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Difference-quotient turbulence model: A generalization of Prandtl's mixing-length theory
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A difference mean-velocity turbulence model to calculate quasistationary fully developed turbulent
motion is presented. It takes account of the various eddy sizes in turbulent flows. As a consequence,
some gaps between semiempirical closure models and sophisticated theories, describing eddy energy cas-
cades, are reduced. In a first-order expansion, the model is identical to Prandtl s mixing-length theory,
which is still contained in modern numerical computation schemes, e.g. , k-e models.

PACS number(s): 47.27.Vf, 47.27.Qb

I. INTRODUCTION

Scientists have investigated turbulent phenomena for
hundreds of years. Leonardo da Vinci (1452—1519), an
artist, architect, and natural scientist, studied turbulent
flows and produced several drawings showing eddies of
various size. Based on such observations, today we have
knowledge of energy-cascade models describing the tur-
bulent kinetic energy of flow as a function of eddy size or
of the related wave number (e.g., Kolmogorov-Oboukov
law). In these theories it is assumed that the forcing of a
system generates large eddies, which decay and become
smaller and smaller until viscous dissipation sets in,
which is dependent on the viscous stress of the fluid flow
(rate of deformation tensor). Thus turbulent kinetic ener-

gy is transferred from small-scale eddies into molecular
motion. In some recent approaches turbulent domains
are thought to be separated by fractal boundaries from
laminar-flow regions with potential flow. This
phenomenon is named spatial intermittency. Despite
such successful theoretical explanations many mathemat-
ical descriptions of fully developed turbulent flows are
still not complete, e.g. , statistical kinetic theories of phe-
nomena with memory effects and long-range correlations
(strange kinetics). This deficiency is a hindrance for fur-
ther success in many research topics of other activity
fields, e.g. , dynamic meteorology, oceanography, chemis-
try, and astronomy. [1].

In the early days of research on turbulence, crude mod-
els were proposed to describe momentum transport or the
spreading out of other transferable quantities in turbulent
flows, such as heat, contarninants, pollutants, etc. Al-
though these first attempts are not taken very seriously
by many dedicated analysts —they are known as empiri-
cal models —still, some of these simple closures were of
great help to engineers, who had to deal with daily-life
flow problems. Studying the old models extensively,
some can immediately be sorted out because of missing
symmetry or invariance properties. On the other hand,
three semi-empirical approaches, advanced by Prandtl,
seem to be very fruitful and worthy of further examina-
tion.

In this article, an alternative model of turbulence is
proposed, originating from studies of fully developed tur-

bulent wake fiows. For this kind of free shear fiow, by
mass- and momentum-flux considerations, one can
analytically calculate the tangential Reynolds shear stress
[2]. An accurate model of turbulence must also yield the
same result for this particular flow problem. The alterna-
tive model fulfills this requirement.

Not long ago, it was realized that this alternative mod-
el is closely related to the ideas of Prandtl on turbulent
momentum transport. Moreover, the discovery of a cer-
tain consistency of some of these theories could be a hint
that they contain more correct information on the under-
lying mechanisms of fully developed turbulence than we
have assumed up to the present. Therefore, the aim of
this paper is to outline features which the different rnod-
els have in common. It will even be shown that Prandtl's
most famous approach —the mixing-length theory —is
exactly the first-order equation of the proposed model.

II. THREE MODELS OF PRANDTL

It is advantageous to make a statistical approach to
turbulent phenomena and to split quantities such as

7+x» x+ {~1»~2»~3» ' ' }

into a time-averaged value y and the corresponding fluc-
tuation y'. In Eq. (1) we have introduced the three veloc-
ity components. The mean values are determined by
finite averaging times that are long compared with the
time scales of the turbulent flow but small in comparison
with transient times produced by changes of the excita-
tion of the system. In the quasistationary flows we are
going to study, there is no such transient behavior, and
mainly because of this, the mean values do not depend on
time any further. Splitting up all the quantities —as
shown in Eq. (1}—in the continuity equation and the
Navier-Stokes equation, and afterwards taking the aver-
age of all their terms, one ends up with the equations for
the mean values. These equations contain correlation
products of the velocity Auetuations, e.g., uzu &. At the
core of the (older phenomenological) models on tur-
bulence is the intrinsic believe that such second-order
correlations, e.g., tangential Reynolds stresses

rk((X) = PllkUi(X)»
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are determined by the mean velocity field u =(u „u2,u3).
Following Speziale [3],we then assume that the Reynolds
stresses are functionals Fkt of the mean velocity field at
all points x '.

rk&(x) =Fkt(u (x '),x ), x ' G V, (3)

where V is a bounded or unbounded volume of the fluid,
containing and depending on the point x =(x, ,xz, x3). It
is important to note that if there exists an x'Ax in V,

this approach includes nonlocal effects. Furthermore, an
obvious advantage of restricting ourselves to mean
quasistationary Qows is that in cases with nonlocalities no
violation of special relativity will occur.

