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We study time-dependent correlation functions in a family of one-dimensional biased stochastic
lattice-gas models in which particles can move up to k lattice spacings. In terms of equivalent in-

terface models, the family interpolates between the Low-noise Ising (k = I) and Toom (k = oo)
interfaces on a square lattice. Since the continuum description of density (or height) fluctuations
in these models involves at most (k + 1)th-order terms in a gradient expansion, we can test spe-
cific renormalization-group predictions using Monte Carlo methods to probe scaling behavior. In
particular we con6rm the existence of multiplicative logarithms in the temporal behavior of mean-

squared height fluctuations [
t'1 (Ln t)'1 ], induced by a marginal cubic gradient term. Analogs of

redundant operators, familiar in the context of equilibrium systems, also appear to occur in these
nonequilibrium systems.

PACS number(s): 05.40.+j, 02.50.Ey, 05.70.Ln, 68.35.—p

I. INTRODUCTION

Nonlinearities strongly affect the dynamics of systems
out of equilibrium, and, in particular, influence scaling
behaviors at large length and time scales. Progress in
describing the effects of nonlinearities has been achieved
by studying stochastic dynamical models [1]—both mi-

croscopic models of interfaces and lattice gases with prob-
abilities assigned to various local moves, and contin-
uum hydrodynamic models, where the probabilistic el-

ement enters through random noise. In this paper we

address this issue by studying a new family of discrete
stochastic models, and their coarse-grained continuum
equivalents. These models have well-characterized non-
linearities, which make them very useful for carrying
out a detailed examination of several renormalization-
group (RG) predictions and issues such as marginality-
induced logarithmic corrections to power laws, the dy-
namic equivalents of redundant operators, and the gen-
eration of relevant nonlinearities from higher-order nom-

inally irrelevant ones.
The stochastic continuum equation [2, 3]
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has played a key role in the theoretical developments.
This equation describes the temporal evolution of a grow-

ing one-dimensional interface that obeys local dynamical
rules. The quantity h(z, t) is the local height, v is the sur-
face tension, and q(z, t) is the noise term, which is taken
to satisfy the white noise condition (rl(z, t)il(z', t'))
D8(z —z')8(t —t'). Alternatively, the equation can be
viewed [4] as a noisy Burgers equation which describes
the formation and dissipation of shock waves in a fluid
system, with v being the viscosity and Oh/clz being iden-
tified with density fluctuations. The scaling properties of
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height fluctuations

S'(z, t) = ([h(z+ z', t) —h(z', 0)]')
depend on the coefFicients 6 in the gradient expansion in
(1). Generic behaviors, obtained from RG methods and
mode coupling, are discussed in detail in Sec. 3. Three
distinct growth laws are predicted. If all 6 coeKcients
vanish, S(0, t) t ~ [5, 6]; if bo

——0 but bi g 0, the
growth law is S(0, t) t ~2 [7]; while if bo and bi vanish
but b2 is nonzero, S(0, t) t ~ [2, 3]. Any nonzero even-
ordered coeScient b breaks the h ~ —h, symmetry in
this equation and gives rise to t ~ behavior even if the
leading coeKcient 62 itself is zero. The physical meaning
of the 6 coefBcients and the conditions under which they
vanish will be described later.

These scaling laws have been found to hold asymp-
totically for several discrete stochastic models of inter-
faces. Two previously studied models are particularly rel-
evant here as they provide limits for the family of models
that we introduce and study in this paper. The first de-
scribes a moving interface between up and down phases
of a square lattice Glauber-Ising model in an external
magnetic field [8, 9]; in the limit of large-exchange cou-

pling, this reduces to the single-step (k = 1) model [10].
The second model pertains to an interface in the two-
dimensional Toom model [ll—13] in the low-noise limit.
The infinite family of Inodels for positive integer k in-

terpolates between the two limits, and has the attractive
feature that the continuum hydrodynamic description of
the kth model has at most k+ 1 Donzero 6 coeKcients.
This makes possible a systematic verification of the ef-

