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Avalanches and correlations in driven interface depinning
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We study the critical behavior of a driven interface in a medium with random pinning forces by
analyzing spatial and temporal correlations in a lattice model recently proposed by Sneppen [Phys.
Rev. Lett. B9, 3539 (1992)]. The static and dynamic behavior of the model is related to the
properties of directed percolation. We show that, due to the interplay of local and global growth
rules, the usual method of dynamical scaling has to be modi6ed. We separate the local from the
global part of the dynamics by de6ning a train of causal growth events, or "avalanche, " which can be
ascribed a well-defined dynamical exponent z~, = 1+(, 1.63, where t, is the roughness exponent
of the interface.

PACS number(s): 05.40.+j, 47.55.Mh, 75.60.Ch, 74.60.Ge

I. INTRODUCTION

The behavior of a driven interface subjected to
quenched random forces plays an important role in the
ordering kinetics of impure magnets and other domain
growth phenomena [1]. The driving force F can be re-
alized by a magnetic 6eld, pressure, or chemical poten-
tial favoring the growth of one of the coexisting phases.
If F is weak, the interface is typically pinned in one
of the many locally stable configurations. In this case
growth is possible only through thermally activated hop-

ping, which is an extremely slow process at low temper-
atures. However, when F exceeds some critical value F„
all metastable states disappear and the interface is then
free to move even at zero temperature. The depinning
of the interface at F, can be considered as a critical phe-
nomenon where characteristic quantities show power-law
behavior, e.g. , the velocity of the interface is expected to
scale as v (F —F,)s, where 0 is a critical exponent.
It is known that charge-density waves pinned by impuri-
ties exhibit very similar behavior [2]. The dynamical be-

havior associated with the disappearance of metastable
states (i.e. , avalanche) as F is increased towards F, has
been a subject of recent interest in the study of systems
far &om equilibrium [3—6].

A plausible continuum description of the interface dy-
namics is given by the following equation with a Kardar-
Parisi-Zhang (KPZ) [7] nonlinear term:

Bh 2 A

Bt
= vV h+ —(V'h) +F —rt(», h),

2

where h(x, t) is the height of the interface. Unlike the
original KPZ equation for Eden-type growth processes,
here il(x, h) is a quenched random force with short-range
correlations. In the case A = 0, all critical exponents
describing the depinning transition have been calculated
recently in a functional renormalization group treatment
close to four interface dimensions [8]. For growth in an

isotropic medium, it is plausible that the A term is not
present when the interface moves with vanishing velocity.
However, the term can be present for anisotropic growth.
Most solid-on-solid type models are expected to be in the
latter category.

In 1+1 dimensions, there is a particularly simple class
of lattice models which exhibit a critical depinning tran-
sition [9,10]. The mechanism for pinning is the directed
percolation of cells with pinning forces g greater than
the driving force F. The threshold force F, needed to
depin the interface is then simply related to the critical
percolation density p, of such cells by F, = 1 —p, . The
roughness exponent of the pinned interface is equal to
that of the critical percolation cluster, ( = (, 0.63.

In a separate development, Sneppen introduced a sim-

ple model (model B of Ref. [11],hereafter referred to as
the Sneppen model) to examine the interplay between
local and global rules of growth in determining interface
roughening and temporal correlations. He found numer-

ically in 1+1 dimensions that the roughness of the in-

terface also obeys the scaling of a string on a critical
directed-percolation cluster.

As we explain below, the same roughness exponent for
the two types of models is due to the fact that the same
geometrical constraint (the "Kim-Kosterlitz" condition)
is invoked in defining a locally stable configuration [12].
There are, however, differences in the way the interface is

driven. Although the pinning and elastic forces on a given
site in the Sneppen model are local as in Eq. (1), each
time the site on the interface with minimal g = g;„ is
selected globally and made to grow by one unit in height.
Neighboring interface sites then adjust themselves to re-

cover the geometrical constraint. In the language of a
uniformly driven interface, such a rule corresponds to in-

creasing F just above g;„to make one site unstable, and
then quickly set I" to a much smaller value to prevent an
avalanche taking place.

