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Converting transient chaos into sustained chaos by feedback control
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A boundary crisis is a catastrophic event in vrhich a chaotic attractor is suddenly destroyed, leaving a
nonattracting chaotic saddle in its place in the phase space. Based on the controlling-chaos idea [E.Ott,
C. Grebogi, and J. A. Yorke, Phys. Rev. Lett. 64, 1196 (1990)], we present a method for stabilizing
chaotic trajectories on the chaotic saddle by applying only small parameter perturbations. This strategy
enables us to convert transient chaos into sustained chaos, thereby restoring attracting chaotic motion.

PACS number(s): 05.45.+b

I. INTRODUCTION

Boundary crises are catastrophic events that occur
commonly in nonlinear dynamical systems [1]. In such a
case, a chaotic attractor collides with its own basin
boundary and is suddenly destroyed as a system parame-
ter passes through the crisis value, leaving behind a
chaotic saddle in the place of the original chaotic attrac-
tor in phase space. A chaotic saddle is nonattracting and
has a dense set of "gaps." These gaps re6ect a Cantor-
set-like structure in both the stable and unstable folia-
tions associated with the chaotic saddle [1,2]. As the pa-
rarneter varies further beyond the crisis value, sizes of
these gaps increase. Nonetheless, immediately after the
crisis, the chaotic saddle resembles the original chaotic
attractor since the sizes of the gaps are sma11. Physically,
nonattracting chaotic saddles lead to transient chaos,
namely, trajectories starting from most initial conditions
wander around the chaotic saddle for a finite amount of
time before settling into the final asymptotic state. The
final state could be, for instance, an attractor at infinity.

To illustrate nonattracting chaotic saddles and the
phenomenon of transient chaos, we use the Henon map

(x„+„y„+,)=(a —x„+0.3y„,x„),where a is a parame-
ter, as an example. Figure l(a) shows a bifurcation dia-

gram for the map, where the abscissa is the parameter a
in a range (0.0,3.0) and the ordinate plots asymptotic
values of the dynamical variable x. A boundary crisis
occurs at a, =1.426 at which the chaotic attractor is de-

stroyed. Hence, in Fig. 1(a), the asymptotic state of the
map is attracting for a & a, and is nonattracting for
a & a, [3]. The asymptotic x values plotted for a & a, are
actually taken from a long orbit on the chaotic saddle.
This orbit cannot be obtained by directly iterating the
map, as we do for the case of a & a, where there are at-
tractors, because numerical trajectories starting from al-
most all initial conditions except from a set of measure
zero diverge from the chaotic saddle in a finite number of
iterates. The orbit is computed by using a technique
called the "proper interior maximum triple" (PIM-triple)
method specially designed to keep trajectories on nonat-
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FIG. 1. (a) A bifurcation diagram and (b) a Lyapunov dia-

gram of the Henon map (x,y) ~(a —x'+0.3y, x) for
a E [0.0, 3.0]. A boundary crisis occurs at a, = 1.426 (indicated

by the vertical dividing line in both figures). The asymptotic
state of the map is attracting for a (a, and is nonattracting for
a )a, . At a =a„the chaotic attractor is destroyed, leaving a
nonattracting chaotic saddle in the phase space. The asymptot-
ic dynamical variables and the Lyapunov exponents for a & a,
are calculated by using a long PIM-triple orbit. While the
dynamical nature is fundamentally di6'erent for attracting and
nonattracting motions, the asymptotic dynamical variables ap-
pear to be continuous around the crisis.
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FIG. 2. (a) A chaotic attractor for the Henon map at a =1.4
and (b) a chaotic saddle at a = 1.5. The crosses in (b) denote the
locations of a period-8 orbit embedded in the chaotic saddle.

tracting chaotic saddles arising in two-dimensional maps
or three-dimensional autonomous flows [4). In Fig. 1(a),
the most notable characteristic of the chaotic saddles for
a )a, is the appearance of gaps as the parameter a passes
the crisis value a, . These gaps exist in all scales and they
occupy a larger portion of the phase space as a increases
far above tt, . Figures 2(a) and 2(b) show, in phase space,
the chaotic attractor at a = 1.4 & a, and the chaotic sad-
dle at a = l. 5 )a, . Despite gaps on the chaotic saddle in

Fig. 2(b), the motion on the chaotic saddle resembles that
on the chaotic attractor in Fig. 2(a) when a is not far
from tt, . This is also reflected in the Lyapunov diagram
shown in Fig. 1(b), where we plot the largest Lyapunov
exponent of attractors before the crisis and that of chaot-
ic saddles after the crisis. The Lyapunov exponent exhib-
its no apparent characteristic change when a passes a, .

