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Sandpiles and river networks: Extended systems with nonlocal interactions
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A proposed continuum model of sandpile growth is able to demonstrate instantaneous long-range

interactions and sudden collapses typical of real sandpiles. The model is shown to be equivalent to
an evolutionary quasivariational inequality. In the limiting case of zero angle of repose the inequality

describes water transport in a river network.

PACS number(s): 05.40.+j, 03.2Q.+i, 68.35.Ja, 92.40.Fb

INTRODUCTION

Spatially extended dissipative open systems, sandpiles
being the most f'requently given example, have recently
attracted much interest. Under the action of external
forces, these systems tend to organize themselves into a
stable or statistically stable critical state which is often
independent of the initial conditions and is therefore an
attractor of systems dynamics.

Vast literature, starting with the works of Bak, Tang,
and Wiesenfeld, has been devoted to the evolution of such
systems towards the critical state and to their behavior
when the criticality has been reached [1]. In cellular-
automata models of dissipative transport, considered in
these works, time was determined by the addition of sand
grains to a pile and a new grain was added only after
the relaxation, caused by the previous grains, was over.
This way of introducing time common to various cellular-
automata models allows them to exhibit almost instanta-
neous long-range interactions and sudden collapses typi-
cal of real sandpiles.

Nonlinear diffusion equations with stochastic noise

[2], proposed as a continuous counterpart of cellular-
automata models, are, however, unable to ensure such
behavior and do not explain the evolution of the system
towards a critical state [3,4].

In this work we consider a variational model of sandpile
evolution, proposed in [5] and outlined in the first part
of this paper. The model does demonstrate the nonlo-
cal interactions and describes the results of experiments
on building sandpiles on open supports [6]. We also dis-
cuss here a possible generalization of this model which
accounts for avalanches. In the singular limiting case of
zero repose angle, the model describes water transport
through a river network.

I. MODEL OF SANDPILE EVOLUTION

The real process of pile growth is usually intermittent.
Discharged granular material not only flows continuously
over the pile slopes but is also able to build up under
the charging point and then to pour suddenly down the
slope in an avalanche which redistributes the material
and removes the slope oversteepening.

However, the well-known almost ideally conical form of
piles growing under point sources [7] suggests that these

random Huctuations of pile surface occur around some
mean stable evolving shape which can also be determined
in a general case. The deterministic model described in
this section ignores the free surface Huctuations and is

proposed as a model of the mean surface evolution.
Let a cohesionless granular material having an angle

of repose n be tipped out onto a rough rigid surface y =
ho(x), where x = (z~, zz). The form of the pile thus
generated, y = h(x, t) is to be found.

Let us define the intensity of the source m(x, t) so that
the volume of the randomly packed bulk material tipped
out above the area dO in time dt be mdOdt. The How

of granular material down the slopes of a growing pile is
usually confined to a thin boundary layer which is dis-
tinctly separated &om the motionless bulk [8]. Let q(x, t)
be the horizontal projection of the material Hux in this
surface layer. Assuming the bulk density of material in
the pile to be constant we can write the conservation law
as

q = —m~h,

where

m(x, t) &Q

is an unknourn scalar function. The conservation law as-
sumes now the form

w,——div(m7h) = m.
Ot

(2)

At t = 0 the &ee surface coincides with the support sur-
face,

hit=o = ho

The &ee surface never lies below the support surface,

h(x, t) & hp(x),

(3)

(4)

and wherever the &ee surface is above the support, it has
an incline not greater then the angle of repose,

h(x, t) & hp(x) m ~~h(x, t)
~

& p,

—+ div(qg = m.
t

We neglect the inertia and suppose that the surface How

is directed towards the steepest descent,

1063-651X/94/49(2)/1161(7)/$06. 00 49 1161 1994 The American Physical Society



L. PRIGOZHIN

where p = tan(n).
No pouring occurs over the parts of the pile surface

inclined at less than the angle of repose:

find h E K(h) such that

(Bh/Bt —iv, y —h) & 0 for every p C K(h),
h, o

—ho,

(8)

l~h(x, t) l
& p w m(x, t) = 0. (6)

Let the granular material be allowed to leave the system
freely through part I'q of the boundary of domain O. The
boundary condition there may be written as

hlr, = hplr, . (7a)

On the other part of the boundary, where the domain is
bounded by impermeable walls, another boundary con-
dition should be used:

m
Bn r

=0 (7b)

1 dR iR
m(r, t) =- —r

2dt i r

this forms a solution of the system (1)—(7), as long as the
base of the cone is inside the domain O.