fects of successive nonlinearities.
Our study has the general objective of describing

asymptotic growth laws and their basins of attraction. In
particular, we test a recent prediction that if only odd-
order b coeKcients are present, then the t ~ growth
law is modified to t ~ (lnt) 1 [14]. We also investigate
long-time crossovers between different growth laws along
special loci in the parameter space (see Secs. III and
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IV) of the models. Further, our study brings out the fact
that the continuum 6eld theory corresponding to any dis-
crete model is not unique, even with respect to symme-

try considerations, as the choice of Geld variable is not
unique. This leads to ostensible ambiguities, in a manner
reminiscent of redundant operators in equilibrium critical
phenomena [15].

The plan of the paper is as follows. In Sec. II we define
the family of discrete k-hop models and describe certain
characteristics of their steady states. In Sec. III we turn
to a continuum Geld-theoretic description of the models,
and discuss expectations for asymptotic scaling laws. We
also discuss ambiguities in field-theory predictions arising
from difFerent de6nitions of the Geld variable. In Sec. IV
we present the results of our numerical study. Section V
is the conclusion.

II. k-HOP MODELS

In this section we introduce a family of models which
interpolates between models of interfaces in the low-noise
Ising and Toom models in two dimensions.

To begin, consider a square-lattice Ising model evolv-

ing in time under single spin-flip Glauber dynamics. In
the limit of field and temperature much less than ex-
change coupling, the allowed configurations of a tilted in-
terface separating up and down phases are directed walks
with no overhangs. The time evolution proceeds by cor-
ner flips [9], which makes the large-exchange limit of the
model identical to the single-step model [10]. Further,
there is a one-to-one mapping between directed walk con-
6gurations of the interface and configurations of a lattice
gas. This is done by identifying a vertical step in the
interface with a particle and a horizontal step with a
hole. The lattice-gas dynamics involves nearest-neighbor
particle-hole exchange, with unequal hopping rates to the
right and left—the asymmetric exclusion process. The
dynamics of this lattice-gas model has been very well
studied: see, for example, [7, 16—18].

The Toom model is a cellular automaton with spins on
a square lattice which evolve according to a directional
north-east stochastic majority rule [11,12]. In the low-

noise limit the configurations of an interface between up
and down spin phases are directed walks, as for the Ising
model. However, the evolution rule is different. In terms
of the equivalent lattice gas, a particle (hole) exchanges
positions with the nearest hole (particle) on the right.
This interface model has been analyzed both analytically
and numerically [13, 14].

We are now in a position to de6ne the k-hop models. In
each of these models, allowed configurations of the inter-
face are directed walks, which, as we have seen above, are
equivalent to con6gurations of a one-dimensional lattice
gas. The dynamical evolution rule is most conveniently
de6ned in terms of the lattice gas: first, pick a site at ran-
dom. If occupied by a particle (hole), exchange it with
the nearest hole (particle) on its right with probability p
(q), provided that separation of the two sites in question
is k lattice spacings or less.

In the first member of the family of models, A:

1, only nearest-neighbor particle-hole exchanges are al-

lowed. The resulting lattice-gas dynamics is the asym-
metric exclusion process, which, as discussed above, is
equivalent to the dynamics of a two-dimensional (2D)
Glauber-Ising system in a magnetic field. (The hopping
rates p and q involve combinations of the field and tem-
perature [9].) In the other extreme, k ~ oo, there is
no limit on the length of the hops. Actual hops will of
course typically be only of the size of a particle or hole
cluster, and therefore a local continuum description is
valid. The dynamics is that of a Toom interface in the
low-noise limit [13, 14].