Physically, trajectories in the neighborhood of chaotic
attractors and chaotic saddles have different behavior.
Trajectories starting from initial conditions in the basin
of the chaotic attractor will stay on the attractor forever.
For chaotic saddles, trajectories only stay near them for a
6nite amount of time. Figure 3 shows a time series of x„
for a =1.5 [Fig. 2(b)], where the initial condition for the
plotted trajectory is (xo,yc) =(—1.711,0.0). The lifetime
of transient chaos is 288 iterates in this case. At time
step n =289, the trajectory escapes the chaotic saddle in
a catastrophic way and maps to an attractor at negative
in6nity in subsequent iterates. There are practical appli-
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FIG. 3. A time series of x„for the case of transient chaos at
a = 1.5. The trajectory starts from the initial condition
(xp yp )= ( —1.71 1,0.0). This trajectory wanders around the
chaotic saddle of Fig. 2(b) for 288 iterates and escapes to an at-
tractor at negative infinity in subsequent iterates.

cations in which one wishes to avoid catastrophic events
such as this. One example is the so-called "voltage col-
lapse" that occurs in electrical power systems [5]. For a
particular class of voltage collapse, the phenomenology is
that the power supply system breaks down suddenly after
exhibiting complicated dynamical behavior resembling
that of transient chaos (Fig. 3). Theoretical models sug-
gest that for this class of voltage collapse, boundary crisis
may be the culprit [6]. Therefore the conversion of a
transient chaotic trajectory into a sustained chaotic or
periodic trajectory would prevent voltage collapse in such
cases. In this paper, we address the following question:
when the crisis is inevitable and a chaotic attractor has
been transformed into a chaotic saddle, can one restore
stable chaotic motion by converting transient chaos into
sustained chaos by applying only small perturbations to
one of the accessible system parameters?

Control of chaos using unstable periodic orbits embed-
ded in a chaotic attractor has been proposed in Ref. [7].
The basic idea of the method is as follows. First one
chooses an unstable periodic orbit embedded in the at-
tractor, the one which yields the best system performance
according to some criterion. Second, one defines a stnall
region around the desired periodic orbit. Due to ergodi-
city of the chaotic attractor, the trajectory eventually
falls into this small region. When this occurs, small judi-
ciously chosen temporal parameter perturbations are ap-
plied to force the trajectory to approach the unstable
periodic orbit. This method is extremely flexible because
it allows for the stabilization of different periodic orbits,
depending on one's needs, for the same set of nominal
values of the parameter. This idea has since stimulated
many theoretical investigations [8] and has been success-
fully applied in various physical [9], chemical [10], and
biological [11]systems.

In this paper, we devise a scheme to restore sustained
chaotic motion on the chaotic saddle by using the
method of Ref. [7]. The key observation is that on the
chaotic saddle there exist dense, though nonattracting,
chaotic orbits. By selecting one such nonattracting orbit
as the reference orbit, which can be constructed by using
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the PIN-triple method, we can make other trajectories
stay in the neighborhood of this reference orbit for as
long as one wishes by applying small, judiciously chosen
temporal parameter perturbations. In this sense, nonat-
tracting trajectories in the neighborhood of the chaotic
saddle are transformed into stable chaotic trajectories.
This can indeed be achieved since there exist stable and
unstable directions at each point of the reference orbit on
the chaotic saddle. Hence, in principle, controlling a tra-
jectory on the chaotic saddle is equivalent to stabilizing a
long unstable periodic orbit as in Ref. [7]. We should
mention that a method for stabilizing chaotic orbits on
the attractor has been proposed and applied to the syn-
chronization of two almost identical chaotic systems [12],
and a method of creating desired chaotic orbits on a
chaotic attractor has been implemented [13].

The organization of this paper is as follows In. Sec. II
we discuss the method to stabilize a long chaotic orbit on
the chaotic saddle. In Sec. III we present numerical re-
suIts using the Henon map and discuss the probability
that a randomly chosen initial condition can be con-
trolled. In Sec. IV we give conclusive remarks.

II. METHOD OF STABILIZING A CHAOTIC ORBIT

We consider a transient chaotic system that can be de-
scribed by two-dimensional maps on the Poincare surface
of section

l~pI—= Ip
—

pol &5 (2)

where po is some nominal parameter value and 5 is a
small number de6ning the range of parameter perturba-
tion s.