The Sneppen rule allows one to sample a particular se-
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quence of interface configurations, each of them being a
metastable configuration at some value of F. Successive
configurations in the sequence differ only by an infinites-
imal amount, i.e., a few sites (about four) which have
moved when one site is made unstable. The situation
here resembles that of an interface at a finite tempera-
ture and driven by a»nonform force F far below F,: Local
irreversible motions are made possible by thermal Huc-

tuations, but the interface stays always close to some
metastable state.

Further nnmerical studies of the model by Sneppen and
Jensen [13]revealed interesting spatial correlation of suc-
cessive growth events. In addition, they have found that,
in the saturated regime, the height advance at a given
column exhibits complicated scaling with time, with ex-
ponents varying with the moment considered.

The aim of the present paper is to analyze the spatial
and temporal correlations in the Sneppen model and try
to relate the observed scaling behavior to the properties
of directed percolation. It turns out that some of these
correlations depend on the value of g (or equivalently
F) at a given moment. Since g; fiuctuates in time, for
these correlations the temporal translational invariance is
lost. This is an important feature of the dynamics based
on global rules.

Another significant consequence of the global rules is
that growth is no longer homogeneous in space. At a
given moment, only a small part of the interface is mov-
ing. The growth events that follow may be either close
by or far away. Due to this property, the usual method
to perform dynamical scaling, based on the presumption
of a single growing correlation length, should be modi-
fied. In this connection we found it useful to distinguish
growth events which are close by and hence bear strong
correlations, from those which are far apart. We observe
that a train of growth events, started with some g;,
propagates laterally with a well-defined dynamical expo-
nent zi „which can be related to the roughness of the
directed-percolation cluster: zi, ——1+ t,', 1.63. In the
context of a driven interface, this motion can be thought
of as an avalanche. We found that the distribution of
avalanche sizes obeys a power-law decay up to a size re-
lated to g; . The spatial-temporal correlations between
successive growth events, on the other hand, involve both
local and global motion.

The paper is organized as follows. In Sec. II we re-
call the definition of the Sneppen model and present a
theorem which relates the stable (static) configurations
of the Sneppen model to directed percolating strings. In
Sec. III we define the avalanches (causal events) and
determine their dynamical behavior as well as their size
distribution. In Sec. IV the spatial-temporal correlations
are investigated by considering the distribution of lateral
distances between successive growth events. Section V
contains conclusions and a s»mmary.

II. DISTRIBUTION OF PINNING FORCES
AND ROUGHNESS

We first review the definition of the Sneppen model
[ll]. Each cell (i, h) on a square lattice is assigned a

random pinning force i1(i, h) uniformly distributed in the
interval [0, 1). The interface is specified by a set of inte-
ger cobimn heights h; (i = 1, ..., L) with the local slope
constraint lh; —h; il & 1 for all h, ("Kim-Kosterlitz"
condition). Growth h~ ~ hi + 1 proceeds at the site j
where the pinning force g(j, hi) = g; is the minimum
among all interface sites, followed by necessary adjust-
ments at neighboring sites until the slope constraint is
recovered. The growth rules are illustrated in Fig. 1.

Since we want to relate the behavior of the interface
in the Sneppen model to directed percolation, we first
recall some of the properties of directed-percolation clus-
ters [14]. When the density p of occupied sites is less
than some threshold value p„a typical cluster of occu-
pied sites connected horizontally or diagonally extends
over a distance of the order of (~~ in the parallel direction
and a distance of the order of (~ in the perpendicular di-
rection. For p ) p„ there appears a directed percolating
cluster which extends over the whole system. This clus-
ter has a network structure of nodes and compartments,
where each compartment has an anisotropic shape simi-
lar to the connected clusters below p„characterized by
(~~ and (~. On both sides of the percolation transition,
the two lengths have the power-law behavior

Series calculations give v~~
= 1.73360.001, v~ = 1.097+

0.001 [15], and p, = 0.5387 + 0.003 [16]. The roughness

of a percolating string scales as $~ (~~
", i.e., the

roughness exponent (, = v~/v~~ 0.63.
In Ref. [12]we proposed to study the distribution P~(g)

of pinning forces g(i, h;) at the interface and the probabil-
ity distribution P (g; ) during growth. When starting
at t = 0 with a fiat interface h; = 0, the forces g(i, h;)
are uniformly distributed. During the transient regime
the interface becomes rough and since the smallest pin-
ning force g; is always updated, the sites with small
g(i, h;) become rare. This in turn implies that the typ-
ical value of the selected g;„ increases with time. The

