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Seismicity and self-organized criticality
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Distributed seismicity appears to fit the de6nition of a self-organized, critical phenomenon. In this pa-

per a cellular-automata model is presented as an analog to distributed seismicity. We consider a grid of
boxes with a fractal distribution of sizes. Particles are randomly added to the boxes. When the number

of particles reaches a critical value they are redistributed to adjacent boxes and edge or corner boxes lose

particles off the grid. The addition of particles is analogous to crustal strain and the redistribution from
a box is equivalent to a characteristic earthquake on a fault. A redistribution from a small box (a
foreshock) may trigger an instability in a larger box (the main shock). A redistribution from a large box
always triggers many instabilities in adjacent smaller boxes (aftershocks). The frequency-size statistics
for both main shocks and aftershocks satisfy the Gutenberg-Richter relation. Model foreshocks occur
28 /o of the time, in good agreement with actual foreshocks. No systematic precursors are observed pri-

or to model earthquakes, also in agreement with the present status of earthquake prediction studies.

PACS number(s): 05.40.+j, 05.45.+b

I. INTRODUCTION

The concept of self-organized criticality [1] is defined
to be a natural system in a marginally stable state, evolv-
ing naturally back to the state of marginal stability when
perturbed from that state. The input to the system is
continuous but the loss is in a discrete set of events that
satisfy fractal frequency-size statistics.

In the original cellular-automata model for self-
organized criticality a two-dimensional grid of boxes was
considered. Particles were added randomly to the boxes
until there were four particles in a box. The box was then
considered unstable and the four particles were redistri-
buted to the four adjacent boxes. If any of those boxes
had four or more particles, a further redistribution of ele-
rnents was carried out. Particles were lost only from the
sides of the grid. A fractal (power-law) relation was
found [2] between the number of events and the number
of particles lost in each event. These events were said to
be analogous to sandslides on sandpiles due to the ran-
dom addition of sand grains. A number of groups have
studied actual sandpiles and in some cases fractal distri-
butions of sandslides have been found [3].

Although there are important similarities between dis-
tributed seismicity and simple cellular automata models
[4], there are also significant difFerences. There are no
recognized foreshocks or aftershocks. A particular ele-
ment can participate in both small and large events, and
particular elements are not associated with characteristic
earthquakes. They also lack much of the basic physics
such as stick-slip behavior and elastic rebound. A simple
model that includes both consists of two sliding blocks
coupled to each other and to a constant velocity driver by
springs [5]. It has been shown that any asymmetry in this
model results in classical chaotic behavior; the Feigen-
baum period-doubling route to chaos is observed [6].

A model that combines the analog features of slider
blocks and the high-order aspects of cellular-automata

models involves the use of many slider blocks. For linear
arrays of up to 400 blocks, slip events involving large
numbers of blocks were observed, the motion of all
blocks involved in a slip event were coupled, and the ap-
plicable equations of motion had to be solved simultane-
ously [7]. Although the system is completely determinis-
tic, the behavior was apparently chaotic. Frequency-size
statistics were obtained for slip events and the events fell
into two groups: smaller events obeyed a power-law
(fractal) relationship and an anomalously large number of
large events included all the slider blocks. This model
was considered to be a model for the behavior of a single
fault, not a model for distributed seismicity. The large
events were associated with characteristic earthquakes on
the fault and smaller events with background seismicity
on the fault between characteristic earthquakes.

An alternative model combined features of the
cellular-automata model and the slider-block model [8].
A linear array of slider blocks was considered but only
one block was allowed to slip in a given time step. The
slip of one block could lead to the instability of either or
both of the adjacent blocks, which would then be allowed
to slip in a subsequent step or steps until all blocks were
again stable. A variety of related models have been pro-
posed [9].