Let [y„I {n =0, 1,2, . . . , N) denote a long reference
orbit on the chaotic saddle obtained by the PIM-triple
method [4]. Now generate the orbit [x„I to be stabilized
around the reference orbit. Randomly pick an initia1
condition xo and assume that the orbit point x„(n~ 0)
falls in a small neighborhood of the point yk of the refer-
ence orbit on the chaotic saddle at time step n. %ithout
loss of generality, we set k =n on the reference orbit. In
this small neighborhood, the linearization of Eq. (1) is ap-
plicable. We have, thus

x„+,(p„)—y„+,(po)=J[x„(po)—y„(po)]+Kbp„, (3)

where hp„=p„—po, hp„~6,J is the 2X2 Jacobian ma-

trix, and K is a two-dimensional co1umn vector,

J=D F(x p)I — — K=D F(x p)l

(4)

Without control, i.e., bp„=O,the orbit x, (i = n + 1, . . . )

diverges from the reference orbit y; (i =n + 1, . . . ) ex-
ponentially. Our task is to program the parameter per-

x„+,=F(x„,p),
where x„&1R,p is an externally controllable parameter.
For p values considered in this paper, we assume that Eq.
(1) possesses only nonattracting chaotic saddles. We re-
quire the parameter perturbations to be small, i.e.,

turbations hp„ in such a way that the trajectory x stays
near the reference orbit on the chaotic saddle (or
equivalently, ~x;

—
y; ~

~0~ ) for subsequent iterates
I' ~n+ l.

For each reference orbit point on chaotic saddle, there
exist both a stable and an unstable direction [14]. These
directions can be calculated by using the numerical
method of Ref. [14]. This numerical method, however,
requires that the map be explicitly known. The calculat-
ed stable and unstable directions are stored together with
the reference orbit, and they are used to compute the pa-
rameter perturbations applied at each time step. Let e,[„]
and e„[„~be the stable and unstable directions at y„and
f,~„~and f„~„~be the corresponding contravariant vectors
that satisfy f„~„~e„(„~=f,~„).e,~„~=1 and f„~„~e,I„,
=f,~„~e„~„~=O.To stabilize [x„jaround [y„},we re-

quire the next iteration of x„,after falling into a small

neighborhood around y„,to lie on the stable direction at

(„+1)(po), 1.e.,

[x.+ ( y(n—+i){po)] fu(n+i) =o . (5)

Figures 4(a) and 4(b) show an example of applying our
algorithm to the chaotic sadd1e of the Henon map shown
in Fig. 2(b). We use a reference orbit on the chaotic sad-
dle of length N=10000. The maximally allowed param-
eter perturbation is 5=0.01 and the size of the small

neighborhood around each point on the reference orbit is
chosen to be @=0.005. We can choose both 5 and e arbi-

trarily, as long as they are small. We start the trajectory
to be stabilized with initial condition (xo,yo)
=(0.5, —0.1). After four initial iterates, the trajectory
fa11s into the neighborhood of a point of the reference or-
bit [(x,y) = ( —l. 8393, 1.8387 }]. When this occurs, pa-
rameter control based on Eq. (6) is turned on to stabilize
the trajectory around the reference orbit. The controlled
trajectory in the phase space is shown in Fig. 4{a). Figure
4(b} shows values of the parameter perturbations applied
at subsequent time steps. Numerically, the controlled
trajectory rapidly converges to the reference orbit. After
a few iterates, the parameter perturbations required be-
come extremely small (around 10 ' ). Figures 4(a) and
4(b) thus demonstrate the applicability of the method of
Ref. [7] for converting transient chaos into sustained
chaos in dynamical systems. Note that, however, not
every randomly chosen initia1 condition can be con-
trolled. A fraction of trajectories starting from initial
conditions in a square region defined by —3 ~ x ~ 3 and
—3 ~y ~ 3 escape to infinity without even getting closer
to the chaotic saddle. Those initial conditions are, there-
fore, uncontrollable.

The probability that a randomly chosen initia1 condi-

Substituting Eq. (3) into Eq. (5), we obtain the following
expression for the parameter perturbation:

y {po}]I'f ( +&)
b,p„=

K f„(„+,)

It is understood in Eq. (6) that if bp„&5, we set bp„=O.

III. NUMERICAL RESULTS FOR THE HKNON MAP
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tion can be controlled, P(N, e), depends both on the
length of the reference orbit N and the size e of the small
region around each reference point. Figure 5(a) shows
the P(N, e) versus N curve, where @=0.01. This curve is
calculated by varying X systematically and randomly
choosing 10 initial conditions with uniform probability
distribution in the region ( —3~x~3, —3 y 3) for
each fixed N value. The probability is given by the ratio
between the number of initial conditions that approach
the reference orbit before escaping to infinity and the to-
tal number of initial conditions chosen (10 ). For small
N values, say N(800, P(N, e) increases approximately
linearly. The reason is that the probability that a trajec-
tory enters the neighborhood of the chaotic saddle is ap-
proximately proportional to the total area of the small
circles surrounding all the reference orbit points. This
area is approximately me Ewhen overlaps between neigh-
boring circles are small. As N increases further, the over-
laps between neighboring circles become significant,
thereby causing P (N, e) to saturate. In fact, when
N &1000, P(N, e) increases very slowly. When N is
larger than 10, P(N, e) &0.66 for the chaotic saddle in
Fig. 2(b). The relation between P(N, e) and e for fixed
N=8000 is shown in Fig. 5(b), which can roughly be
fitted by P(N, e)-loge. This is very different from the
power-law scaling relation P -e& predicted for the case