FIG. l. An interface configuration (filled circles and full
lines) is updated (big circles) at the site which has the smallest
pinning force g;„. Four possible growth events are shown
including local adjustments (small circles and dashed lines)
due to the slope constraint lh; —h; i l

& 1. Time is measured
in units of such growth events. Each interface configuration
may be considered as a directed percolating path.
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FIG. 2. Distribution P~(rI) of all pinning forces q(i, h, ) at
the interface (full line) and probability distribution P (rl;„)
(dashed line) for a system of size L = 8192. (a) The distri-
butions in the transient regime are averaged over the time
interval Lj2 & t & Land over 250—00 independent runs.

(b) P„(I7) and P (q;„) averaged over time in the saturated
regime.

distributions P„(r() and P (r(;„)shown in Fig. 2(a) were
recorded in the transient regime in a time interval around
t = L/2 for a system of size L = 8192. The peak of
P (r(;„) moves to the right with increasing time and
thereby "eats up the store" of small rl(i, (i, ) which were
present at t = 0 for the flat interface. As long as there
were no q;„ larger than a value r(„(t), the distribution
P„(rI) is still a constant for q & q„(t). [In Fig. 2(a)
q„(t) —0.3.] In the next paragraph we show that in the
thermodynamic limit, there will never be an g;„ larger
than a critical value E, = 1 —p, 0.461 and therefore
the transient regime ends when q;„ first comes close
to F, Wh. en the peak of P (r(;„) approaches F„ its
height vanishes and the distribution becomes stationary„
which we show in Fig. 2(b) together with P~(r() in the
saturated regime. Since g;„& E„ the stationary dis-
tribution P„(r() is fiat for q ) F, in the limit L m oo

[17].
To see that the growing interface always has g

E in the thermodynamic limit we first note that every
interface configuration satisfying the slope constraint is
a path on a directed-percolation cluster of sites with g

greater than or equal to g~j„Such a path only exists if
the density 1 —g;„ofthese cel'.s on the lattice is greater
than the critical percolation density p„ i.e. , g;„&1 —p,
for all interfaces. Paths on the infinite critical percolating
cluster have the largest g;„=E, = 1 —p, 0.461.

In a numerical simulation with a finite system, how-
ever, we see only a part of an infinite critical percolating
cluster. Thus an interface which traces out a critical path
can have a value g;„slightly larger than E, and the dis-
tribution P (g;„) in the saturated regime in Fig. 2(b)
is not exactly zero for g;„)E,. The motion of the flat
interface at t = 0 to the first critical path corresponds to
the transient regime [see Fig. 2(a)].

In the following we show that the interface motion is
quite restricted by a set of strings which make only min-
imal reference to the initial interface position. All con-
figurations referred to below are assumed to satisfy the
Kim-Kosterlitz condition. Denoting by A = ((i, ) and
B = (hP ) two arbitrary interface configurations. We say
A ) B if h, ; ) 6, for all i and that the inequality holds
at least for one i, A = B if h+ = 6; for all i, and A & B
if B & A. Of course, not all pairs of configurations obey
one of the three relations. However, in a given realization
of the Sneppen model, we have H{t) = (h;(t)} ) H(t')
for t &~'.

In a given realization of the random forces g, each
configuration H = {(i;) has a minimum random force

q;„(H) on the interface. Given a number c (0 & c & 1),
we define a closest configuration E(c;H) to the config-
uration H as a configuration in the set 8 = {H'[H' &
H and rI;„(H') ) c) such that any other H' C 8 sat-
isfies H' & E(c;H). The existence of E(c;H) can be
shown by noting that, for any two configurations A and
B in the set 8, C = {h,. = min[h, . , h, ]) & A, B is also
in 8, even though A and B may not be assigned any re-
lation. The components of E(c;H) are in fact given by
h, = mlnH~~s{h;).