Next, we characterize some features of the steady
states of k-hop models. The dynamical rule clearly con-
serves the number of particles, N~. In the steady state,
each microscopic con6guration C with Np particles oc-
curs with equal probability. This can be seen as follows:
for each transition away from C with rate p (q), there is
a distinct and unique configuration C' which evolves into
C at the same rate. The construction of C' is illustrated
in Fig. 1. If the transition away &om | involves a particle
exchanging with a hole a distance I on its right (I & k),
the configuration C' is constructed by exchanging the 1th
particle in the same particle cluster with the first hole on
the left of the cluster. A similar construction can be
used for hole hops. The (unnormalized) state P& ~C)
which weighs all microscopic N~-particle configurations
~C) equally is then the steady state, as the total transi-
tion rates in and out of each microscopic configuration
~C) are equal.

In the thermodynamic limit N ~ oo, N~
oo, NI /N = p, equal likelihood of all microscopic states
is tantamount to product measure. Each site is occu-
pied by a particle with probability p, independent of the
occupation of particles on all other sites.

As a result, it is a simple matter to calculate the steady
state current in the infinite system. The mean distance
traveled to the right by a particle is R = P„orprob(r),
where prob(r) = p' i(1 —p) is the probability that
the next (r —1) successive sites are occupied by parti-
cles, and the rth site by a hole. Similarly, the mean
distance traveled by a hole in a hop to the right is
R = g, Orp(1 —p)" i. The current (which has con-
tributions &om hops of both particles and holes) is then

J~(p) = p(1 —p)).rp" —qp) ~(1 —p)" (2)
r=o r=o

C ~ 0 0 0 ~ ~ ~ ~ ~ 0 0 ~

L' ~ o o ~ ~ o ~ ~ ~ o o ~

FIG. 1. Construction of a configuration C' from which
one can reach a given configuration C by an allowed particle
hop of length & k with probability p.

The geometric series in this equation may be summed,
but we prefer to write the current as in (2), to emphasize
the fact that Ji, (p) is a polynomial of order (k+1). In the
limit k ~ oo, we recover JT = pp/(1 —p) —q(1 —p)/p:
see, for example, [13].
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The nonlinear dependence of Jk on p has an immediate
important physical consequence. The system supports
kinematic waves [19] which move through the system at
speed U = OJk/Bp T.his velocity is quite different from
average particle velocity vp = Jk/p. Kinematic waves,
whose origin is the conservation of particle number, are
parity-breaking waves first discussed in a general way by
Lighthill and Whitham [19]. In the context of stochastic
lattice gases, the kinematic wave transports the pattern
of density fluctuations in the initial state through the
system at speed U [9, 20]. For the corresponding inter-
face problem, the motion corresponds to a traveling wave
which transports transverse interface fluctuations [9].

As discussed in detail in the next section, the second
derivative j2 = 8 Jk/o)p is important in determining
the asymptotic scaling law for the correlation function
involving density fluctuations in the lattice gas (or height
fluctuations in the interface). Here we give the result for
later reference:

j 2 = )9 Jk/~p ivp ivH (3)

with

piv P =
( 1 )

s Fk (p),

u)H = Fk(1 ——p).
g

p3

The function Fk(p) is given by

Fk(P) = 2+ P" '(«+ ciP+ c2P'+ csp')

(4)

(5)

with

co ———k(k + 1), ci ——3k + 5k —2,

c2 ——k(1 —4k —3k ), cs ——k (k+1).
We close this section by drawing attention to an im-

portant consequence of the current Jk(p) in Eq. (2) being
a polynomial of order (k + 1) in p. We will see in Sec.
III B that this implies that at most the first (k+ 1) terms
in the gradient expansion on the right hand side of Eq. (1)
are nonzero. This controllable nonlinearity is a useful
feature of k-hop models.

III. FIELD-THEORY DESCRIPTION

A. Scaling properties

The scaling behavior of height or density Huctuations
is determined by the coefficients b~ in (1). The con-
stant bp specifies the mean rate of growth of the inter-
face. It can be eliminated by redefining the height vari-
able h, —+ 6 + bpt. If bi is nonzero, the autocorrelation
function grows asymptotically as S(0, t) t ~ [7]. In
this case bq has a simple physical meaning it is the
speed of kinematic waves which transport fluctuations
through the system. As discussed in Sec. II, kinematic
waves carry longitudinal density fluctuations through the
lattice gas at speed BJk/Op or, equivalently, transverse
fluctuations across the interface. The first-order gradi-
ent term can be eliminated from (1) by the Galilean shift

x m x+ bit, corresponding to using a frame which moves
along with the wave. Henceforth we assume that, these
transformations have been made.