At the basis of many models on turbulence is an as-
sumption made by Boussinesq [4]. By a comparison of
turbulence stresses with stresses in laminar flow caused
by viscosity, he proposed that the Reynolds stresses are
also proportional to the (mean) velocity gradient:

au,

Bxk
(4)

An important difference is that the eddy viscosity e is not
a material constant like the kinematic viscosity v; it
therefore depends on the Quid motion. We will always
assume the inain flow direction to be in the x, direction.
The existence of such a main flow direction in free tur-
bulent flows implies some significant simplifications in the
equations of motion, in Boussinesq s assumption (4), and
the turbulence model under consideration [2]. In the past
20 years several authors [5-7] have criticized the phe-
nomenological gradient approaches.

Criticism l. One-point models, such as gradient laws,
are found to be inherently unsuitable to describe tur-
bulent momentum transport.

Some of these authors have pointed out that the analo-

gy between molecular and turbulent transport is ques-
tionable. In the theory of kinetic gases the size of the
molecules is assumed to be small compared with the
mean free path. In contrast, the size of the largest in-
teracting eddies, i.e., the "mixing length, " is not even
small compared with the characteristic length scale of the
flow under consideration.

In kinetic theory of gases, the viscosity is proportional
to the product of the root-mean-square velocity and the
mean free path of the molecules. In analogy, Prandt
[8]—in his mixing length t-heory, based on (4)—
introduced the mean velocity by a first-order expansion
with a turbulence length scale, the mixing length l:

layers [10]. Nevertheless, it has two shortcomings, the
first of which follows.

Criticism 2. Comparing measured and calculated mean
velocity profiles u, in function of x2, one finds deviations
at the points of vanishing derivative.

In 1942 Prandtl [11],knowing about this inadequacy,
proposed an extended model containing in the eddy
viscosity a mean gradient over a distance l':

r2, (x„xz)=pl
2 1/2

Oui 8 ui Bu(+I'
BX2

He then assumed that the second mixing length l' is in
the positive and negative directions statistically equally
distributed, so that in this mean gradie-nt theory, on an
average the cross terms cancel out:—'2

2
—.2. 1/2

Bu Bu Bu
'r2i(xi, xz) —pl +l'

x2 gx22x2 (7)

Bu ir»(x»x, ) =~pb(u, —u, ) (8)

a simply denotes a constant. Gortler [12] calculated ve-
locity functions with this approach, which he found to be
in good agreement with experimental results, but still
with one exception.

Criticism 4. At the boundary of the mixing zone there
are deviations, because the eddy viscosity does not vanish
there.

We can rewrite Eq. (8) in the following way:

Bu,
r2&(x i,x2 ) = trpb.

Bxp

u1
min

(9)

In Eq. (7) we have written l' instead of l' . With this
model the calculations became more accurate, but also
considerably more complicated. Furthermore, a second
shortcoming of the mixing-length theory was not avoided
by the previous extension, leading to Eq. (7).

Criticism 3. Calculating the mixing lengths with these
models and experimental data leads to characteristic
length scales which are much smaller than the largest ed-
dies observed in the flow under consideration.

Therefore, Prandtl [11],in a third approach —the free
shear-layer theory —tried to relate the eddy viscosity to
the overall flow conditions, namely, the width b of the
turbulent zone and the greatest mean velocity difference:

Bu1 Bu1
r3, (x„x2)=pl

BX2 Bx2
(5)

The absolute value of the first gradient is necessary to ob-
tain the correct sign of the shear stress. For an extensive
discussion of Prandtl's physical ideas consult Ref. [9].
This mixing-length theory was the first reasonable tur-
bulence model and was applied with great success in free
shear flows and turbulent wall flows. It also found appre-
ciation in other scientific disciplines, e.g., in dynamical
meteorology for the description of planetary boundary