Let us now consider an interface configuration at to,
Hp ——H(tp). For c & r(;„{Hp), E{c;Hp) = Hp. In the
thermodynamic limit, E(c;Hp) does not exist for c & F,
The interesting case occurs at rI;„(Hp) ( c & F,
The following argument shows that, for c in this range,
H(ti) = E(c;Hp) holds at a later time ti ) tp. Since
h, (t) is an ever increasing function of t for all i, there
is a time ti & tp such that H(ti —1) ( E(c;Hp) but
no inequality for H(ti). I et rl;„(t) = rI;„[H(t)]. Ob-
viously r(;„(ti —1) & c as otherwise we contradict the
definition of E(c;Hp). This implies that the site i
at which rl;„(ti —1) is realized is not on E(c;Hp), i.e. ,

6, (ti —1) & h, . According to the growth rules, each
column may advance at most one unit in height in one
time step. Therefore (i;, (ti) ( (i; . Simple geomet-
rical consideration shows that the neighboring colunins
which are made to grow by growth at i;„due to the
Kim-Kosterlitz condition must also all lie below E(c; Hp)
at ti —1. Hence h, (ti) & (i, for alii The only possibility.
for H(ti) ( E(c;Hp) not to hold is H(ti) = E(c;Hp).

The motion with c = g,.„will be called an "avalanche"
below (see Sec. III). If we choose, however, c = F„it fol-

lows that paths on critica/ percolation clusters which are
(at one time) closest act as "checking points" where the
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interface has to go through. There, a "snapshot" of the
distribution P~(q) is exactly a step function. It can be
seen &om Fig. 2(b) that the intermediate interface con-
figurations between two checking points are also close to
critical, in the sense that only a small percentage (which
we expect to vanish in the thermodynamic limit) of sites
on the interface have g ( E,. Hence the interface in
the Sneppen model has approximately the roughness ex-
ponent ( of the critical directed percolating path with

( = (, = 0.63.
The roughness exponent ( can be measured by the

equal time height-height correlation function C(r)
([h(r + r', t) —h(r', t)]z) ~ rz& where the overbar and
the angular brackets denote the spatial and the con-
figurational average, respectively. For a system of size
L = 8192 we found a roughness exponent ( = 0.655 6
0.005 which is somewhat larger than the critical value
0.63. However, the measured exponent ( varies sys-
tematically with the system size: For L = 900 we get
( = 0.665 + 0.005, whereas for L = 65 536 we found

( = 0.648 6 0.005. An explanation is that in a finite sys-
tem the distribution P„(g) is not exactly a step function
and the motion between two critical clusters yields an
effective exponent larger than 0.63 similar to a moving
interface of Ref. [9]. In our simulations, P~(g) approaches
the step function with increasing system size. Thus we
expect that the measured discrepancy to the exponent of
the percolating cluster (, 0.63 vanishes in the thermo-
dynamic limit. This is also supported by a simulation
where we measured C(r) only when g;„ is close to F,
In this case ( = 0.64 + 0.01, which is consistent with the
expected critical value.

III. CAUSAL EVENTS: AVALANCHES

After a transient regime, when g; first comes close to
E„the interface in the Sneppen model exhibits a steady-
state critical behavior (saturated regime), which allows a
convenient study of the dynamics at criticality. However,
the behavior is complicated, caused by the interplay be-
tween the local adjustments due to the slope constraint
and the rule that the growth site with g = g;„ is cho-
sen among all interface sites. Successive growth events
can be far apart and the motion is therefore inhomoge-
neous in space. Hence a single growing correlation length
does not exist and the usual dynamical scaling has to be
considered with care. The realized sequence of growth
sites after a time t = to depends on the globally chosen
value g;„(t = to), which is responsible for the growth
inhomogeneity in space. Thus we will separate the local
part from the global part of the dynamics by defining an
"avalanche, " which has the property that the sequence
of growth sites inside the avalanche does not depend on
'dmin(t = to)-

An avalanche is defined by a sequence of growth events
(including the necessary adjustments due to the slope
constraint) started at any integer time t = to where
g;„(t= to) is denoted by g;„.This avalanche is termi-
nated at the first time r when g;„(r) is larger than g
i.e., for all times t with to ( t ( 7. the growth events have

g; (t) & iso,.„. We call this causal events because the
avalanche consists of a train of growth events which are
all induced by local adjustments in h, due to the slope
constraint after t = to.

