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Dynamics of the condensation of a saturated vapor into droplets
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A fluid-dynamic model of condensation is presented here. Under proper thermodynamic conditions a
saturated vapor condenses into tiny droplets. This nonequilibrium process is characterized by a transfer
of mass from the vapor to the incipient liquid, a thermal gradient at interface, and a release of heat from
the gas to the interface (heat of condensation). These three fundamental physical aspects of the problem
are taken into account in the present description. First, the thermal boundary condition for a spherical
interface is derived. This surface equation, together with the balance mass equation and the thermal dis-

tribution of each bulk phase, results in a first-order nonlinear differential equation. For single nonin-

teracting drops condensing onto a substrate (heterogeneous condensation) the equation predicts an ex-

ponent of
3

for the time evolution of the droplet radius. But, for an assembly of interacting drops, the

power-law exponent changes to one. For the homogeneous case of single noninteracting droplets, the
equation gives a power exponent of —' and for an assembly of interacting drops, for small values of time,

the radius of the drop grows linearly with time. These results are discussed and compared with experi-
ment.

PACS number(s}: 68.10.Jy, 64.60.gb, 82.60.Nh

I. INTRODUCTION

Most human beings recognize the effects of gravity and
condensation as phenomena happening everywhere
around in nature. Formation of tiny droplets on every
flower or leaf is a routine spectacle in every early morn-
ing all around the planet. "Breath figures" or dew forma-
tion on windows or spectacles [1], transformation of
clouds into rain, condensation of water in a cloud
chamber [2], microemulsions and macroemulsions stabili-

ty [3], creaming of emulsions [4], grain growth [5], etc.,
are problems of considerable interest and pose important
questions to be understood in condensed-matter physics.
In thermodynamics language this phenomena is known as
a first-order phase transition. Heterogeneous and homo-
geneous [6] are the names for the two ways of a saturated
vapor condensation. When vapor condenses on an inho-
mogeneous solid surface or a seed or a fast particle (Wil-
son chamber}, the process is named heterogeneous con-
densation. But when a pure saturated vapor is condensed
by density fluctuations, the condensation is called homo-
geneous. From the thermodynamic point of view [7],
heterogeneous and homogeneous condensation differ on
the density value at which each fit occurs. To trigger
condensation, the latter process requires higher-density
values than the former. This fact will be used later to
characterize both ways of condensation. Measurements
were reported on the growth of breath figures on solids
[8,9], on liquids [10], and also the influence of wetting
conditions in the formation of breath figures on fibers
[11]. Models considering diffusion-limited droplet
growth developed from a mean-field boundary approxi-
mation [12]and the influence of temperature gradients on
the kinetics boundary layer problem for a condensing
droplet have been developed [13] in order to understand

the experiments. A dynamic-scaling approach was also
developed for the description of the droplet-size distribu-
tion [14]. The kinetics of droplet growth was investigated
using Monte Carlo simulations, scaling theory, and the
Smoluchowski equation [15]. Simulation on the forma-
tion of large liquid drops by molecular aggregates was de-
scribed and discussed for the stationary and falling case
[16]. The laws of condensation onto a substrate or the
homogeneous nucleation of a supersaturated vapor could
also depend on the droplet's interaction. Interacting
droplets grow faster than single ones. In an assembly of
interacting droplets the growth is produced by coales-
cence. Bigger ones, following the Laplace law, grow fas-
ter to reduce the pressure of the system. Single drop con-
densation could be seen as a convective transfer of mass
and heat from the gas phase to the liquid drop. In a
coalescence process the convective transport of gas is ir-
relevant. The growth is ruled by the transport of liquid.
Certainly here condensation will be viewed as a fluid-
dynamic process but the thermal distribution and the as-
sociated thermal gradients at each phase will be such that
no internal flow though Marangoni or Raleigh-Benard
convection takes place.