Direct solution of equations and inequalities (1)—(7)
in a general case seems, however, diKcult. Fortunately
a more convenient variational formulation may be pro-
posed.

The model of sandpile evolution (1)—(7) contains two un-

knowns, the &ee surface h and an auxiliary function m
determining the magnitude of the free surface Aux.

The conical pile on a horizontal support hp = 0 under
the point source iv = ivor(x) should be the first test for

any sandpile evolution model. The form of such a pile in
polar coordinates may be described by the function

h(r, t) = p[R(t) —r]+,

where R(t) = (3mot/vrp) ~s is the radius of the cone base
and the notation a+ is used for max(a, 0). Jointly with
the function

where (, ) is a scalar product of two functions. The fol-

lowing statement holds: If there exists a function Qo sllch
that

Noir, = holr, , l'74o(x)l & '7 for all x & 0 (9)

the problem (1)—(7) is equivalent to inequality (8), that
is, function h(x, t) is a solution of quasivariational in
equality (8) if and only if there exists m(x, t) such that
the pair (h, m) is a solution of (1)—(7). Below we present
an outline of the proof (see [5] for mathematical details).

The inequality in (8) may be formally written as an
optimization problem,

Jh(h) = min Jh(p)
B~(V) &o
(p E A

(10)

for all h* ~ A, m* & 0. The condition of supplementary
slackness

where Jh(y) = (Bh/Ot —iv, p) is a linear functional and
A is the set of functions satisfying (7a) on the open part
of the boundary.

Let us Bx the function 6 in Jh and Bh. Due to as-
sumption (9), Slater's condition (Gap 6 A: Bg(gp) ( 0)
is satisfied and the necessary and sufficient condition of
optimality for (10) can be derived by the Lagrange mul-

tipliers technique [11].
Furthermore, substituting the function h into this con-

dition, we obtain a similar condition for problem (10) (the
one with the implicit constraint): the function h is a so-
lution of quasivariational inequality (8) if and only if it
satisfies the initial condition (3) and there exists a La-

grange multiplier m(x, t) & 0 such that the pair (h, m)
is a saddle point of Lagrangian, i.e. ,

Jh (h) + (m*, Bg(h)) ( JI,{h) + (m, Bi,(h))
& Jg(h*) + (m, Bg(h*)) (ll)

II. QUASIVARIATIONAL INEQUALITY (m, Bh(h)) = 0 (12)

The aformentioned constraint upon the incline of the
free surface motivates us to seek a variational formula-
tion for the evolutionary model of pile growth in the form
of a variational or quasivariational inequality [9,10]. For
every continuous function p we define a nonlinear oper-
ator

is thereby fulfilled.
Let h be a solution of quasivariational inequality (8).

As follows from (11), the functional

Oh, 1

2
—iv, h* + —(m, l~h'l —M(h))

B,(4) = -[le&i' —M(v)],

M( )( )
p if(p(x)t) & ho(x)
max[p, i~ho(x)l ] if (p(x, t) & ho(x).

Let us also de6ne a family of closed convex sets

K{p) = {&IB,(&) & o, yli', = h, l, , )

and consider the evolutionary quasivariational inequality

has a minimum on A at the point h, * = h. Therefore,

Oh —uj, @ + {m,~h ~@) = 0
Ot

for every function g such that

@lr, = o.