The velocities u, and u, are usually separated exact-
max min

ly by the distance b. Therefore, this was probably the
first and most simple nonlocal model, with a very stiff
difference quotient, which does not even depend on x2.
As we will see in Sec. III, it would be much more con-
venient to eliminate the index max in this equation. A
Taylor expansion of the mean gradient in large
parentheses, in first order, would then just yield Eq. (5).
Omitting the constant, instead of the mixing length l, in
this case, the entire width b of the turbulent domain ap-
pears. If the local length
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0)
Bx2L=
8 0)
Bx

introduced by von Karman [13], is at least one order
greater than the second mixing length l',

(10)

then a Taylor expansion of the slightly altered Eq. (9) up
to second order would exactly equal Prandtl's second
model (7).

The extended analysis of Prandtl's theories shows how
closely related his different approaches actually are: one
being only a slightly corrected or generalized version of
the other. After rewriting the free shear-layer model (8),
we have obtained a very simple difference-quotient
theory. It appears as a preliminary stage of the model,
which will be presented in the remainder of this article.

theories discussed no longer apply to the difference-
quotient model.

Direct numerical simulations of turbulent flows of Ber-
nard and Handler [7] producing several ensembles of
fiuid particle paths have shown that the displacement
transport mechanism has a natural representation in
terms of a global distribution of the mean velocity gra-
dient, as it occurs in this model. These authors further
believe that their result could be of some advantage in the
design of improved Reynolds stress models. Therefore,
the difference-quotient turbulence model, being complete-
ly in correspondence with these recent numerical results,
may combine new and old ideas on turbulence.

IV. A GENERALIZATION
OF THE MIXING-LENGTH THEORY

We now expand u, (x, ) and ui (xi) at x2 in the x2
min max

direction in a Taylor series. Inserting these expansions
into (12) yields

III. THE DIFFERENCE-QUOTIENT MODEL

As the name indicates, the alternative difference
quotient model contains a difference quotient instead of
the usually applied first-derivative law [14]

db "
(
—1)

21 Pd 2 X i i 2;„2 2 „2
m, n =1

ui cl ui

Bx2 Bxp
(13)

r2 i= pu2ui=pg2 (ui ui )
dx '" x xp

max

(12)

y2E [x2,b I is a variable or characteristic length scale of
the flow, perpendicular to the main flow direction and al-

ways can be determined by symmetry arguments. In cer-
tain flow problems the variables with an index min or
max must be replaced by the infimum (supremum) of the
variable or function under consideration. Note that this
rather unusual model does not make use of the phenome-
nological eddy viscosity concept (4).

The difference quotient, which for certain locations is a
mean gradient over a very large domain, introduces a
nonlocality. For that reason criticism 1 does not apply to
this model. Taking this approach into account, several
mean properties of different turbulent shear flows have
been calculated and in every case analytical solutions
could be obtained. They show no deviations from mea-
surements at the points of vanishing derivative (criticism
2). The shortcoming (criticism 3) doesn t apply either be-
cause g2 is a large length scale, e.g. , the width b of the en-

tire turbulent zone. If we also denote the expression in
front of the difference quotient as "eddy viscosity, " we
recognize that it vanishes at the boundary of the tur-
bulent zone, where u, ~u, (criticism 4). Note that the

min

correction (u, —u, ) instead of (ui —u, ) in the
min max min

eddy viscosity requires the second velocity difference

(u, —u, ) in Eq. (12) because of symmetry arguments,
max

e.g. , exchanging x2 and —x2 (min max) in a coflow

[15]. In addition to velocity differences, it also is con-
venient to introduce differences in the coordinates. From
this discussion we conclude that the difference-quotient
model is a natural continuation of Prandtl's ideas on
momentum transfer. All shortcomings of the older

Formally, the nonlocality has been transformed into an
infinite dimensionality. The terms of order zero have
canceled out, and to first order this infinite order equa-
tion reduces to Prandtl's mixing-length theory:

Oui Oui

X2 X2
(14)

with the following square product of the mixing length:

1 =l, l, =@,(x, —x~ ), )33=
db

(15)

where we have preferred to distinguish the mixing length
l, in the x, direction from l2 in the x2 direction. An ex-
tensive study of different flows shows that in some cases,
a power-law expansion as given in (13) is not very ap-
propriate.