In order to better understand earthquakes, it is essen-
tial to determine whether concepts of self-organized criti-
cality are applicable. Scholz [10] argues that the earth' s
upper crust is everywhere in a state of self-organized cri-
ticality. He cites as evidence the occurrence of earth-
quakes in the interiors of the surface plates as well as at
the boundaries, although the level of seismicity is much
lower in the interiors. An example of these interior
earthquakes was the sequence of three very large earth-
quakes (m =8) that occurred near New Madrid, Mis-
souri, in 1811—1812. Also, whenever a reservoir is filled
behind a dam, induced seismicity occurs. These and oth-
er observations indicate that the outer crust is always on
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where 3 is the area of the earthquake rupture and D is
the fractal dimension if we take

D=2b . (3)

the brink of failure, i.e., in a state of self-organized criti-
cality.

One implication of self-organized criticality is that a11

earthquakes, including the largest, represent noise on a
background level of stress. The classical view of the
earthquake cycle [11]is that stress gradually increases be-
tween earthquakes and drops during the earthquakes.
One consequence of this view is that the level of regional
seismicity should accelerate between earthquakes. In fact
the temporal variation in seismicity prior to a major
earthquake is a subject of considerable controversy.
Some authors accept precursory quiescence as a widely
applicable phenomenon [12], but others support some re-
gional buildup in seismicity as a precursor to a major
earthquake [13]. However, it is generally accepted that
levels of seismicity are not predictors of future earth-
quakes.

Crustal deformation at shallow depths occurs through
displacements on faults over a wide variety of scales.
Scholz [10] refers to this seismogenic zone as the schizo-
sphere and it typically has a thickness of 10 km. Below
the schizosphere, deformation is dominated by viscous
and plastic processes. Within the schizosphere, deforma-
tion is generally associated with earthquakes. Earth-
quakes in a zone of crustal deformation obey the
Gutenberg-Richter frequency-magnitude relation to a
good approximation

log
~+= bm +a—,

where X is the number of earthquakes in a specified
length of time in a specified region with a magnitude
greater than m, and a and b are constants. Aki [14]
showed that (1) is equivalent to the fractal distribution

(2)

considered the distribution of exposed joints and frac-
tures near Yucca Mountain, Nevada, and found good
agreement with a fractal distribution of block exposure
taking D =1.6. Sammis et al. [18] have proposed that a
comminution model for fragmentation is applicable to
tectonic deformation. This hypothesis states that direct
contact between two blocks of near equal size during tec-
tonic deformation will result in the breakup of one of the
blocks. It is unlikely that small blocks will break large
blocks or that large blocks will break small blocks. Their
discrete model for comminution is given in Fig. 1. Two
diagonally opposed blocks in a unit cube (r =1) are re-
tained at each scale so that no two blocks of equal size
are in contact with each other. We have two blocks with
r= —,

' and 12 blocks with r= —,', so that D=ln6/ln2
=2.585. Turcotte [19] has shown that many experimen-
tal studies of fragmentation yield fractal frequency-size
distributions with a=2.5. Considering each side of a
block in Fig. 1 to be a fault, we have a fractal distribution
of fault sizes with D =ln3/ln2=1. 585.

Crustal seismicity is a result of the interactions be-

tween crustal blocks over a wide range of scales. In order
to study these interactions we base the geometry for our
cel1ular-automata mode1 on comminution. Our objective
is to exhibit self-organized criticality while retaining a
fractal structure for the distribution of fault sizes.

II. MODEL

The standard cellular-automata model has a grid of
boxes of equal size. Particles are randomly dropped into
these boxes. We consider a grid of boxes with a fractal
distribution of sizes [20], each box representing a fault.
The random addition of particles to the boxes is analo-

gous to the addition of stress to a zone of crustal defor-
mation. A redistribution of particles from a box is the
analog of an earthquake. The number of particles redis-
tributed from a box is a measure of the strength of the
model earthquake. Big boxes have big earthquakes, sma11

Since the b value is usually in the range 0.65 &b (1.05
[15] we have 1.3 &D &2. 1. The universality of the frac-
tal frequency-magnitude statistics is strong evidence for
self-organized critical behavior of the outer crust.