II. THE THERMAL BOUNDARY CONDITION
FOR A DROP

Before considering the specific fluid-dynamic problem
of condensation of a saturated vapor into tiny droplets, it
is necessary to know, in spherical symmetry, the interfa-
cial thermal balance equation. This equation has been
previously derived for the case of a plane surface of sepa-
ration [17]. We follow here a phenomenological ap-
proach. We start by considering the conservation law
[18]of the specific internal energy u of an inhomogeneous
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fluid (the interface)

PQ = —div(puv +J )
—P:grad(v),

where p is the density, v is the velocity, J is the heat
flow, and P is the total pressure tensor. From here on it
will be considered that there is not any gradient of tem-
perature, velocity, or concentration on the surface of the
drop. That is all the changes occur along the radial
direction r. Then the hydrostatic part of the product
P:V( v) reduces to

Bv~ Bvr
P:grad(v) = gP tt

—Pt»—
Bxti dr

(2)

where Pz and v, are the pressure and the velocity along
the radial direction. Besides all these special restrictions
on the gradients and on the tensor [19], we also assume
that the system is in a steady-sate situation. However,
under these assumptions, Eqs. (1) and (2) become

1 8 BT
dr Br

v
+P~ =0,

Br

a 2r v, (pu +Pz) BT
r

8 2—v (r P )=0.rfr N (4)

By integrating this equation between two concentric
spheres, r e& r, & r—+e, one at the gas and the other at
the liquid side, and assuming that v„ is in this region a
smooth function of r, we then have

I' r+e

r v„ph ~ ——(v, ),[(r Pi»)]"„+;=0. (5)
r

h indicates the specific enthalpy (h =u +PN Ip). The ve-

locity v, has been approximated by its value at the Gibbs
dividing surface (v, ),. By inserting the Laplace relation
(b,P =2o Ir) into Eq. (5), it becomes

K+6

+(v, ), =0 .20
(6)

dT
v„ph —tt

dr

As it can be seen this thermal boundary condition
takes into account the enthalpics and the thermal flow of
each phase as well as the capillary pressure contribution.
Equation (6) is a basic equation for the description of the
condensation process.

III. DYNAMIC OF CONDENSATION

The process of condensation of a saturated vapor into
droplets consists basicaliy of an interchange of heat and
mass, occurring at the surface of the drop. The former,
regulated by Eq. (6), is rewritten as follows:

g
~aP + 20 ar aTP" at, +

r at "ar

where a(dT/dr ) is the normal part of the heat flow vec-
tor Jq and K is the heat conductivity. This last equation
can be written as follows:

where the radial velocity v„=(Br/Bt) and ( )f indicates a
difference of the corresponding property at both sides of
the Gibbs dividing surface (the liquid and the gas sides,
respectively). Let us write, for the steady-state situation,
the continuity equation at the droplet's surface. It reads

Br dr
p' at ,

pg at .g

(8)

L represents the latent heat of condensation, KI and Kg

are heat conductivities of the liquid and gas, respectively.
In the next applications of this equation, it will be as-
sumed that the thermal gradients are such that no con-
vective motion at the drop's surface is present; neither
Raleigh nor Marangoni instability [20] is present.

A. Heterogeneous growth of single drops

In order to calculate the temperature gradient at the
interface from the liquid and gas side, respectively, it is
necessary to know the thermal distribution at both bulk
phases. The temperature and the gradient can be found
by solving the following difFerential equation:

p = —d1VJ
dq
dt

(10)

where dq is the sensible heat per unit mass transferred to
the liquid droplet from the gas phase. J» is the "heat
flow" [18] and is given by the Fourier law
(J»= —~gradT). The thermal evolution of the droplet
can be found by solving the following equation:

d 2dT
dI' dr

Ao

Kl

Here we have assumed that the sensible heat transferred
to the liquid (pdq/dt)= Ao is constant. The solution of
the above equation is

AoT= — r +C,
6KI

(12)

where C is a constant. For obtaining the thermal distri-
bution of the gas phase, it is assumed that heat flows radi-
ally to the drop, then the temperature is given by

PI and pg indicate the liquid and gas density, respectively.
As pi »pg, it then follows from Eq. (8) that

(drldt)z »(Br/Bt)i .
Close to the interface, the gas particles move faster than
the liquid ones. By remembering that the heat is trans-
ported from the gas (saturated vapor) to the liquid (the
drop), Eq. (7), the surface energy balance equation, then
becomes

Br 2o 1 Br
Bt pgL r Bt

I BT + BT

p L Br t p»L Br
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2 GT
r

t& Qr
(13)

The heat flows from the gas to the drop, then the solution
of Eq. (13}is

T= A /r+B, (14)

where A and 8 are constant. After substitution of the
respective thermal gradients, evaluated from Eqs. (12)
and (14), into Eq. (9) we get the following nonlinear first-
order differential equation:

Br 2o 1 Br Ao A~g 1+ —=0
Bt p&L r Bt 3p&L p&L

(15)

Here the subscript on the velocity has been dropped
because it was assumed that

A0 3Am
r =0

3p L pgL
(16)

The solution of this equation after expanding the ex-
ponential is

3

r =r + —+0

3A]c A0

A p L
(17)

Drops without interactions grow with time following a
power of —,'.