This is a weak formulation of Eq. (2) with boundary
condition (7). Since h E K(h) condition (5) is satisfied,

(6) follows from the supplementary slackness condition
(12). To prove that {h,m) is a solution of (1)—(7) we
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now need only to check that h & ho.
Let us choose

h+ (h —h)+ for 0 & t & t
otherwise.

Since rp E K(h) and w & 0 we obtain

0& —m, p —h

J x t + 2dQ

The inequality obtained is a continuous analog of the
cellular-automata models with the critical height. It may
be noted that, although these models are mostly studied
because of their simplicity, the critical slope models are
more relevant to real sandpiles [13].

Numerical solution of quasivariational inequality (8)
was considered in [5,14]. Here we obtain analytical so-
lutions describing the growth of real sandpiles on open
platforms.

which proves inequality (4). (Essentially by the same
argument it is possible to prove that h is a nondecreasing
function of time. )

Now let (h, m) be a solution of (1)—(7). By (5),
l~hl & p, where h & hp. On the other part of 0 the &ee
boundary h coincides with hp and therefore h 6 K(h).
Condition (6) ensures the fulfillment of (12) which im-

plies that the first inequality in (11) holds. To prove
that h is a solution of the quasivariational inequality we

have to show that the second inequality in (11) is also
fulfilled.

Let h" F A. Using the weak form (13) of Eq. (2) with

Q = h' —h, we obtain

Jg(h') + (m, Bh, (h')) —Jp, (h) —(m, Bg(h))

= -(m, l~(h' —h)l') &0,

which completes the proof.
If the support surface has no steep slopes, i.e. , lp'hpl &

p everywhere in 0, the problem is simplified. In this case

K(h) =—K = 8' & ~l le&i & ~)

and inequality (8) becomes variational. Using a modifi-
cation of the penalty method [9] it is possible to prove
that this inequality has a unique solution which is the
limit of solutions of the nonlinear diffusion equation

(14)

when the positive penalty parameter e tends to zero.
In this limit, the diffusion coefficient in (14) becomes

singular and it is interesting to compare our model and
sandpile models with anomalous diffusion [4,12]. The
high peak of the di6'usion coefficient near the critical
height value enables these models to demonstrate almost
instantaneous long-range interactions over the regions
where criticality is achieved and to simulate the evolu-
tion of subcritical states towards criticality. However, in
order to obtain realistic collapselike transition to criti-
cality &om supercritical states these models should be
modified —the coefficient of diffusion should tend to in-
finity not only in the neighborhood of the critical point
but also for all supercritical height values. The limit of
thus modified singular difFusion equations would be vari-
ational inequality (8) with an obstacle-type constraint,

III. SANDPILES ON OPEN SUPPORTS

Experiments on the buildup of sandpiles on fiat hori-
zontal open platforms of different shapes have been re-
cently described by Puhl [6]. This work shows that the
buildup of a pile on an empty support due to addition of
grains from a point source yields a cone which grows un-
til its base touches the boundary. When this happens, a
runway appears and almost all added grains move down
this way to the edge. At this point the growth of the
pile practically stops; the final form of the pile does not
depend on the shape of the support.

On the other hand, the form of a pile obtained by
first putting a huge amount of sand on a support and
letting it then evolve depends strongly on the shape of
the support. For circular supports, Puhl obtained perfect
cones and for square and octagonal supports, pyramids
with a respective base.

Let us show that this is exactly the behavior predicted
by our model. Since the variational inequality (8) is an
equivalent formulation of the model (1)—(7), the unique
solution for a point source mph(x —xp) is a growing cone
provided its base is inside O. Let the cone touch the
boundary at time tp. At this moment a generator inclined
at the angle of repose connects the cone apex with a
point on the open boundary. A further increase of h(xp)
is obviously impossible and, since h is a nondecreasing
function of time, h(xp, t) = const for t & tp. Function
yp(x, t) = h(x, min(t, tp)) belongs to the set K; from
variational inequality (8) we obtain

ah
0 & —ulpb(x —xp), pp —h

Bt

1 d—llh(», t) —h(», t, ) ll'ct2,, dt
T

—nrp (h(»p, tp) —h(xp, t))dt
&o

1= ——llh(», T) —h(», tp) ll',

which proves that at t = to the growth of the pile stops.
To simulate Puhl's experiments of the second type

one may consider the case of a stationary distributed
source with intensity m(») everywhere positive. Since
the growth of a pile on an open platform is bounded and
monotonous there exists a stationary solution. In this
steady state, all sand discharged above any point of 0
will pour down the surface to the boundary and this is