Earthquakes in the outer crust occur on a hierarchy of
faults and fault segments that interlace the crust. To a
first approximation, each fault or fault segment is associ-
ated with a characteristic earthquake. There is observa-
tional evidence [16] for power-law (fractal) scaling be-
tween the net oftset on a fault and the fault length. As a
working hypothesis we assume that each fault is associat-
ed with a characteristic earthquake. Thus a fractal distri-
bution of earthquakes implies a fractal distribution of
faults. It does not follow, however, that the fractal di-
mension for the frequency-size distribution of faults is the
same as that for earthquakes, since this would imply that
the interval of time between earthquakes is independent
of scale.

Structural geologists recognize that the earth's crust is
broken up into blocks on the range of scales from millim-
eters to hundreds of kilometers. Barton and Hsieh [17]

FIG. 1. Illustration of a discrete model for comminution.
Diagonally opposite blocks are retained at each scale. The
blocks satisfy a fractal relationship with D=ln6/ln2=2. 585.
The block surfaces satisfy a fractal relationship with
D = ln3/ln2= 1.S85.
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boxes have small earthquakes. Some of the redistributed
particles are lost from the grid and the remainder are
transferred to other boxes. This transfer is analogous to
the transfer of stress during an earthquake from the fault
on which the earthquake occurred to adjacent faults.
When a redistribution from a small box results in an in-
stability in a big box the instability in the small box is the
analog of a foreshock. When a redistribution from a
large box triggers instabilities in the smaller boxes, these
are the equivalent of aftershocks.

We will consider the four models illustrated in Fig. 2.
In model 1 illustrated in Fig. 2(a) a square box is divided
into four equal sized boxes at first order. At second order
two diagonally opposite boxes are further divided into
four boxes. In Fig. 2(a) this construction has been ex-
tended to fifth order. We assume that the smallest boxes
have unit size, so at fifth order we have a 32X32 grid.
For this example we have N, =64 for r, =1, N2=16 for
r2=2, N3 =8 for r3=4, N4=4 for r4=8, and N& =2 for

r5 =16. Except for Ni, the N, are related to the r, b.y the
fractal relation (2) with D =1. This construction can be
extended to any order desired. The numerical results re-
ported for this model were primarily carried out on an
eighth-order grid (256X256). Model 2 illustrated in Fig.
2(b) is a variation of model 1 with the same fractal dimen-
sion. However, the number of largest boxes has been in-
creased so that we have N, = 128 for r, = 1, N2 =32 for
r2 =2, N3 =16 for r3 =4, and N4 =8 for r4 =8. For this
fourth-order example we again have a 32X32 grid. In
model 3 the square box is again divided into four equal
sized boxes at first order. But at second order only one
box is retained and three are further divided into four
boxes. In Fig. 2(c) this model has been extended to fifth-
order with a 32 X 32 grid. This model corresponds to the
discrete model for comminution illustrated in Fig. 1. For
this example we have N&=108 for r, =1, Nz=27 for
rz=2, N3=9 for r3=4, N4=3 for r4=8, and N&=1 for
r5 =16. Except for N„the N, are related to the r, by (2)

FIG 2 Illustration of the four fractal cellular-automata models used in this paper. (a) In model 1 a square box is divided into four
equal sized boxes and two diagonally opposite boxes are retained at each order- This construction has been extended to fifth order
and the fractal dimension is D =1. (b) Model 2 is the same as model 1 (a) except that the number of the largest boxes has been in-
creased to 8. (c) Model 3 corresponds to the discrete model for comminution illustrated in Fig. 1 carried to fifth order
D =ln3/ln2= 1.585. (d) In model 4 a square box is divided into nine equal sized square boxes and three boxes along a diagonal are
retained at each order, D = ln6/ln3 = 1.6309. A third-order example is illustrated in (d).
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with D =1n3/ln2=1. 5850, in agreement with our previ-
ous discussion of Fig. 1. In model 4 illustrated in Fig.
2(d) a square box is divided into nine equal sized boxes at
first order. At second order, three boxes along a diagonal
are retained and the other six boxes are further divided
into nine boxes. In Fig. 2(d) this construction has been
extended to third order on a 27 X 27 grid. For this exam-
ple we have N, =324 for r, =1, N2 =18 for r2 =3, and
N3 =3 for r 3 =9. Except for N &, the N, are related to the
r; by (2) with D =In6/ln3=1. 6309.

