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We analyze the probability distribution of escape times out of a metastable well for a stochastic model
driven by a large-amplitude sinusoidal time-dependent field. The system obeys a Langevin equation
which is solved numerically by generating stochastic trajectories, both for a white and for an Ornstein-
Uhlenbeck noise. The probability distribution changes from monomodal to multimodal as the noise
strength is increased. The average escape time shows a nonmonotonic behavior with the noise intensity
which is associated with the change in the structure of the probability distribution. For a noise with a
correlation time much longer than the period of the driving field, the resonance effects are enhanced

with respect to the white-noise case.

PACS number(s): 05.40.+j, 82.20.Fd

I. INTRODUCTION

The interplay of noise and nonlinearity in systems
externally driven by time-dependent forces has been the
subject of recent interest, both theoretically and experi-
mentally. In particular, when the external force is time
periodic, there are a number of resonant effects in a
variety of physical problems and which have been includ-
ed under the terminology of stochastic resonance (SR)
[1]. Most of the theoretical analysis has been carried out
for bistable models in which the relevant degree of free-
dom has two attractors in the absence of noise and driv-
ing terms.

In a recent work, Dayan, Gitterman, and Weiss [2]
have explored the escape of a particle from a single po-
tential well under the combined influence of white noise
and a sinusoidal time-dependent external force. In the
deterministic limit, the dynamics of the system is de-
scribed by the equation

D) G(x)+5 cos() M

dt

where S cos{)t represents the external force. The un-
bounded potential U(x)=—x2/2+x3/3 has two station-
ary points at x =0 and 1 corresponding, respectively, to a
local maximum and minimum. Weiss and co-workers
discuss the dependence of the escape time of the particle
from the well on the parameters of the driving force. In
the absence of the driving term, a particle which is initial-
ly located at x(0) >0 will remain bounded in the x posi-
tive region and so it will never escape from the well.
When the driving term is introduced, the dynamical evo-
lution cannot be described in a simple analytical form. In
Ref. [2] the dynamics is discussed and a sufficient condi-
tion for the particle not to reach x =— o during any
period of the external force is obtained. For large
values of § (S > 1), the particle trajectory may cross the
point x =0 towards the negative x region, but if
x(T)—x(0)>0 (T is the period of the external force),
then the particle cannot leave the well forever. Dayan,
Gittermann, and Weiss solved numerically Eq. (1) and
they find different regions in the S-T parameter space
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where the particle either describes bounded trajectories
or it leaves the well permanently after one or more exter-
nal cycles.

The additional of noise implies that the particle leaves
the well sooner or later regardless of the amplitude or fre-
quency of the driving term. Dayan, Gittermann, and
Weiss show how the average escape time depends on the
parameters of the driving force and the strength of the
white noise. The purpose of the present work is to extend
the analysis of Dayan, Gittermann, and Weiss in two as-
pects. First we will calculate not only the average escape
time but also the probability distribution of escape times
for a white-noise case This is done in Sec. II. Second, in
Sec. III, we will replace the white noise by an Ornstein-
Uhlenbeck process in order to study the effects due to the
finite correlation time of the noise. The details of the
procedure followed to generate this type of noise will be
presented in the Appendix.

II. ESCAPE TIMES WITH WHITE NOISE

Let us now analyze the influence of an additive white
noise on the dynamics of the model described by Eq. (1).
We then consider the Langevin equation

dx (1)

dt

where (£(7)) =0 and (&(1)&(s)) =4 D*8(t —s).

To study the combined effects of noise, nonlinearity,
and the external force we will resort to a numerical solu-
tion of Eq. (2). Following the ideas of Weiss and co-
workers, we will consider that the particle has abandoned
the well when, in the course of time, its position reaches a
sufficiently large negative value. As in Ref. [2] we will
take x = — 10 to be large enough, because once this value
has been reached, the probability of recrossing the posi-
tion x =0 is negligibly small. We generate N = 5000 sto-
chastic trajectories by numerically solving the Langevin
equation using a standard technique [3]. Then, we count
the number of trajectories N (¢;) crossing the point
x =—10 for the first time in the interval ¢; and ¢, +h,
where 4 is the integration step. This number is propor-

U'(x)+S8 cos(Qt)+£(2) , ()
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FIG. 1. Probability distribution of first-
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tional to the probability of crossing the point x =—10
for the first time at time #;. The knowledge of this proba-
bility P(¢) allows us to compute the mean first passage
time according to the expression,