L. PRIGOZHIN 49

possible only if ~~h~ = p almost everywhere. This equa-
tion possesses an infinite set of solutions which are zero
on the boundary 00. However, the variational inequality
provides the additional condition

(—w, p —6) ) 0 for every p C K,

and thus the stationary solution sought is the one that
maximizes jhmdO. Since iU ) 0, this solution also maxi-
mizes f hdtv, which brings us to the well-known problem
of the completely plastic torsion of a beam [15]. The
unique solution of this problem

h(x) = odist(x, BA)

describes the pile forms in Puhl's experiment.

IV. AVALANCHES

The formation of stockpiles of sorted crushed stone was
observed at a quarry near Beer Sheva. Though stockpiles
were periodically affected by the reclaiming of the bulk
material it was still possible to receive a qualitative pic-
ture of avalanches during the building of a cone by the
fall of stone debris from a conveyor belt at a low rate.

In the vicinity of the pile apex there was a region of
continuous flow. Rock &agments discharged from a small
height usually rolled a short distance down the slope and
were trapped into the bulk. The accumulation of mate-
rial occurred mainly on the upper part of the cone. At
times the upper part would settle gently, advancing the
bulk material further down the slope. Most of these ad-
vancements were, however, small and stopped quickly;
these events may possibly be attributed to macroscopic
discontinuous densifications described in [16].

Mass avalanches more often started as a slide of a large
section of the pile slope. It was usually difficult to sin-

gle out the direct cause or location of the flow initiation
- —a part of the surface was coming into the motion si-
multaneously like a solid block. Fast destruction of the
block during the sliding usually proceeded from the block
boundaries; sometimes a seemingly rigid island was seen
to be sliding in the rniddle of a chaotical flow of particles.
These large avalanches were able to travel long distances
incorporating new particles on their way into the mo-
tion. Often these avalanches reached the foot of a cone
and it was then possible to observe the process of forma-
tion of a new surface layer, as the boundary between the
supported and thus immobilized particles and those still
moving propagated quickly up the slope from the foot of
the pile.

To incorporate such avalanches into the model of pile
growth one must take into account the fact that a real
granular material should be characterized by two angles
- — the minimal angle of repose o.„and the maximal an-
gle of stability n [8]. As long as the incline of the pile
surface is less than o. there is no surface How; slopes
steeper than o. are unstable. Between a„and o. there
is a region of bistable behavior where the material is ei-
ther stationary or Aowing.

Let us now assume the limiting slope angle in the
model (8) to be a function of x and t,

n(x, t) E [n„,a ].

If o. were not dependent on time, the model would still
describe uninterrupted monotonic growth of a pile. How-
ever, a sudden local decrease of the limiting angle in a
small region may cause an instantaneous collapse-like un-
local change of the solution. (The reader may consider
a simple conical pile to see why a local instantaneous
change of the limiting angle should yield a nonlocal re-
arrangement of the entire pile surface. ) This model may
be justi6ed by the following physical arguments.

Stability of a randomly packed pile is ensured by a
stress carrying continuous net of particles [8). When the
load exceeds a local threshold value a rearrangement of
particles takes place. Near the &ee surface there are no
strong obstacles to the dilation needed for a mass rear-
rangement. The dilation immediately decreases the angle
of shearing resistance which depends on the packing den-
sity and determines the maximal allowed slope incline
[16]. The upper part of the slope may become unsup-
ported and slide downwards.