We apply the standard cellular-automata rules to our
four models:

(i) Particles are added one at a time to randomly select-
ed boxes. The probability that a particle is added to a
box is proportional to the area 3 of the box. For a
third-order version of model 1 these probabilities are il-
lustrated in Fig. 3(a). The largest boxes have r, =4 and

P, =
—,', for r2=2 we have P„=—,', , and for r, =1, we

have P„=—,
' .

1

(ii) A box becomes unstable when it contains 4A parti-
cles. For model 1 the number of particles required for in-
stability in a third-order example is given in Fig. 3(b).
For the largest boxes with r3 =4 we require n 3 =64, with
r2=2 we require n2=8, and with r&=1 we require
n) =4.

(iii) We consider two alternative rules for redistribu-
tions. In rule (iii), particles are redistributed to immedi-
ately adjacent boxes or are lost from the grid. The num-
ber of particles redistributed to an adjacent box is pro-
portional to the linear dimension of the box. As an ex-
ample we illustrate in Fig. 3(c) the redistribution of parti-
cles from one of the largest boxes r3 =4. Of the 64 parti-
cles that are redistributed 32 are lost from the grid, 16

1/4

1/64

1/l6

(a)

FKx. 3. Illustration of the cellular automata rules using a third-order version of model 1. (a) Rule (i): Probability that a particle is
added to a box is proportional to its area A. (b) Rule (ii): A box becomes unstable when it contains 4A particles. (c) Rule (iii): The
numbers of particles redistributed from a large (heavily shaded) box to the immediately adjacent boxes (lightly shaded) are propor-
tional to the linear dimensions of the boxes. (d) Rule (iii ): Particles are redistributed from a large (darkly shaded box) to the four ad-
jacent (lightly shaded) regions that have the same area as the unstable box; the redistribution is proportional to the area of the box.
Two of the adjacent areas are off the grid so these particles are lost.
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FIG. 4. Illustration of the model evolution using a third-order version of model 1. (a) A particle distribution with all boxes stable.
(b) A particle has been randomly added to the shaded box making it unstable. (c) Particles have been redistributed resulting in the in-
stability of the shaded large box. (d) Sixty-four particles have been redistributed from the large box resulting in the instability of the
five shaded boxes. (e) Particles have been redistributed from the five unstable boxes in (d), resulting in the single shaded box being un-
stable. (f) The final redistribution is carried out resulting in all boxes being stable.
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are redistributed into two boxes with r2 =2, and 16 are
redistributed into four boxes with r, =1.

(iii ) In rule (iii') particles are redistributed into the four
adjacent regions that have the same size as the unstable
box. The number of particles redistributed to a box is
proportional to the area of the box. As an example we il-

lustrate in Fig. 3(d) the redistribution of 64 particles from
one of the largest boxes r3=4. Of the 64 particles that
are redistributed 32 are lost from the grid, 16 are redistri-
buted into four boxes with r2 =2, and 16 are redistributed
into the 16 boxes with r, =1.

(iv) If after a redistribution of particles from a box any
of the adjacent boxes are unstable, one or more further
redistributions are carried out. In any redistribution the
critical number of particles is redistributed. Redistribu-
tions are continued until all boxes are stable.

In order to illustrate these rules we consider the exam-

ple given in Fig. 4. We begin with the stable state on the
third-order (8 X 8) grid illustrated in Fig. 4(a). All boxes
have less than their critical value of particles so that it is

appropriate to randomly add a particle [rule (i)]. The box
with 15 particle receives the additional particle, and Fig.
4(b) is now unstable [rule (ii)]. We redistribute the parti-
cles in this box according to rule (iii), the resultant distri-
bution illustrated in Fig. 4(c); four particles have been
lost from the grid and the large upper box is unstable
with 66 particles [rule (iii)]. The redistribution from a
small box to a large box resulting in the instability of the
large box is the analog of a foreshock. We next redistri-
bute 64 particles from the large box leaving two particles
in it [rule (iv}]. Thirty-two particles are lost from the grid
and the resulting distribution is illustrated in Fig. 4(d).
Because a large number of particles have been redistri-
buted nearly all (—', ) of the neighboring boxes are unstable.
A redistribution from a large box (a main shock) always
trigger a sequence of further instabilities (aftershocks}.
Further redistributions from the five unstable boxes are
carried out leaving one unstable box, Fig. 4(e). After the
redistribution is carried out from this small box the sys-
tem is stable [Fig. 4(f)] and it is appropriate to randomly
add another particle. During the sequence of events illus-
trated in Fig. 4 there were five events of size 1, two events
of size 4, and one event of size 16; a total of 41 particles
were lost from the grid.