From experimental investigations, Prandtl found
corrections necessary which correspond to higher-order
terms in the mean velocity. However, he never gave up
the empirical Boussinesq approach. He therefore always
included his higher-order contributions into the eddy
viscosity. Actually, in the older models, it was customary
to adapt calculations to experimental results by choosing
some suitable eddy viscosity. However, the only small in-
consistency in Prandtl's theories is the index max in his
free shear-layer model (8). Apart from this, all the
presented models are fully compatible with each other.
The difFerence-quotient model is the theory of highest or-
der, a generalization that leads to the most complete
description of turbulent behavior of all the models, dis-

cussed in Secs. II and III. Higher-order terms do not
occur anymore in a tangled way; they now succeed each
other with increasing order as it is common in series ex-

pansions.
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V. THE PERFORMANCE OF THE MODEL

A. Introduction

For a plane wake flow (Fig. 1), one can calculate the
Reynolds shear stress from mass and momentum con-
siderations [2]. An accurate turbulence model has to lead
to the same result, a requirement which, to the author' s
best knowledge, is not ful511ed by other turbulence mod-
els. In Sec. V B it will be shown that with the di8'erence-
quotient model the desired solution can be produced.
Then, for a turbulent round jet in a quiescent surround-
ing (Ug =0) and in a basic surrounding flow, with a ve-

locity Ug at least one order greater than the maximal
mean excess velocity (Fig. 2), several important mean
flow properties are analytically calculated. These results
are compared with measurements as far as experimental
data were available.

"2 UG UG
I

Li

UG+U)(x), x2~

il

p

G

'l//'XXXt'JV~
k. d

I

l

I I
I :I

VLI
I

p
'T

T

= Xt

X1 P
u2u', =—Ug (21)

FIG. 2. Turbulent round jet in a surrounding Qow with ve-
locity UG.

B. The turbulent plane make flow X2 X1 P
Po

b=P kd . (22)

u1= UG
—u1

The Reynolds number of the flow shall be

UgdRe= & 800

(16)

(17)

to guarantee a fully turbulent disturbance with a mean
velocity u, ' pointing upstream in the —x, direction (Fig.
1). The quantity v still denotes the kinematic viscosity.

At locations

X1 P &90,
d

(18)

A cylinder with diameter d is mounted into an uniform
potential flow with a velocity UG. The mean velocity of
the perturbed flow is

The quantity b denotes a characteristic width of the tur-
bulent free shear flow and k is a constant. Now we can
apply the following operations:

(23)

8 1 kd

Bxp Pkd x, —p

"d
dr/

(24)

The continuity equation and Euler equation in Cartesian
coordinates, describing the time-averaged behavior of a
turbulent plane wake —after applying a scale analysis-
are [2]

a self-similar flow regime —with Reynolds-number
similarity —occurs. It has its origin at x1=p some dis-
tance upstream from the axis of the cylinder. Therefore,
in the following subsections use can be made of several
similarity relations:

8
Bx) Ug

uy

ax, U, Bxp

u2u1

U2

(25)

(26)

P(
X1 P

u, '= Ug f, (ri), (19)
Substituting (19)—(24) into (25) and (26), and requiring or-
dinary differential equations containing only the variable
g, we obtain

u2*= UG

UG

X1 P
P2

ll X2

(20) PO+P1 P2

df, 1 df2
P if &

Po'ri +:
d'g p d'g

PO+P1 P2, 1

dft 1 df2
pifi po'9 +

dg dg

(27)

(28)

(29)

(30)

p i 0 To determine the exponents of all the power laws, two
further equations have to be known. The first one follows
from the requirement that the Reynolds shear stress
scaled with the square of the mean velocity in the main
flow direction is independent of x1..

FICx. 1. Turbulent plane wake fiow behind a cylinder. 2P1 —
P2 1=0 . (31)
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From (26), by an integration vertical to the main fiow
direction, we derive

db
upu t

= x2 [UG u) (x),x2)]
dX)

f u)
dx2 =const, (32)

UG
—[UG —u, *(x„x2)]

X
b —x2

(42)

because the Reynolds shear stress vanishes at infinity
(+ DO). Important to obtain self-similarity is the assump-
tion that the mean disturbance is at least one order of
magnitude smaller than the undisturbed mean flow veloc-
ity:

u, *
«1.