3.0

IV. CONCLUSIONS

In this work we have devised a scheme to convert tran-
sient chaos into sustained chaos by applying small pertur-
bations to a system parameter. Our method is based on
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saddle, where y is a scaling exponent determined from
the stable and unstable Lyapunov exponents associated
with the periodic orbit [7,15,16j. The reason is that such
a power-law scaling is valid only in the limit @~0 [7,15).
When the length of the target periodic orbit is small, such
as the examples in Refs. [7,15,16], this power law can be
observed for numerically suitable values of e. When the
length of the target orbit becomes large, such as our case
of controlling a long reference chaotic orbit, the depen-
dence of P(N, e) on E is much weaker. This is again due
to the overlap of neighboring circles surrounding the
reference orbit. When these overlaps are significant, in-
creasing e will not substantially increase P(N, e). The
power-law scaling relation would be realized when e is
extremely small, which is, however, numerically difficult
to achieve for long chaotic orbits.
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FIG. 4. (a) A restored sustained chaotic trajectory for
a =1.5. (b) The time-dependent parameter perturbations ap-
plied to maintain the sustained chaotic motion in (a). General-
ly, the controlled trajectory rapidly converges to the chaotic
saddle of Fig. 2(b). The required parameter perturbations are
extremely small (around 10 '

) after a few controlling steps.

FIG. 5. (a) For fixed a=0.01 (the radius that defines the con-
trolling neighborhood), the probability P(N, e) that a randomly
chosen initial condition can be stabilized around the chaotic
saddle of Fig. 2(b) versus N, the length of the reference orbit.
This probability increases initially with N and saturates for
large N. The asymptotic value of P (N, e) is approximately 0.66.
(b) For fixed N =8000, P(N, e) versus e curve. This relation is
approximately P (N, e)—log Ioe.
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the idea of Ref. [7]. The novel feature is that we explicit-
ly use the geometrical structure, i.e., stable and unstable
directions, along a long reference orbit on the chaotic
saddle to achieve the control. Our strategy thus allows us
to restore sustained chaotic motion, thereby avoiding the
catastrophic destiny of most orbits in the neighborhood
of the chaotic saddle.

As a natural extension, our method can be applied to
e6'ectively stabilize unstable periodic orbits embedded in
the chaotic saddle, such as the periodic-8 orbit shown in
Fig. 2(b). Randomly pick an initial condition in the re-
gion of the 6gure; the goal is to stabilize the trajectory re-
sulting from this initial condition in the neighborhood of
the unstable period-8 orbit before the trajectory escapes
to infinity. In a previous method [15],one chooses an en-
semble of initial conditions, some of them enter the
neighborhood of the target periodic orbit and can be con-
trolled. In general, the probability that a randomly
chosen initial condition is controlled is quite low because
only a tiny fraction of trajectories enters the neighbor-
hood of the desired periodic orbit. Nonetheless, we know
that a dense chaotic orbit on the chaotic saddle comes ar-
bitrarily close to the desired unstable periodic orbit [4].
The probability that a randomly chosen initial condition
approaches a long reference orbit on the chaotic saddle is
clearly much greater than the probability to enter the
neighborhood of the desired unstable periodic orbit be-
fore it escapes the chaotic saddle. By stabilizing a trajec-
tory around the long reference orbit on the chaotic saddle
and then switching to stabilize it around the desired

periodic orbit, we can substantially increase the probabili-
ty that a trajectory can be controlled. In fact, by using a
reference orbit of length about 1000, a factor of more
than 10 increase in the probability of control has been
achieved [17]. The longer the length of the reference
chaotic orbit is, the larger this probability can be, as
shown in Fig. 5(a).

Finally, we remark that the algorithm presented in this
paper applies well when the system's equations are
known. In experiments it is usually the case that only a
measured time series is available. It is then necessary to
use the delay-coordinate embedding technique [18] to ex-
tract quantities required to compute the parameter per-
turbations, such as the stable and unstable directions
along a reference orbit. While calculating such quantities
for low-periodic orbits embedded in a chaotic attractor is
relatively easy to achieve [7,19], it is not clear at present
that this may be possible for a long reference orbit em-
bedded in a chaotic saddle. Therefore there is currently
no assurance that our technique can be apphed to real ex-
perimental systems in which the equations are not avail-
able. Nonetheless, we hope that the method of this paper
will stimulate work on controlling transient chaos in ex-
perirnents.
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