III. SYNTHETIC EARTHQUAKE CATALOGS

We have carried out a series of calculations using our
four models in order to better understand the statistics of
behavior and to relate these statistics to the statistics of
distributed seismicity. Our results were obtained with
fourth-order, sixth-order, and eighth-order models. The
statistical results obtained from fourth-order models were
virtually indistinguishable from the results obtained with
sixth- and eighth-order models.

A. Sum of particles

W'e first report variations in the total number of parti-
cles on the grid for a fourth-order version of model 1

[Fig. 1(a}]. The width of the grid is 2 =16 with the scale
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FIG. 5. Dependence of the total number of particles X~ in a
fourth-order version of model 1 on time. Each time step
represents the addition of one particle.

normalized to the smallest box. The maximum possible
number of particles on the grid without an instability is

Nz~,„=255 X2+ 63 X4+ 15 X 8+ 3 X 32=978. We start
with empty boxes and randomly add particles one at a
time according to rule (i). An example of the evolution of
the system is given in Fig. 5, where the total number of
particles N is given as a function of time, each time step
representing the addition on one particle. It is seen that
about 600 particles have been added before instabilities
set in. The total number of particles N is equivalent to a
state variable and is analogous to the regional stress in
the seismogenic crust. The sequence of events illustrated
in Fig. 5 is analogous to the release of regional strain ac-
cumulation by earthquakes.

B. Frequency-magnitude statistics

The behavior of a cellular-automata model is usually
characterized by the frequency-magnitude statistics of
redistribution events. We first consider an eighth-order
(256 X 256) version of model l. Our results were obtained
in a run in which 1.3X10 particles were added to the
grid. This resulted in 300 eighth-order (r =128) redistri-
butions (great earthquakes) and about 250000 other dis-
tributions (smaller earthquakes).

The cumulative frequency-magnitude statistics for
main shocks are given in Fig. 6(a). Only main shocks are
included because this is standard seismology practice. It
should be noted, however, that the inclusion of
foreshocks and aftershocks would have a negligible
inhuence on the statistics. The number of events %, in
boxes equal to or greater than r divided by the total num-
ber of events N„is given as a function of the box sizes.
Note that the number of events of size r = 1 has been re-
duced by a factor of 2 because the number of boxes of
this size is twice the scaled fractal value. An excellent
correlation with the fractal relation (2) is obtained taking
D =1.67. From (3) this corresponds to b =0.835, which
is quite a reasonable value for distributed seismicity.
Evernden [15]has obtained b values for regional seismici-
ty and concludes that b =0.85+0.20.

We found that 28% of the largest events (r =128) re-
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TABLE I. Frequency-magnitude statistics for our models.

Model Order
Main shocks

D b

Foreshocks
D b

After shocks
D b

For eshocks

(%%uo)

1
1I

2
3
4

1

1

1

1.585
1.630

1.67
1.67
1.67
2.50
4.05

0.835
0.835
0.835
1.25
2.025

0.82
1.15
0.87
0.94
2.74

0.41
0.575
0.435
0.47
1.37

1.27
1.48
1.40
2.02
1.15

0.635
0.74
0.70
1.01
0.575

28
28
29
31.5
23.1

suited from one or more redistributions from smaller
events. In terms of our analogy to distributed seismicity
this means that 28% of the main shocks had foreshocks.
This is in reasonable agreement with studies of actual
earthquakes done by von Seggern, Alexander, and Baag
[21],who found that 21% of the earthquakes studied had
foreshocks, and by Jones and Molnar [22] who found that
44% of larger shallow earthquakes that could be record-
ed teleseismically had foreshocks. The frequency-size
distribution of foreshocks is in reasonable agreement with
the fractal relation (2) taking D =0.82 (b =0.41). Our re-
sult of a small b value is physically reasonable since large
earthquakes are more likely to act as foreshocks than
smaller earthquakes.