Let us assume now that the temperature of the drop
remains constant during the process of condensation; in
such a situation the thermal gradient evaluated from the
liquid side will be null and the growth equation (9) will
reduce to

3A~ =0,
Bt p I.

then

(ararat), =(ar jest), .

The solution of this differential equation will provide us
the condensation laws. It must be kept in mind that con-
densation of a vapor could be reached under two intrinsi-
cally different situations. When the saturated vapor con-
denses by fluctuations on a homogeneous surface of the
system, the condensation is called homogeneous. The va-

por is in a metastable state and the phase change is trig-
gered at high-density values. Another situation is when
there are imperfections on the wall. In this case the tran-
sition is named heterogeneous and occurs at lower densi-
ties than the former. For water drops of the order of pm
the "coefficient" of the second term of Eq. (15) is

267 1—&1.pLr
Under this assumption Eq. (15) reduces to

does not affect the condensation law of single drops. The

3 growing power was found by experiment and by nu-

merical simulation [9,10] and also predicted via a heuris-
tic model [1].

B. Heterogeneous growth of an assembly of drops

The situation in this case is different than for single
drops. Here the growth is basically governed by the
coalescence of neighboring drops. Bigger drops grow at
the expense of smaller ones (condition of mechanical sta-
bility). The present theory cannot be applied to an as-
sembly of droplets having nearly the same size. The
phenomenon of coalescence rescales the growth in a
geometrical way. There are many cases where a mono-
dispersed distribution of droplets is superimposed on a
distribution of small droplets [14]. The present case has
been done thinking on this type of polydisperse systems.
It is assumed that the growing drop is surrounded by
smaller ones of any size and it is practically circumvented

by liquid. This bigger drop is imbibed in the same liquid.
In Eq. (7) the energy ffux due to the mechanical work
performed on the system as well as the energy flux due to
the gas phase are neglected. The drops' temperature and
its gradient are given by Eq. (12). Under the above as-
sumption, Eq. (9) reduces to

A0
r =0.

3p L
(20)

The solution for this equation is

(Ao/3p L)t
r =r0e (21)

C. Homogeneous growth of a single drop

The homogeneous growth of a drop is produced when
a supersaturated vapor is condensed by fluctuations of
density. Let us suppose that the temperature of the
liquid drop is nearly constant and that of the gas (the out-
side ffuid} is given by Eq. (14). As we mentioned before,
the vapor density here reaches higher values than in the
heterogeneous case. Under these circumstances, it is as-
sumed that

2o 1—&1,
pgL r

By expanding the exponential and considering
Ao l3p L & 1 [21] for times t & 10 Eq. (21}becomes

A0
r =r0+r0 t . (22)

'3p, L,

Coalescence accelerate three times the growth of a single
drop. Experiments and simulation agree with this result

[1].

A~
r = t.

p L
(19)

then Eq. (9) becomes

Av
0 (23}

Also here we get the same power law as before [see Eqs.
(17) and (19)]; the temperature distribution of the drop The solution of this equation is
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(24)

In this case the radius grows with the power exponent —,'.
This growth exponent is similar to the corresponding of a
3D droplet on a 1D substrate [1].

dr

Bt

Ao
r =0.

60
(25)

The solution of this equation is
r

6e 1 1
r =ro+

Ao to t
(26)

It is seen from this equation that for small values of t,
r=t, and at large values of t, r=const. The former
asymptotic solution is similar to that found before for the
heterogeneous case [see Eq. (22)].

IV. CONCLUSIONS

The condensation problem at the light of a fluid-

dynamic approach has been studied here. First of all, we
have found the surface thermal balance equation. This
equation was obtained, for the steady-state situation, by
integrating the three-dimensional energy balance equa-
tion. In the derivation, it was assumed that all the
relevant changes occur along the radial direction of the
drop and that there is no thermal or concentration gra-
dient acting on the surface of the drop itself. The result-
ing equation [Eq. (9)] links, at the Gibbs dividing surface,
the enthalpic, the thermal, and the capillary pressure

D. Homogeneous growth of an assembly of drops

As in the heterogeneous cases the growth of a drop is
fundamentally controlled by the coalescence of the small-
er droplets. The increase of the drop's mass by condensa-
tion of the saturated vapor is neglected in relation to the
coalescence process. Here it is also assumed that