To see in what sense the sequence of growth sites in-
side an avalanche is independent of g;„,we consider at
t = to two identical interface configurations A and B with
the same random forces g(i, h) above the interface but
with different g(i, h;) at the interface such that g,„[A] &
qo;„[B]at the same site j. For the configuration A there
may exist forces g(i, h;) with go; [A] & g(i, h;) & g;„[B)
but for interface B all g(i, h;) & qo, [B]. Since the ran-
dom forces above the interface are assumed to be the
same, all g;„of the growing interfaces A and B inside
both avalanches are identical because they are all induced
by identical local adjustments after t = to. When, how-
ever, at time r, il,.„[A] & il;„(r ) & g; [B], i.e.,
when avalanche A is terminated, this new growth site of
interface A can be far away, but for the interface B it has
to be still induced by the local adjustments of avalanche
B because there were no il(i, h;) & qo,.„[B]at t = to. We
have seen that although the random environment at (and
below) the two interfaces A and B is different, the motion
is identical until one of the two avalanches terminates.

A size s of the avalanche can be defined by the num-
ber of growth events including the necessary adjustments,
a = P, [h;(r) —h;(to)], and a width by max(i, such that
h;(r) & h;(to)) —min(i, such that h;(r) & h;(to)).

Prom Sec. II we know that an interface with g;„ is
driven to configurations with g', & go;„. At t = to
with g;„(t = to) = go;„, a part of the interface starts to
move which was "pinned" just before to by a path with
rl(i, h;) & go,„.This part of the interface moves through
a compartment of the percolation cluster to the next path
which again pins the interface with g(i, h;) & c = g
(see Sec. II). Since the compartment has a height of the
order of (~(g; ) and a width of the order of (~~(go,. ),
it is a natural conjecture that the width of the avalanche
scales with (~~ (g, ) [E, —g;„] "~~ and the size is at
most (~~ (g,„)(~(g;„) [F, —g,.„]

Note that at every (integer) time an avalanche is
started and big avalanches can contain smaller ones.
Thus successive growth events inside a big avalanche can
be quite far apart (jumps between small avalanches), but
all events are inside the correlation length (~~(g; )
[F, —go,.„] "~~. In this sense an avalanche is "localized"
and we call the corresponding motion "local dynamics. "
The presumption of dynamical scaling, that there is only
a single growing correlation length, is reestablished for
the local dynamics and we can ascribe a well-defined lo-
cal dynamical exponent z~, to the lateral propagation of
growth inside the avalanche: r ("".Since the size of

tl

an avalanche is proportional to the elapsed time 7, one
has f om(~~- -r -(~(~~

zl, 1+v&/vii = 1+(, 1.63.

In a simulation, this local dynamical exponent can be
detected by considering the infinite moment of the height-
height time correlation function in the saturated regime
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which have moved scales as the correlation length divided
by the system size, n~~ t~/""/L. Thus one has

which becomes for q —+ oo

C (t) (max;(h;(t + t') —h;(t'))) . (5)

Since only the column with maximum height advance
Ah contributes to the infinite moment C (t), most
growth events during the time t are involved in the mo-
tion through a compartment of a percolation cluster of
height b,h „, i.e. , Ah~a„(g &/(((

Thus C (t) t~- with P = (/zi, = Pi, .
Sneppen and Jensen observed a scaling of C (t) with

P = 0.41 6 0.02 which is close to the exponent Pi„=
(/zi„= v~/(v~ + v~I) 0.39. Our own simulations give

P = 0.40 6 0.01 which is in perfect agreement with Pi,
if we insert the measured ( 0.655.