If bp = bi = 0, the autocorrelation function senses the
dissipation of the kinematic wave, and S(z, t) assumes
the scaling form

s(z, t) bt~Y( )
in the asymptotic limit z, t ~ oo, with z/t' = const. The
critical exponents P and z and the scaling function Y are
the same for all systems belonging to the same universal-
ity class, while a and b are system-dependent (nonuniver-
sal) metric factors. Different universality classes describe
different patterns of decay of the kinematic wave.

A perturbative RG analysis indicates that there are
two distinct fixed points, and hence two universality
classes. The first class is the one characterized by all
b = 0. In this case, (1) describes a linear growth prob-
lem which was studied by Edwards and Wilkinson [6],
and in a different context by Hammersley [5]. The cor-
responding values of z and )9 are 2 and 1/4, respectively.
The Hammersley-Edwards-Wilkinson (HEW) fixed point
also controls the behavior of systems with only odd-order
6 with m & 3. The lowest-order nonlinearity is then cu-
bic, and simple power counting shows that it is marginal
at the HEW fixed point. A recent RG calculation shows,
in fact, that the nonlinearity is marginally irrelevant [14],
and leads to multiplicative logarithmic corrections to the
power law for linear growth:

(7)

This result agrees with mode-coupling calculations [21].
The form of (7) has been numerically confirmed for the
low-noise Toom interface [14); additional cases are stud-
ied below.

Since they break the 6 ~ —h, symmetry, even-order
6 coefFicients lead to a change of the universality class.
For instance, the second-order nonlinearity bz is a rele-
vant perturbation which drives the system from the HEW
fixed point to a new (Kardar-Parisi-Zhang, KPZ) fixed
point [2, 3] characterized by the exponents z = 3/2 and

P = 1/3. It is important to realize that the relevant
scaling field which describes the outHow away from the
HEW fixed point has components along all even-order
6, and not only along 62 as would be suggested by sirn-

ple power counting. Consequently, even if 62 vanishes, as
long as even one of the coeScients 64, 66, . . . is nonzero,
a,n outHow will be generically triggered. This is in agrec-
rnent with the findings of the numerical integration of a
stochastic difFerential equation with only a quartic non-
linearity [22]; the result is consistent with KPZ behavior.

Of course, appropriate scaling laws hold only asymp-
totically. For instance, if 62 is small, the behavior over
substantial regimes of t may appear HEW-like; truly
asymptotic KPZ behavior would be expected to set irl

only over very long times. Further, long crossover times
may occur if b, = 0 but b4, b„.. . g 0.

In order to test these theoretical predictions in the
models under consideration here, the erst task is to iden-
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tify the coeKcients b appropriate to the k-hop models.
We now turn to this.

B. Coarse-grained description

j(p) = ) .i-4 (10)

with m!j = B J),/Bp . DeFining a height variable
h(z, t) by

The continuum description of the lattice gas (particles
and holes moving with discrete jump dynamics) is con-
structed by coarse graining over regions which are large
enough to contain many lattice sites. The coarse-grained
density p(z) is coupled to the local current J(z) through
the continuity equation

Bp BJ(z)
Ot Oz

We write the current J(z) as

OpJ(z) = —v —+ j(p) + g,
Ox

where v is the particle diffusion constant, g is a Gaussian
noise variable, and j(p) is the systematic contribution to
the current associated with the local density p. In the
usual spirit of hydrodynamics [1,4], we take j(p) to be
the macroscopic current J), (p) corresponding to density

p, and expand in a power series in the density fluctuation
P—:p —p around the mean macroscopic density p =
Xy /%. Then,

to the HEW power law. KPZ behavior is expected else-
where.

k & 3. Although the condition b2 ——0 may be met
along particular loci, this does not imply that HEW be-
havior occurs. Since higher-even-order b are present in
general, b2 is generated at large scales even if its unrenor-
malized value is zero. All even-order nonlinearities van-
ish only at the symmetric point p = q, p = 1/2. Hence
HEW behavior is expected, with logarithmic corrections,
only at this point. Elsewhere, the asymptotic behavior
is controlled by the KPZ fixed point.