20. 1—&1.
pgL r

A central bigger drop is imbibed by smaller ones of the
same liquid; the temperature and its gradient will be
given by Eq. (12). Then Eq. (9) reduces to

contribution to the energy. By properly using this equa-

tion, it can be treated single noninteracting and assemble
of interacting droplets for the heterogeneous and homo-

geneous condensation. The former case for both
droplet's situation is represented by Eqs. (16) or (18) and

(20), respectively. These equations were obtained by as-

suming that the capillary pressure contribution is neglect-
ed in relation to the thermal and enthalpic contributions.
It must be kept in mind that the condensation density
values of the saturated vapor for heterogeneous systems
is lower than the respective values of the homogeneous
ones. Then

20 1
1&

pgL

clearly represents the condition for condensation onto a
substrate. Water drops of the order of pm fulfill this con-
dition. For single noninteraction and assembly of in-

teracting droplets, the power growth exponents predicted
here are —,

' and 1, respectively. These results agree with

experiments [10] and numerical simulation [9]. It must
be mentioned that the —,

' power law was also obtained by a
model where it basically assumed a proportion between
the rate of change of the drop's volume and the concen-
tration gradient in the boundary layer [1]. The homo-
geneous growth of single drops and assembly of interact-
ing drops have been considered by assuming in both cases
that

20 1
1&

pL r

Here capillarity instead of the enthalpic contribution
plays an essential role in the description. Noninteracting
drops grow with the power exponent —,'. This growing

power is similar to the one found experimentally on very
thin thread under wetting conditions [11]. Finally, for
small values of t, the homogeneous case of an assembly of
droplets grows linearly with time. However, it can be
concluded that the present fluid-dynamic approach takes
into account the relevant feature of the condensation
mechanism and predicts correct power laws.

ACKNOWLEDGMENT

I thank A. E. Rodriguez for valuable discussions.

[1]D. Beysens, A. Steyer, P. Guenouu, D. Fritter, aud C. M.
Knobler, Phase Transitions 31, 219 (1991).

[2] W. G. Courtuey, J. Phys. Chem. 72, 433 (1968).
[3) P. D. Fletcher aud D. I. Horsup, J. Chem. Soc. Faraday

Trans. 88, 855 (1992).
[4] J. Bibette, D. Roux, aud B.Pouligny, J. Phys. II France 2,

401 (1992).
[5] C. J. Worner, S. Romero, and P. M. Hazzlediue, J. Mat.

Res. 6, 1773 (1991).
[6] A. A. Cheruov, Modern Crystallography III, Vol. 36 of

Springer Series in Solid-State Sciences (Springer-Verlag,
Berlin, 1984).

[7] F. F. Abraham, in Aduance in Theoretical Chemistry, edit-
ed by H. Eyring and D. Anderson (Academic, New York,

1974).
[8] D. Beysens aud C. M. Kuobler, Phys. Rev. Lett. 57, 1343

(1986).
[9]D. Fritter, D. Roux, D. Beyseus, aud C. M. Kuobler, J.

Stat. Phys. 52, 1447 (1988).
[10]C. M. Knobler and D. Beysens, Europhys Lett. 6, 707

(1988).
[11]J. M. di Meglio and P. Gaudeboeuf, J. Chim. Phys. 89,

1371 (1992).
[12]T. M. Rogers, K. R. Elder, and R. C. Desai, Phys. Rev. A

38, 5303 (1988).
[13]M. E. Widder aud U. M. Titulaer, J. Stat. Phys. 67, 92

(1992);67, 337 (1992).
[14) F. Family and P. Meakiu, Phys. Rev. Lett. 61, 428 (1988).



1250 V. A. KUZ 49

[15]P. Meakin and F. Family, J.Phys. A 22, 225 (1989).
[16]D. Greenspan, J. Phys. D. 22, 1415 (1989).
[17]V. A. Kuz, J. Colloid and Interf. Sci. 132, 269 (1989).
[18]S. R. De Groot and P. Mazur, Non E-quilibrium Thermo

dynamics (North-Holland, Amsterdam, 1969),pp. 11—17.

[19]J. S. Rowlinson and B.Widom, Molecular Theory of Capi I

lari ty (Clarendon, Oxford, 1982).
[20] E. Chifu, I. Stan, Z. Finta, and E. Gavrila, J. Colloid In-

terf. Sci. 93, 140 (1983).
[21] V. A. Kuz, Langmuir 8, 2829 (1992).