All large (r=128} main shocks had extensive se-
quences of aftershocks, an average 300 aftershocks occur-
ring for each main shock. The frequency-size distribu-
tion of aftershocks is also in good agreement with the
fractal relation (2}, taking D =1.27 (b =0.635). Reasen-
berg and Jones [23] have studied 63 aftershock sequences
in California and found good correlations with the
Gutenberg-Richter relation (1}with b =0.90+0.2. Thus
the lower value we find is not consistent with observa-
tionS.

The cumulative frequency-magnitude statistics for
main shocks ( r =32) of a sixth-order (128X 128} version
of model 2 are given in Fig. 6(b). We find an excellent
correlation with the fractal relation (2), taking D =1.67

10 10

Nc

NT

10

Nc

NT

10

1 0 2

IO
1 2 4 8 16 32 64 128

Box Size r

10

Box Size r

32

10

10

10
c

NT
10

10

Nc

NT

10

10

10

Box Size r

I

16 $0

Box Size r

FIG. 6. Frequency-magnitude statistics for events using model 1 (a), model 2 (b), model 3 (c), and model 1' (d). In each case the re-
sults are correlated ~ith (2).
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(b =0.835). This is the same value obtained for model 1

in Fig. 6(a). We found that 29%%uo of the largest events
had foreshocks. The aftershocks correlate well with (2)
taking D=1.4 (b=0.7). This is somewhat higher than
model 1 and is in better agreement with observations.

The cumulative frequency-magnitude statistics for
main shocks of a seventh-order (128X128) version of
model 3 are given in Fig. 6(c). We find an excellent corre-
lation with the fractal relation (2), taking D =2. 50
(b=1.25). This is considerably higher than the values

found in models 1 and 2 and is also significantly higher
than observed values for distributed seismicity. We
found that 31.5% of the largest events had foreshocks.
The aftershocks correlate well with (2), taking D =2.02
(b = 1.01).

The results for the fourth-order (243X243) version of
model 4 are summarized in Table I, along with the results
for the other models. The fractal dimensions (and
equivalent b values) for model 4 are quite large compared
both with the other models and with observed seismicity.

We now reconsider model 1 using the redistribution of
particles illustrated in Fig. 3(d) [rule (iii')] instead of the
redistribution illustrated in Fig. 3(c) [rule (iii)]. We desig-
nate this as model 1' and consider a fourth-order
(32 X 32) version. The cumulative frequency-magnitude
statistics for main shocks are given in Fig. 6(d). An ex-
cellent correlation is obtained with (2), taking D=1.67
(b=0.835), the same values obtained for model 1. We
find that the aftershocks correlate well with (2), taking
0=1.48 (b =0.72). This is somewhat higher than model
1 and is in better agreement with observations. However,
the results do not appear to be very sensitive to the de-

tails of particle redistributions.

C. Decay of aftershocks

We next consider the temporal decays of aftershocks
after a main shock. We again consider the 300 largest
earthquakes (r =128) obtained for our eighth-order ver-

sion of model 1. In Fig. 7 the number of aftershocks N„„
at each redistribution is given. Twenty redistributions
are considered and aftershocks of all magnitudes

10

5 xiP

ev

o
0 0

3.5 I

-6000 -5000
I

-4000 -3000
I I

-2000 -1000

Time t before a major event

FIG. 8. The number of events in time windows ht =200 pri-
or to a major event. The solid line is a fit to the data indicating
about a 15%%uo increase in activity prior to a major event.

(r =1—64) are considered. After the first two redistribu-
tions the number of aftershocks at each redistribution is
in good agreement with the exponential decay relation

N&F =Ce (4)

taking C=3X10 and @=0.69. The number of aft-
ershocks decreases by a factor of 2 at each distribution.