G

(33)

QO—
pUG u) dx2 (35)

Studying momentum fluxes through a closed rectangular
boundary far from the cylinder, with assumption (33), we
obtain

f p[U,' (U—, u,—*)']dx, =2pU, f u, *dx2 . (34)

The mass flux entering through the boundary from the
left-hand side is greater than the outflowing flux leaving
the bounded domain on the right. Therefore, the follow-
ing momentum loss:

This follows because

y2 —x2, u) —0, u) —Ug .
min max

(43)

The maximal mean velocity UG occurs at infinity:
x2 ~ (Fig. 1). Therefore, it is suitable to set

max

xz =b—as we already have done in Eq. (42)—with the
max

great advantage to obtain a Reynolds shear stress that
does not depend on the definition of the width b:

u]*(x],x2)
u2u', = lim —x2 — Ug

b-~ oo b dx, X2

b

(44)

Because the scaling behavior of the width of the wake,
given in Eq. (22), also has to be valid in the limit
when b tends to infinity, a natural consequence is
b ~ oo P—+ oo. This assumption leads to the following
result:

results. After Newton's second axiom the sum of (34)
and (35) is equal to the mean force (drag) acting on the
cylinder:

u2u )

U

db

b dx) UG

X21

2 xi p
, (45)

UG

F l oo u)
X2 ~d -- UG

(36)

which is identical to the analytically derived result (41).
To fulfill (41) with a model containing Boussinesq's ap-

proach only, one would have to deal with

an equation that leads to the fourth relation

uo+S &=o (37)

1fi"
d17

f, ~ exp(g), (46)

The system of equations (27), (29), (31), and (3'7) has the
following results:

(38)

The width of the turbulent domain increases with a root
dependence. With these results, after an integration of
Eq. (30), the scaled Reynolds shear stress is obtained:

(39)

a rather unsuitable function for a mean velocity profile.
For a plane wake the Reynolds shear stress had to be

obtained by a delicate limiting procedure, because in this
case the difference quotient vanishes. The eddy viscosity
of our model, namely, the physical properties in front of
the difference quotient, have to tend to infinity to give a
bounded Reynolds shear stress. Therefore, from this ex-
ample we learn that the entire relation forms an indivisi-
ble unit.

C. The turbulent round jet in a quiescent surrounding

An integration by parts yields

f2, i= 2nfi . (40)

Similar to Sec. VB, the basic flow equations in cylin-
drical coordinates, describing the time-averaged behavior
of a turbulent round jet, are

Finally, we have derived an analytical solution of the
Reynolds shear stress: a+ (x2u~*) =0,

BX
][ X2 BX2

(47)

u2u )

U~2 2 x) —p UG
(41) Oui Oui

u, *— +u2* + (x2u2u
&

)=0,
Bx )

It must be possible to derive this result with an accurate
turbulence model.

Now, the difFerence-quotient model can directly be ap-
plied to the plane wake flow: u) = U~+u) (49)

where again the properties have been split up into a basic
flow and a perturbation:
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We assume the following similarity relations:

Pl
X1 Pui*=U fi(n), (50)

1f', +nf, ——f, —— (nf„} =o.'
dn P dn n dn

From (60}after a partial integration, it follows that

(61)

u2*= U
X1 P

P2

f2(n), (51) f'z=P nfi ——J, kfi(C)dk (62)

P2 l
X1 P

uzu', = —U2 fz, (n}, (52)
The difference-quotient turbulence model written in
terms of the self-similar variable n is

Pp
X2 X1 Pb=P kd . (53)

ui'(xi, 0)—ui (xi,x2)
u2u', = b—u, '(x»xz)

xi
(63)

Substituting these self-similar functions into the continui-

ty equation yields

Po+P1 P2 (54) because (see Fig. 2)

&if i son —+—— (nfl}=o .
1 1 d

dn P n dn

The Euler equation becomes

(55)
xz =0, u, =0, u, =ui'(x„0) . (64)

If we insert (62} and (63} into (61},the following form is
obtained:

1

kd

UG + X1 P
P) 'p) —1

X1 P
kd

2

=1—2
i

(65)

dfi 1 xi p
Plfl Eon d p

where we have introduced the abbreviation

(66)

f2 d p kd d (nfl, i}
7l 'll 7l

(56)

Taking the derivative of (65), and substituting an expres-
sion given by the same equation (65), leads to the highly
nonlinear differential equation

From the self-similarity of the following scaled correla-
tion, we obtain

nf if'i' —2(f i)' —3nf i(f i)' —(fi }'fi =o .

After substituting:

(67)

Q2Q1
=2p1 p2, 1=0 .

