostly based on the Eulerian coordinate, to
be useful in a wide range of situations, such as coupling
to other new fields [4], a Eulerian Lagrangian is certainly
desired.

In constructing the Eulerian Lagrangian, the energy-
momentum tensor alone does not contain enough infor-
mation, since information about the mass conservation
and the equation of state is missing in the energy-
momentum tensor. A correct Lagrangian must contain
all pieces of information that the energy-momentum ten-
sor does not.

In this report, we will derive such a Lagrangian.
Amazingly, this Lagrangian has no externally built-in
constraints, and the continuity equation, the conservation
of circulation, and the equation of state can automatically
be derived from the Euler-Lagrange equations by variat-
ing appropriate field variables. In addition, the relativis-
tic generalization of the Bernoulli equation can also be
derived.

II. CONSTRUCTION
OF THE LORENTZ COVARIANT LAGRANGIAN

FOR A RELATIVISTIC FLOW

component:

V=VP+aVP . (4)

C2
U„= (B„(f+aBP) .P E+P P (6)

Variation with respect to P yields the continuity equation
(5). Variation with respect to a yields that

O'Bg=O,

describing free convection of the field variable p by the
fiuid element. Variation with respect to p yields that

The variables a and p are the Clebsch variables, related
to the vorticity by V XV= Va X Vp. The intersection of
the two surfaces a(x, t)=const and p(x, t)=const
represents a vortex line, which is tied to the fluid element
throughout the evolution in an invicid fluid. There are
infinitely many possibilities to choose the two surfaces
that possess this property [11]. However, it is convenient
to choose a particular set of the two surfaces that satisfies
daldt =0 and dpldt =0, where d/dt consists of an ex-
plicit time derivative and a convective derivative. In oth-
er words, the particular surfaces are frozen into the fluid
elements [11].

Due to Eq. (4) in the nonrelativistic flows, we therefore
expect that in relativistic flows, U„a-B„P+aBP. The
next guidance for choosing the proportional factor is the
continuity equation

a,(pO") =0 .

To be consistent with the dimension of the nonrelativistic
velocity, we choose U„=B„P+aB+. By variating with
respect to P, we obtain that B„[(E+P)U&]=0. This is
not a correct equation for either the internal energy or
the pressure. However, as E+P~pc in the nonrela-
tivistic limit, we can also choose

B„(apU') =0 . (8)
We begin by examining the energy-momentum tensor

T„"=(E+P)U„U" P5„", — (2)

L =—a U U"—W(E, P)
2 2 P (3)

Next, we shall proceed by examining the nonrelativistic
limit. In nonrelativistic flows, the flow velocity can be
described by an irrotational component and a rotational

which contains only the field variables; the internal ener-

gy E, the pressure P, and the four-velocity U„. We thus
assume the kinetic energy to be [K(E,P) U„U"]/2. But,
as the components of the energy-momentum tensor all
contain a factor (E+P) associated with the four-
velocity, we thus assume that K(E,P)=a(E+P)/c,
where a is a numerical constant. On the other hand, the
potential energy should contain the variables describing
the thermal property, and we let it be 8'(E,P)/2, which
is to be determined. Note that the variables E and P are
functions of the proper density p through the appropriate
equation of state to be derived later. The Lagrangian
now has the form

By virtue of the continuity equation (4), this equation can
be rewritten as

O'8 a=O, (8')

also describing the free convection of the field variable a.
Thus the variables a and p recover their physical mean-
ings in the nonrelativistic flow.

So far, we have implicitly made a serious assumption in
Eq. (6). We know that the four components of U„are
not independent, and they are related by the fact that
U„U"=c . By assuming Eq. (6), we have imposed a
dynamical relation for the evolution of the field variables
P, a, and P. In contrast, this problem does not exist for
the nonrelativistic flow, for there the flow velocity itself
only involves the spatial derivatives, and therefore Eq. (4)
is simply a kinematic choice for the classification of the
flow, having nothing to do with the dynamics. We need
to examine this choice of U .

We can check against the nonrelativistic limit of U in
Eq. (6) by a careful expansion of the small parameters,
the mechanical kinetic energy, and the thermal energy
relative to the rest mass energy. The definitions of the
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internal energy and the pressure are

E=pc2 3u 1+ u ~pc2 1+
2c2 2c

and

P=&fd'u Q f(u )~, (10)
p(u')

(1+u /c ) 3

where u is the spatial component of the particle four-

velocity, f(u ) is the proper distribution function, and the
limits are taken at u /c ~0. We thus have

2

BP= (1—V/c )
' + +c

p 2 2p

for a potential Bow. This is just the Bernoulli equation.
Indeed, our choice of U /c ~ B,P recovers correct nonre-
lativistic dynamics, so will it be in the relativistic flows.

Thus the relation U„U"=c indeed contains useful
dynamical information:

(a y+aap)(a&y+aa&p) =
IJ

PC
(12)

For a potential flow, i.e., a =0, Eq. (12) becomes the rela-
tivistic generalization of the Bernoulli equation [12].