Actual earthquake aftershocks, however, decay in time
according to the modified Omori law [24]

k

(c t)— (5)

where k, c, and p are constants and usually p =1.0+0. 1.
Clearly the model behavior differs from the observed de-

cay of aftershocks. The physics of the model is that the
redistribution of particles (stress) causes a sequence of in-

stabilities (aftershocks); the subsequent redistributions
cause more instabilities (aftershocks). Thus it is not
surprising that at each redistribution the number of aft-
ershocks decreases by a constant factor ( —,').

Actual aftershocks involve a time delay between the
application of the stress (the main shock or an aft-
ershock) and the subsequent frictional rupture. This de-

lay is likely to be related to the size of the incipient rup-
ture. The incubation time is not accounted for in our
model.

D. Frequency of events

10
I

io .
I

;o I

0 0

0.0 5.0 10.0 15.0 20.0

FIG. 7. The number of aftershocks XAF at each redistribu-
tion t as a function of t. Only the largest main shocks (r =128)
are considered.

It is also of interest to determine whether there is an
increase or decrease in the number of smaller events im-

rnediately prior to a large event. For this study we con-
sider the sixth-order (64X64) version of model 1. The
numbers of events in time windows prior to a large event
are given in Fig. 8 as a function of the time before the
large event. It is seen that there is a small ( —10%%uo) in-
crease in the number of smaller events immediately prior
to a large event. For this model the mean interval be-
tween large events is near 10 time steps, the increase in
the frequency of smaller events occurring in about the
last 10%%u~ of this interval.
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IV. IMPLICATIONS FOR
EARTHQUAKE PREDICTION

At the present time there is no recognized basis for
earthquake prediction. A remarkable feature of earth-
quakes is the apparent absence of any systematic precur-
sors [25]. Extensive and systematic searches have been
carried out for precursory tilts and variations in rates of
strain accumulation, variations in electrical currents and
magnetic fields in the vicinity of faults, changes in the
level of the water table and flow rates of springs, emis-
sions of radon gas, animal behavior, variations in seismic
velocities, and precursory variations in seismic activity.
No systematic precursory activity has been recognized.

With extensive seismic networks in seismically active
areas, a very large data base for precursory seismic activi-
ty exists but searches have not been successful. Analog
models such as those presented in this paper provide a
test bed for studying the statistics of precursory events.
As discussed in Sec. III, our model does not appear to
generate predictive precursory-event statistics. A possi-
ble conclusion is that events in a system in a state of self-
organized criticality are inherently not predictable. It
should be noted that observations of the number of parti-
cles in a compartment would indicate which compart-
ments in our model are on the brink of failure. But even
this approach would not account for precursory events
that transferred particles to a larger compartment.

V. CONCLUSIONS

The frequency-magnitude statistics of earthquakes are
fractal. The critical state is the maximum elastic energy
that can be stored in the region. Seismicity results in a
fluctuating value of the stored energy below the critical
state.

One approach to the modeling of self-organized critical
phenomena is to use cellular-automata models. In this
paper we have considered a cellular-automata model that
reproduces several aspects of distributed seismicity. In-
stead of assuming a grid of boxes of equal size, we hy-
pothesize a fractal distribution of box sizes. A redistribu-
tion from a box of a prescribed size is taken to be a model
earthquake of a prescribed magnitude. Subsequent redis-
tributions are taken to be aftershocks. If a redistribution
from a small box triggers a redistribution from a large
box we have had a foreshock. This simple model simu-

lates many of the observed statistics of distributed seismi-
city.

One of the remarkable aspects of large earthquakes is
the apparent absence of any systematic precursors [25].
An important question is whether the absence of precur-
sors is an intrinsic property of systems that exhibit self-
organized criticality. For the cellular-automata model
studied in this paper we do not observe systematic pre-
cursors before the largest events. The frequency of small-
er events increases about 10% but the statistical fiuctua-
tions are suSciently large that the increase cannot be
considered a systematic precursor.

Distributed seismicity appears to fit the general
definition of self-organized critical phenomena. Elastic
energy is continuously added by the relative movement of
the surface plates in the upper crust. A large fraction of
the energy is dissipated in discrete events —earthquakes.
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