LN (L)
<t>=E—N— . (3)

In Fig. 1, we plot the distribution of first passage times
P (1) for several values of the noise strength D and for the
parameters S =0.3 and 2=0.13197. As shown in Ref.
[2] these parameters correspond to a situation where the
particle escapes from the well before the end of the first
driving cycle in the absence of noise. When D is very
small, the average escape time partially coincides with
the escape time in the deterministic limit. P(¢) is then
very sharply peaked around this value as shown in Fig.
1(a). As the noise is increased, the probability distribu-
tion changes its character to a multimodal distribution
1(b). This feature reflects that the noise perturbs the
deterministic trajectory in such a way that there are tra-
jectories which remain inside the well after the first cycle
and cross the point x = — 10 after subsequent periods of
the driving force. Consequently, one should expect an in-
crease in the average escape time. As the noise is further
increased 1(c), the several peaks of the distribution be-
come broader and their heights smaller. This reflects the
competition between the diffusive effect of the noise and
the confining effect of the potential well, which is periodi-
cally modulated by the driving term. For sufficiently
large noise, the diffusive effect is so strong that, basically,
all the trajectories escape before the end of the first
period, giving rise then to a monomodal P(¢) 1(e). The
average escape time should become much shorter than T
as the probability of escape for short times is quite sub-
stantial.

The qualitative changes in the shape of P(¢) imply a
nonmonotonic behavior of (z) with D as can be seen in
Fig. 2. The results plotted there match quite well those
reported by Dayan, Gittermann, and Weiss, except for
very large values of D. This discrepancy may be due to
the smaller number of trajectories considered by these au-
thors. Notice that because the multipeak structure of the

escape time distribution for a wide range of D, the mean
escape time contains a limited amount of information
about the system dynamics, in contrast with the situation
of very small or very large D.

In Fig. 3 we show the results of our calculations for
S=0.3 and 02=0.13198. In the noise-free limit, these
parameters correspond to a situation where the particle
never leaves the well permanently [2]. Therefore, one
should expect that for very small D the probability for es-
caping within each external cycle is extremely small, al-
though nonzero. Also, its value should be very indepen-
dent of the number of cycles elapsed. These features can
be observed in 3(a). As a consequence, (¢) should in-
crease tremendously as D goes to zero, as shown in Fig.
2. As the noise is increased, more and more trajectories
will leave the well permanently within the first cycle, un-
til for a large enough D, the distribution presents just one
peak. Therefore, for large values of the noise, the
influence of the value of the driving frequency is lost.

III. THE INFLUENCE OF
AN ORNSTEIN-UHLENBECK NOISE

Let us now explore the consequences of having a noise
with a finite correlation time by replacing the white noise
of Eq. (2) by an Ornstein-Uhlenbeck (OU) noise v (¢) with
(v(£))=0 and (v(t)v(s))=Q%xp(—|t —s|/7). Again,
we will carry out a numerical solution of the Langevin
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FIG. 2. Mean escape time as a function of noise intensity D
for the white-noise case. *: 2=0.13197; 0: 2=0.13198.
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FIG. 3. Probability distribution of first-
passage times for the white-noise case. S =0.3

and ©=0.13198 in all panels.
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equation by generating stochastic trajectories. The de-
tails about our procedure for generating an OU noise are
presented in the Appendix. We now have two noise pa-
rameters which can be independently varied. We will
consider situations where the noise correlation time is ei-
ther larger, equal to, or smaller than the period of the
external force. The white-noise case corresponds to a
noise correlation time much smaller than T.

In Fig. 4 we plot the probability distribution of the
times of first passage through the position x = — 10, for
1=0.13197 and S=0.3. The noise correlation frequen-
cy is 77 '=0.1 Q. For very small Q, all the trajectories
leave the well at the deterministic escape time. As Q is
increased, P(¢) acquires a multipeak structure indicating
that the trajectories escape in very many successive
periods of the external force, as shown in 4(a) and 4(b).
This feature is due to the fact that if the noise is not able
to make the trajectory leave the well permanently in one
cycle, it will be quite improbable that it does so in the
next one due to the large correlation time of the noise
compared to the period of the modulating force. By con-
trast, in the white-noise case all the particles leave the
well after just a few cycles for the range of noise strength

where P(t) is multimodal. Consequently, the mean first
passage time increases very quickly with the noise and
reaches a maximum value, which is roughly 50% larger
than the maximum value observed in the white-noise case
as seen in Fig. 5. A further increase of the noise leads
essentially to a broadening of the peaks [Fig. 4(c)], but
there is still a non-negligible probability for the particle
to escape after quite a few external cycles. (¢) starts
then to decrease but with higher values than in the
white-noise case. For very large Q, the probability distri-
bution is very broad, indicating that, even for large noise
strengths, the probability for escaping at large times is
small but nonzero [Fig. 4(d)].