Thus far, we have not addressed the potential energy
W(E, P) in Eq. (2). The guidance for its choice is con-
tained in the energy-momentum tensor, which can be de-
rived from the Lagrangian by Noether's theorem:

LZ„"=g, .
, a„q"—LS„",

BBQ
(13)

where the summation is over all fields q". But we also
know that the energy-momentum tensor has been derived
from a completely different formulation, as shown in Eq.
(2). From Eqs. (2), (3), and (13), we find that a =1 and
L =

—,'(E+P —W)=P, where the second equality is the
only choice determined by a comparison between the 5
tensor terms in Eqs. (2) and (13). It follows that
W=E —P, and the desired Lagrangian reads

A straightforward inspection of this expression can be
done by taking the derivatives of L with respect to B„P
and BP in accordance with Eq. (13), and it yields the
energy-momentum tensor given by Eq. (2). The equation
of motion, i.e., the relativistic Euler equation, then fol-
lows immediately as a result of the conservation law
"d„T„"=0.

The last field variables to be variated is p. Variation
with respect to p leads to

BE E+P
Bp p

(15)

the equation of state for an isentropic flow. This can be
verified by considering the ultrarelativistic limit, where
E=3P. It correctly yields the adiabatic index of the
equation of state, I =4. This equation can also be

1 2C2
L =— (8 /+ad+)(d"/+ad"P)+P E. (14)—

2 E+P

checked against the nonrelativistic limit, where
E=pc +3P/2. We indeed recover the adiabatic index
r= 5.

3

=fdr fd'x pc' fd'u
y

(16)

where the terms in the bracket of the second equality are
the free Lagrangian. Using the identity

y '=y —yu /c, we find, with the aid of Eqs. (9) and
(10), that L&„,=E 3P, which a—lso equals the trace of
the energy-momentum tensor. It differs significantly
from our Lagrangian L =P. Hence we conclude that the
free Lagrangian cannot be the Lagrangian of the fluid.
The reason is that an ideal fluid must undergo infinitely
many collisions in the hydrodynamical time scale, and it
cannot be a collisionless gas. When collisions become so
frequent, the potential energy, although short ranged, can
be as important as the kinetic energy, and hence the free
Lagrangian can strictly apply only to collisionless gases.
As the potential energy of frequent collisions is very
diScult to model, an empirical approach must be adopt-
ed. The empirical approach is guided by preserving the
known symmetries in the system. In the usual formula-
tion of the Lagrangian in the Eulerian coordinate, the
symmetries are the mass and circulation conservation,
manifested as added constraints in the Lagrangian. The
effects caused by the Lagrange multipliers are to exert ad-
ditional forces to the freely streaming particles, mimick-
ing the particle collision. In our approach, these addi-
tional forces are not as apparent as the constraint formu-
lation. However, we did blend the use of the mass and
circulation conservation to choose the appropriate fields,
and the use of energy-momentum tensor, derived from

III. DISCUSSION

In spite of the success, this Lagrangian does have a
limitation, in that is applies only to the isentropic flows,
as does the existing nonrelativistic Lagrangian in the Eu-
lerian formulation [1]. In other words, the variables p, P,
and E must be functions of each other, and not explicitly
of space and time. This cannot be the most general case
in nature. We can imagine a given initial condition
where the entropy varies arbitrarily. Initially Eq. (15)
fails to satisfy, and so will the subsequent ideal hydro-
dynamic evolution. In such a situation, the present La-
grangian will not be valid. Nevertheless, one may argue
that arbitrary entropy variations must be created by local
dissipation, and, since our theory only applies to the ideal
fluids, this situation should be excluded.

Nate that this Lagrangian density is effectively derived
from an empirical formulation, since during the deriva-
tion we have used the energy-momentum tensor which is
derived on an empirical basis [10]. One may instead at-
tempt to derive a Lagrangian from the first principle.
Guided by the impression that an ideal gas also behaves
like an ideal fluid, one may want to construct the La-
grangian by summing up the Lagrangians of individual
free particles. The action is

„„=Xmc' s 'x x—x t
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the symmetry of Lorentz invariance [13], to choose the
potential energy. These considerations are exactly the ra-
tionale behind the present approach, and this is also the
rationale frequently adopted in particle physics in deriv-
ing an effective Lagrangian [14].

A natural extension of the present formulation is the
construction of the Lagrangian for magnetofluids. Here,
a nontrivial task is to incorporate the frozen-in condition
of the magnetic-field lines into the Lagrangian. Regard-
ing the above discussions on the particle collisions, there
is another twist for magnetofluids. That is, a collection of
collisionless charge particles can also behave as a fluid

when magnetic fields are present [15—17]. Will the La-
grangian be the same for the collisional magnetofluids as
for the collisionless one, and if not, then in what limit will

they be?
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