A numerical study of these predictions is described in
Sec. IV.

C. Coarse graining in tag space

A related but different model of an interface is obtained
from a one-dimensional lattice gas on viewing the tag
(particle label) as a spatial coordinate, and relating the
displacement of a particle to interface height [7]. Let
us suppose that all particles are labeled sequentially at
t = 0. When a particle is exchanged with a hole m
lattice spacings away, reinterpret the move as each of the
m particles in between hopping one unit to the right,
rather than as a single long hop of one particle. With
this interpretation, the ordering of particles is preserved,
which enables particle labels (tags), denoted by n, to be
used as coordinates. In the usual fashion, particle labels
are coarse grained, so that n becomes continuous.

The connection between the earlier description and the
tag-space description is obtained by writing the density
as

h(z, t) = P(z', t)Cz',
~CP

p(z, t) = jh(y(nt) —x)dn', (12)

we see that h satisfies (1), with b replaced by j . Since
we know the current J), (p) explicitly, the derivatives j
can be found. These quantities specify the "bare" or
unrenormalized values of the coefBcients b . As usual,
under RG flow, or equivalently at large length and time
scales, the coeScients themselves are renormalized, ulti-
mately approaching their fixed point values. Asymptotic
scaling is determined by which basin of attraction the
initial unrenormalized values lie within. Let us see what
this implies for the k-hop models. Here j(p) is identi-
fied with the macroscopic current Jy(p) calculated in (2),
and the derivatives j = b can be found for each mem-
ber of the family, in terms of the microscopic parameters
k, p, q, and p. As Jy(p) is a polynomial, only the first
(k+ 1) derivatives are nonzero.

k = 1. This is the low-noise Ising interface model,
or exclusion process. All b with m & 3 vanish. The
second-order coefBcient b2 vanishes along the locus p =
q, implying that HEW behavior holds on this locus. If
p g q, the second-order coefficients are nonzero, implying
KPZ behavior.

k = 2. In this case fourth- and higher-order b vanish.
The condition b2 ——0 defines a locus of points along which
the HEW fixed point governs scaling behavior, but 63 is
nonzero, leading to multiplicative logarithmic corrections

The quantity y(n, t) is the position of the nth particle at
time t From (11). and (12), it follows that

Bh By By -'
Ot Ot On

(14)

Substituting these expressions into (1) as applied to h, a
different equation for a new height variable, 6 = n —py
is obtained:

The coeKcients a are expressed in terms of the coefB-
cients j as follows:

a3 = cj2+ I j3
a4 ——pj2 + 2p j3 + p j4.
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Notice that ji is the speed of the kinematic wave with re-
spect to a space-fixed axis, whereas ai is the wave speed
with respect to a frame moving with the average speed
of the particles. The first-order gradient term, Oh/Ox or

Oh/On, can be eliminated by the appropriate Galilean
shift. The second-order terms j2 and a2 are proportional
to each other and so both terms vanish along the same
k-dependent locus in the bias-density plane. However,
higher-order terms do not vanish simultaneously in the
two descriptions, and they do not have the same symme-
try. Even if all the even-order j vanish, thus leading to
HEW behavior for interface fIuctuations in the original
variable 6, the corresponding even-order a for m. & 4
are Rnite as long as, for example, the cubic t,erm j3 is
finite. This paradoxically suggests that the scaling be-
havior of fluctuations should be controlled by the KPZ
fixed point even when all even-order j are zero,

The situation bears an analogy to the occurrence and
efI'ects of redundant operators in RG studies of equilib-
rium critical phenomena. Envisaged as arising from a
redefinition of a field variable [15], redundant operators
have shown up as important operators in several con-
texts, such as Monte Carlo RG [23]. However, even
when present, they have no efI'ect on physical observ-
ables; moreover, the right choice of variables suppresses
them altogether. Proceeding by analogy, we argue that
the change to a tag-based description has brought into
play redundant operators which are spurious. The field
theory for the problem is probably best formulated and
understood in terms of the interface variables of (11),
although the tag description turns out to be better for
obtaining numerical results.