Particles rolling or sliding down the slope transfer their
momentum to the motionless particles of the surface
layer, cause vibration and make this layer less stable.
The dependence of the limiting slope incline on the sur-
face flux is confirmed by experiment [17] —after a big
avalanche, the slope is always inclined at the minimal an-

gle o.„,which is not necessarily so after small avalanches.
The magnitude of this flux can therefore affect the value
of u(x, t)

Actual simulation of sandpile avalanches should, in our
opinion, require a better understanding of the underly-
ing processes. We believe, however, that our continu-
ous model is able, in principle, to describe collapses and
nonlocal interactions observed in sandpiles and similar
systems. It may be noted that cellular-automata models
with a variable and flux-dependent limiting angle have
also been recently proposed [18).

V. RIVER NETWORKS

River networks, one of the most common of nature' s

fractal patterns, are extended dissipative systems which
have also been extensively studied. Lattice models for
the evolution of these networks [19]yield pictures of river
nets resembling hydrological maps. Similar lattice mod-
els have been used for automatic derivation of hydrolog-
ical maps from digital elevation data [20]. As is shown

below, a continuum model of water transport through a
river network may be obtained as a special case of the
sandpile model.

Let ho be the land surface and m the intensity of precip-
itation. We assume for simplicity that the water neither
evaporates nor penetrates the soil but just Hows down the
slopes and accumulates into lakes at local depressions of
the land surface. The level of a lake rises until the wa-

ter reaches a divide of two basins. Then a river running
out of the lake is generated and all additional water that
comes into the lake is transferred to another lake below.
Under open boundary conditions, such a system of lakes
and rivers will organize itself into a critical steady state
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where all the precipitating water is removed through the
boundary. During this evolution, the effect of the cre-
ation of a new river or of a local change of precipitation
intensity is transferred almost instantaneously across the
parts of the system that are already in a critical state.
The local water Bux or a lake's growth rate are therefore
determined not only by the local conditions but also by
some distant events that may occur at the same time.

Since the &ee surface in this problexn either coincides
with the land surface or, where it is higher, is the horizon-
tal surface of the lake, it may be expected that this sur-
face could be described by the quasivariational inequality

(8) with a zero angle of repose. This case, however, needs
a special consideration since the flow in the lakes is not
confined to a thin boundary layer and its direction is not
determined by the free surface gradient which is there
zero.

Let v = (v, , v „v„)be the water flow velocity (in
a lake or in a very thin surface layer over the slope).
Integrating the continuity equation

Bv~h Bv~~ Bvi/'+ '+
Bzi Bzz By

with respect to y yields

Oh——v/, rp —h = —(divq, y —h)Bt

T
q„(p—h

+ q''7 p —h.

The first integral on the right-hand side is zero due to the
boundary conditions. Gradients ~h and gp are both
zero on the part of 0 where h ) hp and on the other part
of this domain q = —m~hp, m ) 0, and ~th7y~ & ~~hp~,
therefore

q ~((p —h) = —m(yh/fhp ivy —]ghp~2) ) 0,

and thus the quasivariational inequality holds.
The free boundary h can be found &om this inequality.

However, this is only a part of the solution —it is the flux

q, the dual variable, which is of interest in geomorpho-
logical and hydrological applications. The determination
of the &ee surface fluxes is also necessary in problems of
bulk solids mechanics of polydisperse materials [14].

At time t, the water flux down the slopes is defined in
the coincidence set

0 = 'dy+ *'dy+v„]„,
hii +1 hii &2

h h

v, dy + v, dy
hfi +2 ho

—v /s h/t + /iyh~/'+ v„~/s. Ql + /ryhc~/s,

where normal velocities v„aredetermined &om the kine-
matic boundary conditions

Ap ——(x c 0] h(x, t) = hp(x)).

( ~h, l—dlv

g l~hpl)
xc Op. (15)

In this domain Bh/Bt = 0 and m = q/~~hp~, where q =
~q] and we suppose that ~hp g 0 almost everywhere.
The equation of water balance (2) in this region yields

v„ih, = 0, v„]h—v„' = uf'.