The distribution Ps(b, h, t) of height advances Eh(t) =
h;(t'+ &)

—h, (t') is shown in Fig. 3(a) for 2s ( t ( 2~s

and Ah ) 0. Ph has a large peak at Ah = 0 which is
not shown, i.e., most of the columns i have not grown
(over 99% for t = 2 and 70% for t = 2 with L =
8192). Next we show that the distribution Ps(hh, t) for
the moving columns can be roughly brought to a "local"
scaling form when Ah is scaled by t~' . To normalize
Pj, (b,h ) 0, t) we note that the portion n „ofcolumns

/ahl
Ph(Ah) 0, t) = I'~

(6)

where I'(y) is a scaling function [see Fig. 3(b)]. For fast
growing columns with large Ah/t/ "' the above argument
for Ah applies and the data collapse in Fig. 3(b) is
perfect. For smaller Ah/t/', however, there are signifi-
cant deviations from the "local" scaling form.

For the second moment C2(t) [18] Sneppen and Jensen
observed a scaling with an exponent Pz ——0.69+0.02 [13].
However, due to the inhomogeneity in growth, the appli-
cation of dynamical scaling is questionable, as mentioned
above. The deviation of the efFective exponent P2 from
the scaling of the local dynamics is caused by the fact
that only a small part of the interface (n, t~/'"'/L)
has moved for short times t. The observed value for P2
can be explained by using that Ah scales roughly with
tP"' for b,h ) 0 [see Fig. 3(b)]. For general integer q we
write

c,(~) = (fax —ar ~~")

~A&' —qdh' ' Ah+ + Ah. '~' ')
1

g1/Sio
gqpio,

q g(q —1)PIo,
L L L Lq

(t) tP1..+&/a»- t~+(~—a)/e»o
qh (7)

i e , Pq 1+(.1.—q)/q(1+() and P2 0.70, which agrees

[b,h(t) = t/L]. In the observed scaling regime t (( L""
and therefore the main contribution comes from the 6rst
term. Thus we have

I

with the simulations, while for q m oo, P~ m Pi, .
Next the avalanche size is investigated. We observe

that the distribution P (s, rl;„) of the avalanche size s
for a given g;„shows a power-law decay with an expo-
nent r 1.25 + 0.05 up to a size so (~I(rl; )(~(rl;„)
and then drops to zero for s ) so [see Fig. 4(a)]. Thus
the avalanche size distribution obeys the scaling form

0, 0005

0.003
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0.001

P~ ~~ 0 ~0 ~

+ ~
5 ~

J ~
n
0

~ 0

~ 'F ~

Q e
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i~ QQQQ
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FIG. 3. (a) Distribution Pq(b, h, t) of height advances b.h & 0 for time diiferences 2 ( t & 2 (L = 8192). Higher curves
correspond to larger t (The same plotti.ng symbol is used for data at a given time t )In addition, ther. e is a large peak of Ph
at b h = 0 which is not shown The curve. s are normalized if the peak at b, h = 0 is included. (b) Scaling plot, Eq. (6), with
the local exponent P~, 0.40.



49 AVALANCHES AND CORRELATIONS IN DRIVEN INTERFACE. . . 1243

10
10
10
10

10
10
10
10
10
10
10
10 "
1P

—12

10 10 10 10 10 10 10 10 10 10

with an exponent p = 2.25 +0.05 above a value z, which
increases with ht [Fig. 5(a)].

We next explain that the behavior P, (z, At) =const
corresponds to the dynamics of causal growth events in-
side an avalanche. The local adjustments due to the
slope constraint after the avalanche has started induce
randomly distributed rI(i, h;). During the avalanche all
rl~;„(t) & g; are taken from these newly appeared
rl(i, h;). Thus the g; (t) are randomly distributed in
space, i.e., the distance between successive growth events
is also equally distributed as long as At is smaller than
the duration of the avalanche v, i.e., as long as z &

g~~ (rl;„). Therefore we can cast P, (z, b, t) into the scal-
ing form

10
10
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10
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10
10
10
10
10
10
10
10

~ p ~ a
O~

0

(b)—
with zl, = 1+(and 4(y) =const for y & 1 and @ y
for y ) 1. The scaling form Eq. (9) with a satisfactory
data collapse is shown in Fig. 5(b).