These changes in the structure of P(#) explain the non-
monotonic behavior of (¢) with the noise strength,
characteristic of what has been termed ‘“transient sto-
chastic resonance” by the authors of Ref. [2]. The main
effect of a large noise correlation time is to enhance the
height of the resonance peak of {t) with respect to that
obtained in the white-noise case. We have also explored
cases for noise correlation frequencies equal or larger
than the driving frequency and we find that the behavior
of P(t) is then very similar to that obtained with white
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FIG. 4. Probability distribution of first-
passage times for an OU noise. S =0.3,
0=0.13197, and 7 '=0.1 Q in all panels.
The noise intensity Q ranges from 107%° (a) to
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FIG. 5. Mean escape times as a function of noise intensity
Q for an OU noise. 2=0.13197 in all panels. *: 77 !=1Q; 0:
=10 Q;0: 7~ '=0.1 Q.

noise. As shown in Fig. 5, the behavior of (¢) for these
cases is very similar to the one shown in Fig. 2 for the
white-noise case.

IV. CONCLUDING REMARKS

In this work, we have analyzed the statistical distribu-
tion of escape times of a particle out of a metastable well,
subject to a sinusoidal time-dependent driving term, fol-
lowing the ideas of Weiss and co-workers. We have con-
sidered two kinds of noise, a white noise and an OU noise
with finite correlation time. In both cases, and for some
values of the parameters of the driving term, the average
escape time shows a maximum for some value of the
noise strength. This phenomenon is associated to the
change in the structure of the probability distribution of
escape times. For very small noise strength, the effect of
the noise on the deterministic trajectory is negligible, but
as D is increased, P(t) acquires a multipeak structure,
with a corresponding sharp increase in (). This effect is
more pronounced for an OU noise with a correlation time
much larger than the external period, due to the fact that
a particle might remain confined after very many external
cycles, although it should have escaped during the first
cycle in the deterministic limit. The decrease of () with
a further increase of the noise strength is due to the
diffusive effect of the noise which eventually makes P(t)
change to a monomodal structure with its maximum lo-
cated at very short times.
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APPENDIX

Let us consider a random quantity v () obeying the
Langevin equation

dv(t) _

dt
where 7(¢) is a white noise with zero mean and correla-
tion function {7(¢)n(s)) =2 (Q?/7)8(t —s). Solving Eq.

(A1) for a given initial condition v (0) and averaging over
the realizations of the white noise one finds [4]

(v(r))=v(0)e~"'",

—%v(tH-'r](t) , (A1)

A2
)/ 0 (A2)

tl—tz)/‘r_e—(t|+tz)/‘r

(vt v(t,y))=e

—(
+Q%e l.
If the initial condition is picked from a Gaussian distribu-
tion with zero average and width Q% and we average over
this initial distribution, we find the usual properties of an
OU process, i.e.,

(v(1))=0,
(w(tw(s))y=Q2% ~lt—sl/r

We also notice that if the initial condition is set as
v(0)=0 and we wait for t >>7, we have that the correla-
tion properties of the v(¢) process, after this transient, are
the same as those of an OU process. This observation
leads us to the following numerical scheme to generate an
OU process. We define the quantities

(A3)

t,th
B,=B(t,)+ [ " n(r)dr, (A4)
with statistical properties
(B,)=0,
(A5)

2
(8,8,)=22"s, .
A discrete version of the formal solution of (A1) with
v(0)=0is

—,—h/
v,=e TUn_1+Bn_l N

(A6)
v,=B, .

This iteration scheme allows us to generate values of {v, }
that, for a sufficiently range n, correspond to the OU pro-
cess of Eq. (A3). These aged values for the v process are
then used to generate stochastic trajectories of x (), by
solving the Langevin equation for x (¢) with an OU noise
term.
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