Here v„' = —iBh/fit)/h/1 + ~ryhP is the free surface re-

iocity and w' = w/itl + ~iyhP is the intensity of water

inBux through the free surface. Combining these equa-
tions we arrive at the same conservation law as before,

h

Bt
+ div(qQ = vf,

where q is the horizontal projection of the water flux.
The direction of this vector is now determined by the
relations q = —myh/fh and m(x, t) ) 0 only over the slopes
since, in the lakes, where ~h = 0, the hydrodynaxnics
are obviously nontrivial. The Bow in the lake does not
aH'ect the &ee surface and we do not need to specify its
direction. This is a modification of the previous model
implied by the physics of the problem. Note that Slater's
condition, which we used in our proof of the equivalence
of di8'erential and variational formulations, is no longer
true for the zero angle of repose. Nevertheless, as we
show below, in this case the weaker modified formulation
also yields the quasivariational inequality (8).

Let p = 0 and (h, m) be a solution of the modified
model (1)—(5) and (7). Then h 6 K(h) and for any func-
tion y e K(h),

Provided the &ee boundary h has been found &om the
quasivariational inequality and thus Op is known, the hy-
perbolic equation (15) may be used for the flux calcula-
tion. Since the characteristics of this equation are the
lines of steepest descent of the land surface, the bound-
ary condition for (15) should specify the flux on those
parts of OOp where vector —~hp is directed inside do-
main Op.

Equation (15) has been known for a long time [21].
Nevertheless, various cellular-automata models or topo-
logical methods based on the evaluation of drainage areas
have usually been used instead of it for the determination
of water fluxes [19,20]. Below we present an illustrating
exaxnple in which we determine the Buxes by solving Eq.
(15) using the finite-element approximation for a simple
topography without lakes (in this case Op ——0).

Domain O has been triangulated and the land surface
is assumed to be linear inside each 6nite element. Wa-
ter gain by precipitation has been related to the centers
of the elexnents; the Bux values have been determined
in the centers and vertices of elements. The outBow of
an elexnent has been directed towards its lowest node or
towards the neighboring elexnent across their common
edge, depending on the local topography. The outflow
of a node has also been directed either towards a lower
node along the common edge or into one of the neighbor-
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1. Generalization of this numerical procedure, allowing
for the presence of lakes, is also possible.

CONCLUSION

FIG. 1. River network on a randomly perturbed inclined
Bat surface. The regular finite element net 50 x 50 is used;
rivers with drainage areas not less than ten finite elements are
shown. The river's width in the figure is proportional to the
drainage area.

ing elements. All flows directed into an element join at
its center. The resulting system of linear balance equa-
tions is sparse and can be eH'ectively solved even for a
large number of elements.

To illustrate the numerical solution we used a flat sur-

face inclined towards the southeast and added a small
random noise to the heights in the nodes of a regular
finite element net. Precipitation intensity was taken to
be uniform so that the water fluxes were proportional to
the drainage areas. The calculated rivers with drainage
areas larger than a certain Bxed value are shown in Fig.

A model describing the evolution of sandpiles and wa-

ter transport in river nets has been proposed. In this
model, no constitutive equation relating the rate of sur-

face transport to the excess of the slope incline is used
and it is not even assumed that the surface flux is a lo-

cal functional of the &ee surface. The local topography
of this surface determines only the direction of surface
transport but not the flux value which may be influenced

by distant events.
The rate of surface transport in our model is deter-

mined by a Lagrange multiplier, which ensures the fu161-

ment of a mass conservation law in the presence of a con-
straint and depends on the free surface and the external
source in a nonlocal way. That is why the model is able
to account for long-range instantaneous interactions over
those regions where criticality has been reached, which is

a crucial feature typical of extended dissipative systems.
In transition to the variational formulation of the

model in the form of a quasivariational inequality, this
dual variable disappears and the &ee boundary may be
found &om this inequality without the determination of
the surface flux.

The knowledge of the surface flux is, however, needed
in various applications. The conservation law can be used
for its calculation provided that the free surface has been
already found.
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