We see that the spatial-temporal correlations depend

10'
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s/s
FIG. 4. (a) Logarithmically binned distribution of

avalanche sizes s, where P „(s,g;„) is the density of events
in the range [s, 2s). Lower curves correspond to smaller

g; . (0.30 & rl;„& 0.46, L = 8192). P „(s,g; ) has a
power-law decay with an exponent @ 1.25 6 0.05 up to a
size sp (~~(rl~;„)(~(g~;„)and then drops to zero for s ) sp.
(b) Scaling plot of the avalanche size distribution [Eq. 8].
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IV. SPATIAL- TEMPORAL CORRELATIONS
1,/z~'6 t

In this section we try to understand the spatial-
temporal correlations between successive growth events.
To this end we investigate the probability distribution
P, (z, b,t), where z is the distance parallel to the inter-
face between growth events which occur after a time At.
Sneppen and Jensen [13] observed that P, (z, b, t) is con-
stant for sufBciently small x and has a power-law decay

FIG. 5. (a) Logarithmlcally binued distribution of dis-
tances z between two growth events, where P, (z, At) is the
density of z in the range [z, 2z). The two growth events occur
after a time b,t (1 & Et & 256, L = 8192). Curves with a
larger Et have a wider plateau. The power-law decay has an
exponent p = 2.20+ 0.05. (b) Scaling plot of the distribution
P, (z, b, t) Eq. (9), where z is scaled by Et +C using the
measured value ( = 0.655.
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on the value g;„. For g; close to E„x is equally
distributed even for large x. For small g;„,on the other
hand, P, (x, At) obeys a power-law decay also for small
x, i.e. , it is more probable that successive growth events
are close by. Thus for these correlations the temporal
translational invariance is destroyed.

The value of the exponent p can be understood by
considering the conditional distribution P, for 6xed g
of the first event, which we denote by P, (ri;„,z, 6t).
We express P, (z, b,t) by

P, (zttt) =
,fdtt; P„( tt;, . T, ttt) P„(tt; ) (10.)

From our simulation [see Fig. 2(b)] we see that the
probability distribution P„(ri;„) (F, —rl; ) close
to F,. From the above discussion we know that
P, (rl;„,x, b, t) I/([[ if ([[ ) x. Thus the integral Eq.
(10) takes the form

1
Pco(zt &t) = &rlmin (&c rlmin)

from which one obtains P, (z, b,t) z ~ with

This is quite close to our numerical result p = 2.20 6
0.05. We have also directly measured the distribution
P, (rl;„,z, bt) to check our assumptions. We found that
P, (rl;„,z, b, t = 1) first decreases for small z due to
a high probability for choosing the next g;„ from the
newly appeared rl from the local adjustments. However,
to explain the exponent p we are interested in large z
(and thus in large ([[), for which we indeed observe a
constant P, (rl;„,z, b,t) for x ( (~[()tim,n).

relation of the static and dynamic behavior to the prop-
erties of directed percolation. The roughness exponent
of the interface in the Sneppen model and of the pinned
interface in the model of Ref. [9] is equal to that of a
percolating string, (, 0.63.

The difference between the two models is, however,
that in the model of Ref. [9] the interface is driven by
a uniform force whereas in the Sneppen model there is
a self-tuned driving force which keeps the interface at
the onset of steady-state motion, giving rise to "self-
organized" critical behavior. This is achieved by the rule
that the site which has the weakest pinning force g
among all sites of the interface grows. This induces a
nonlocal part in the dynamics. As a consequence, the
motion of the interface is inhomogeneous in space and
the methods of dynamical scaling are not applicable in a
direct way because there is no single growing correlation
length. Thus we have separated the local &om the global
part of the motion by introducing an "avalanche, " and as-
signed a well-defined dynamical exponent zi, ——1+(, to
the lateral propagation of the growth inside an avalanche.
We found that the size distribution of the avalanches
started with g;„has a power-law decay with an expo-
nent e 1.25 up to a size ([~ ()tl,.„)(~()7;„).

The spatial-temporal correlations were investigated by
the probability distribution P, (x, Et) which shows a
crossover from a behavior determined by causal growth
events [P, (x, b, t)=const] to a power-law decay with an
exponent p 2.2 which can also be related to exponents
of directed percolation. We have seen that for the distri-
bution P, the temporal translational invariance is lost,
which is due to the global part of the dynamics.

Upon completion of the paper we became aware of
an independent work by Z. Olami, I. Procaccia, and R.
Zeitak where ideas similar to ours have been developed.
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