Q)

Self-similarity only occurs in two limits, the first being

U »1.
UG

(57}
fi =explg(n)l

a somewhat simpler differential equation results:

ng"

The solution of this equation is

g= —
—,'g +const .

(68)

(69)

(70)
The additional velocity of the jet U at the outlet of the
nozzle is an order of magnitude higher than the velocity
of the basic flow UG (Fig. 2). This assumption leads to
two further relations and some simplifications of (55) and
(56):

po+p1 p2 =1

po+2p, —p2, =1
po 1&p1 1&p2 1&p2 1Po+P1

2p1 p21 0

We obtain a Gaussian function for the radial distribution
of the dimensionless mean velocity in the main flow
direction:

fi =exp( —
—,'n ) . (71)

Experimental results are found in Refs. [16—19]. The
analytical calculations in this section, obtained with the
difference-quotient model, are compared with the mea-
surements performed by Panchapakesan and Lumley
[19]. In their paper they give an estimation of

(59) =75.2 P=0.082 .1

22 (72)

fi+n ——— (nf2}=o
dfi 1 1 d

dn P n dn

and

(60) For all comparisons of calculations with measurements
this value of the spreading parameter p has been used. It
corresponds to a spreading angle of the turbulent -round
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1f2=P rI exp( —
—,'ri )

——[1—exp( —
—,'g )] (73)

jet of 9.4'. Figure 3 experimentally confirms the self-
similarity of the investigated velocity profiles. Data
points are given for different values of downstream dis-
tances s/d. They clearly show the scaling behavior
which has been assumed in the theoretical treatment of
this section.

Continuing, after an integration of Eq. (62), we obtain

0.02-

0.01

0

65
-0.01

Panchapakesan and Lumley have not measured the mean
velocity in the radial direction f2 independently. They
have calculated this distribution taking a least-squares
spline fit of the data set of f 1

and substituting it into the
continuity equation. Therefore, a comparison of the ex-
perimental values of fz with results obtained by Eq. (73)
would also show good agreement, but without being a
further test of the model. In Fig. 4 it can be seen that the
vertical mean velocity has negative values some distance
from the axis; a flow occurs towards the jet axis. In fluid
dynamics this phenomenon is well known and is named
entrainment. Note that at its maximum fz only reaches
2% of the maximal value of f, . By substituting (71) into
(63) the tangential Reynolds stress can be derived, which
is a linear combination of two exponential functions:

-0.02

-0.03
0

I

0.1 0.2 0.3
X2
X 1

I

0.4 0.5

Pl= 2

X2
Q2Q l Xl,

Xl

u, '(x1,0)

FIG. 4. The scaled radial distribution of the mean velocity
perpendicular to the axis of the jet shows entrainment (f, & 0).

fz &

= —P—[exp( —
—,'q )

—exp( —g )] .
1

(74)
X2

a
x~ /x

1
=0

As shown in Fig. 5, the calculated Reynolds shear stress
is also in good agreement with experimental results.

For the mean velocity in the main flow direction —on
the jet axis —the following equation can be derived (see
Ref. [20]):

X2

x&/x& —0

(76)

dQl
Ql

dX1

—~z
ul =0

Xl P
(75)

A Taylor expansion of the Reynolds shear stress (74), pre-
dicted by our model, in the limit x2/x

&
~0, has the fol-

lowing form:

whereas the exponent of the power law describing u, '
occurs as a coefficient:

1 X2f2, 1

Xl
+0

2
X2

(77)

1 2

1(

0.8

0.6

0.40
~E

6 0.2

Q

0.04 0.08
X2

Xy

0.12

Calculation

0.16
I

0.2 01
0

~ 0.025
I

0.02

0.015
"r5

0
0.01

0.005
0

E 0.04 0.08
X2

Xy

0.12

Calculation

0.2

FIG. 3. Comparison of the calculated radial distribution of
the mean velocity in the main flow direction with experimental
results (from Ref. [19]).

FIG. 5. The radial distribution of the Reynolds shear stress.
Experimental data are from Ref. [19].
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Substituting Eq. (77) into (76) yields p, = —1, just as re-

quired by the similarity relations [compare with (59)].
Therefore, the exponent of the power law describing the
behavior of u&*—obtained with the difference-quotient
model —is also consistent with the absolutely necessary
requirement given by the conservation laws of mass and
momentum.