IV. NUMERICAL RESULTS

In this section we report numerical measurements
which test the theoretical predictions of the preceding
section.

First, we describe the method of simulation. An initial
condition is generated by distributing the required num-
ber of particles %~ randomly ori the lattice. Then, one
of .Vp sites is picked at random; if occupied by a particle
(hole), it is exchanged with the closest hole (particle) on
the right with probability p (q), provided that the sep-
aration of the sites is k units or less. However, we take
care to respect the sequential ordering of tags for parti-
cles and holes during the exchanges. We have arbitrarily
set p = 1 to minimize the need to generate random num-
bers. Since we argued in Sec. II that a product measure
exists. the system is at steady state from t = 0, and no
equilibration time is necessary. Periodic boundary con-
ditions have been used. The term "time step" will be
used to indicate Ns exchange attempts, or an average of
one at tempt to the right per site. Finally, we note that
a lever rule has been used to minimize errors when nq

(defined in the next paragraph) is not an integer.
Next we will discuss the relative merits of measuring

difI'erent types of correlation functions. The first is the
height-height correlation function

(17)

where h(x, t) is given by (11), with xo —— Ut, and is
calculated with periodic boundary conditions so that
0 ( 6(x, t) & Np, where Np is the number of particles.
The other is the sliding-tag correlation function [7]

100

30 100 300 1000 3000

FIG. 2. Comparison of S (0, t) (middle, noisy curve) and
o (U, t) (upper, less noisy curve) for a common Monte Carlo
history: k = 2, p/q = 1, 10000 sites, and 4000 time steps,
sampled every ten steps. Both curves are consistent with the
predicted t t behavior (lower, straight line), but there is a,

marked difFerence in the level of noise.

where nt ——n+ p(u —vp)t represents the shift of particle
label in time t. We have chosen the sliding-tag parameter
to be u = U = Oj/Op in order to keep up with the moving
density pattern. The choice u = U is analogous to the
choice of xo ——Ut in the previous case, and leads to a
minimum over all o (u, t)

We performed numerous simulations and measure-
ments of both correlation functions above. The sliding-
tag correlation function o. shows much smaller fluctua-
tions than S does, although in the cases where an ana-
lytical answer is known the exponents obtained by both
methods agree to within statistical error. This is illus-
trated in Fig. 2, which shows results for a system of size
Ns = 10 000 with k = 2, q/p = 1, p = 1/2 for the same
evolution in time, using both types of correlation func-
tion. The total time of the simulation is 4000 Monte
Carlo (MC) steps/site and the sampling interval is ten
time steps. In both cases the long-time behavior is con-
sistent with u t /, in agreement with analytical pre-
dictions for the symmetric point (see Sec. III A). The
reason for the difference in the level of fluctuations is not
clear to us; a possibility is the fact that in (ll), h(x, t)
is defined with respect to an origin xo, which moves at,

the average speed, rather than at the actual fIuctuat-
ing speed of the density wave. The correlation function
S(0, t) can then be quite sensitive to this origin. We at-
tempted to improve the statistics by using several equally
spaced origins, and averaging the results. This resulted
in a considerable decrease in the level of fast oscillations,
but the results for up to five origins were still not nearly
as smooth as for o(n it). Henceforth all simulations refer
to the correlation function cr(u, t); relevant plots, unless
otherwise indicated, show the square of this quantity.
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Before presenting nllmerical results, it should prove in-
structive to see what the jz ——0 loci look like for different
values of k; the general expression was presented in (3)—
(5). As is usual in these cases, we concentrate on the
region p & 1/2, 0 & (q/p) & 1, shown in Fig. 3. For
k = 1, the entire (q/p) = 1 line corresponds to the locus.
The other natural limit is the Toom model (k = oo), also
shown in the fII.gure. One should notice that for k ( oo the
loci do not approach the Toom limit, (q/p) = [p/(1 —p)]s,
in a monotonic fashion. In fact, for k between 5 and 7,
no points of the locus are present in this region. This
is caused by a singularity in (3)—(5), which makes some
of the values of (q/p) for the loci be greater than 1 in
the range of p under consideration. The explicit parame-
ter values studied numerically below are indicated in the
figure with circles (jz ——0), or squares (jz p 0).