D. Turbulent round jet in a coflow with high velocity

The second case showing self-similarity occurs if

0.8 -

))

0.6-

0.4-

0.2-

«1.
UG

(78)
0

8 10

Because this condition is fulfilled in many combustion
problems it is of great practical importance, especially in
chemical engineering.

Equations (54) and (57) are still valid and together with
(56) and (78) it follows that

0.015

po+p1 p2 =1

po+p& p2, ] —1 — 2 — 4 — 4

2p + =O po 3 p1 3&p2 3&p2, 1 3po

2p, —
p2, , =0

Now the continuity and momentum equation are

(79) 0
0 8 10

3 1 d2f i+v/ ——— (r/f2)=0,
dr/ P r/ dv/

3 U 1 d
2f, +7/ +— — (r/f p ] ) =() .

g r/ 7/

(80)

(81)

The difference-quotient model again applies with no
problems (y2 =b):

db
u2uI =b [Ug+u)'(x), xq)]

dx i

[Ug+u) "(x),0)]—[Ug+u)'(x(, x2)]
X

p«f —(I f ), —
2, 1 3 U 1 (82)

dfl 1 dfl
2f i+r/ +— =0 .

d Y/ YJ d7/
(83)

When this equation is integrated, the inner derivative is
present in the numerator. Taking also (80) and (81) into
consideration, immediately some analytical solutions fol-
low:

71

1+ 3 1+

p Ug

1+q'

(84)

after applying an approximation given by (78). Substitut-
ing (82) into (81) yields

FIG. 6. Several mean properties of a round turbulent jet in a
high-velocity surrounding flow with a low excess outlet velocity.

These functions are shown in Fig. 6. In combustion
problems chemical processes are involved and very often
the jets have rotating cores. That is the reason why no
adequate data were found to compare the theoretical pre-
dictions with measurements. Nevertheless, the profiles
are qualitatively absolutely correct. The mean velocity
profile in the main fiow direction f, shows a maximum at
zero and vanishes continuously towards infinity. Because
of symmetry requirements the mean vertical velocity f2
and the Reynolds shear stress f2 &

have to vanish at the
origin (v/=0), which is indeed the case. As desired, they
both also approach zero when v/ tends to infinity. In-
teresting is that in this case, the function f2 does not
change sign. Therefore, a further prediction of the model
is that a turbulent round jet with a low excess outlet ve-
locity in a uniform high-velocity surrounding does not
show the entrainment phenomenon.

VI. CONCLUSIONS

The aim of this paper was not to give a contribution to
one of the most sophisticated modern methods of tur-
bulence calculation and/or modeling, e.g., transport
equation models or large eddy simulation. The intention
was to recall some older approaches from Prandtl and to
connect them with this recently derived difference-
quotient model: a turbulence model with no empirical
constants. This theory contains derivatives of infinite or-
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such an infinite-order theory is compatible with energy-
cascade considerations, such as, for example, those car-
ried out by Kolmogorov and Obukhov in 1941. On the
other hand, the model is restricted to systems with a tur-
bulence in local mechanical equilibrium, which is charac-
terized by production and dissipation of turbulent kinetic
energy only (oo, 2). More recent approaches with gra-
dient laws, such as the standard k-e model, can be used to
describe more cotnplex flow situations (1,4); e.g. , see [22].
From our discussion it becomes clear that such models
are only first-order approaches to any given possible tur-
bulent flow processes. On the other hand, we know that
the difference-quotient model at least describes simple
flows, such as turbulent shear flows, correctly. Despite
this subtle difference, what we further must attempt to in-
vent is a model of type {Oo,4), containing all the advan-
tages of the model {1,4) and the approach {oo,2). Recent
approaches, such as the renormalization-group k-e mod-
el, already tend in this direction.

In my opinion the importance of large-scale space and
velocity differences, as they here occur in the description
of second-order correlations —with no dependence on the
velocity profiles in some open intervals between distinct
points —could be a basic feature of (fully developed) tur-
bulence. Hopefully, this phenomenon will be explained
in terms of a statistical theory of turbulence one day.

FIG. 7. Some turbulence models and their domains of appli-
cation.

der. Applying Fourier transformation techniques, we
find that the model corresponds to an infinitely large
number of wavelengths or eddy sizes. Figure 7 shows the
number of energy terms in the energy equation of tur-
bulent flows —for simplicity, e.g., pressure and buoyancy
effects are included in the difusive term [21]—relative to
the number of wave numbers occurring in a model. Only
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