k = 1, j2 ——0. We consider in the first instance the
case k = 1, for which aII. higher-order b coeEcients are
zero along the jz ——0 locus, which in this case corre-
sponds to the entire line q/p = 1. On this line, we have
chosen the value p = 1/4. Figure 4 shows Ir divided
by ti/z (top) and ti/z(int) / (bottom) respectively, for
the average of five independent runs of 300 000 sites each,
simulated for 160000 time steps (z axis). For purposes
of comparison, the quantities plotted, times, and system
sizes in Fig. 5 will be the same. In this case the correla-
tion function seems to follow the predicted HEW scaling
law, as the data in the top half are more or less horizon-
tal, while those in the bottom decrease. No logarithmic
corrections to the scaling law seem to be present.

k = 2, j2 ——0. In contrast with the previous case,
Fig. 5 here shows multiplicative logarithmic corrections
to HEW behavior. In this case js g 0, but all higher-
order j = 0. We stress that, unlike for higher values of
k, the entire locus j2 ——0 is critical in this case (for k & 3,
only the symmetric point shows IT t /4 behavior, with
logarithmic corrections).

k = 2, j2 g 0. We now show what happens away
from the j2 ——0 locus; we consider the case k = 2,
p = q = 1, p = 2/5. In this case, crossover to KPZ

I I I I I I I II I I I & I III I I I I I I III

O

b

I
~ ~ 0

~ ~

O

b

10 10
I I I I I I I II

10 10

5 I I I I I IIII I I I I I IIII I I I I I IIII I I I I I III

O
w

b
~ ~ ~

O

b

I I I I I IIII I I I I I IIII I I I I I IIII I I I I I IIII
10 10 10 10 10

t

FIG. 5. Same quantities as in the previous 6gure, but for
k = 2, q/p = 1/?. Same times and number of realizations as
in the previous Bgure. The existence of logarithmic correc-
tions to the usual HEW power law behavior is apparent.

FIG. 4. Correlation function Ir divided by t'~ (upper
half), and by t'~ (lnt)'~ (lower half) for k = 1 along the

(q/p) = 1 line The. average over five independent simulations
on a system of 300000 sites is shown. This model is evidently
in the HEW universality class. No logarithmic corrections are
apparent.
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10000

FIG. 3. Loci along which j2 ——0 for various values of
hopping cutofF k, in the q/p vs p plane. For some values of
k (5, 6, 7) no points of the locus lie in the region shown.
Notice the nonmonotonic approach to the Toom limit. We
have marked particular parameter values used in subsequent
figures. Circles: j2 = 0 locus. Squares: j2 P 0.

FIG. 6. Correlation function o. vs time for k = 2, p =
2/5, q/p = 1. Crossover to KPZ behavior is apparent after
3000—4000 time steps (the lower straight line has slope 2/3).
Each point is the average over five independent simulations
on a system of 300000 sites.
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FIG. 7. Crossover away from HEW behavior for large val-
ues of k along the locus j2 ——0. Two independent runs
(300000 sites each) are shown for k = 20 (upper curves),
k = 16 (middle curves), and k = 12 (lower curves). Devia-
tions from HEW behavior (the lower line has slope 1/2) are
apparent before 70 000 time steps for k = 20 and k = 16, but
not for k = 12 ~

behavior is predicted, but some HEW-like behavior may
be apparent for short times, as the parameters are not
too far away &om the HEW locus. This is seen clearly
in Fig. 6, which shows a logarithmic plot of cr vs time.
The curve (averaged over five configurations of 300000
sites each) approaches a line with slope 2/3 (asymptotic
KPZ behavior) only after 3000—4000 time steps. Moving
further away from the critical line results in earlier onset
of KPZ behavior.

k & 2. The final point of the numerical results is to il-

lustrate deviations from HEW behavior along the j2 ——0
locus for larger k: if k & 3, there will be in general
nonzero coefBcients up to jA,+z. Generically, the even-
order coefBcients have a component along the scaling
axis, resulting in a prediction of crossover away from the
HEW fixed point. We see evidence of such a crossover
for k & 16 (Fig. 7), although the asymptotic behavior
has not been reached over the times considered. Figure 7
suggests that the crossover times become longer as k de-

creases; in fact, we have been unable to see the crossover
for k = 12 over times t & 70000. For large but finite
k, the locus j2 ——0 shows a minimum as a function of p
in the region considered; exploration for k = 16 did not
show any evidence of change f'rom 0 t ~ behavior to
the left of the minimum, over the times considered.

V. SUMMARY AND DISCUSSION

The models of asymmetrically hopping particles that
we have studied in this paper share an important
property —they all have a simple steady state which is
characterized by product measure in the infinite system.
This feature leads to the explicit computability of the un-
renormalized 6 coeKcients in the hydrodynamic theory,
and this in turn enables comparison with RG predictions.

Another family of models, which also includes the
k = 1 Ising interface model as a limit, has been studied
recently by Devillard and Spohn [21]. Their study con-
firms that a cubic nonlinearity is marginally irrelevant at

the HEW fixed point. The present study goes one step
further in providing a numerical verification of the form
of multiplicative logarithmic corrections predicted by RG
[14] and mode-coupling theory [21]. Monitoring fluctua-
tions using the tag description rather than a real-space
formulation has been useful in obtaining meaningful nu-

merical results.
The HEW fixed point controls the asymptotic behavior

of correlation functions if all even-order b are absent.
This condition is satisfied only at special points, or along
exceptional loci, in the bias-density plane. For k = 1, the
locus is the line p = q, which, for the Ising model interface
(to which this model is equivalent), corresponds to the
condition of zero field. In this case, odd-order 6 vanish
as well, so that asymptotically 0. t ~ holds. Turn-
ing to the k = 2 model, once again even-order 6 vanish
along a special locus —but this time 63 is nonzero, and is
expected to induce multiplicative logarithmic corrections
to the pure HEW power law. Figures 4 and 5 provide
clear evidence for the absence of multiplicative logarith-
mic corrections in the k = 1 model, and their presence
in the k = 2 model. For models with k & 3, even-order
6 vanish only at the single point p = q, p = 1/2, so
that HEW behavior (with multiplicative logarithms) is
expected only at this symmetric point, a feature that
was found in an earlier study of the Toom (k = oo) model

At all other points of the phase diagrams of the k-

hop models, even-order 6 are nonzero. Generically, this
would imply that the HEW fixed point is unstable; recall
that the scaling field describing this outfIow has compo-
nents along all even-order b, so that if, for example,
the condition 62 ——0, 64 g 0 is met, the asymptotic be-
havior should deviate from HEW expectations. A recent
integration of a stochastic differential equation with a
quartic nonlinearity by Amar and Family [22] bears this
out. In the present work, we have numerical confirmation
of these ideas for large k (& 16) models (Fig. 7). The
results also show that the crossover time needed for the
asymptotic behavior to set in depends on k, and seems
to be larger than the time of observation for the smaller
k (& 12) models.

A final point that our study touches on is the appar-
ent ambiguity in the stability of the HEW fixed point,
based on two different field-theoretic descriptions of the
same lattice-gas models. We conjecture that the differ-
ence arises from the analogs of redundant operators in
this problem. This seems like an interesting question,
deserving further study.
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