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Virial expansions for quantum plasmas: Diagrammatic resummations
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We are studying the equilibrium properties of quantum Coulomb Quids in the low-density limit. In
the present paper, we only consider Maxwe11-Boltzmann statistics. Use of the Feynman-Kac path-

integral representation leads to the introduction of an equivalent classical system made of filaments in-

teracting via two-body forces. A11 the corresponding Mayer-like graphs diverge because of the long-

range Coulombic nature of the filament-filament potential. Inspired by the work of Meeron [J. Chem.
Phys. 28, 630 (1958); Plasma Physics (McGraw-Hill, New York, 1961)] for purely classical systems, we

show that these long-range divergencies can be resummed in a systematic way. We then obtain a formal
diagrammatic representation for the particle correlations of the genuine quantum system. The prototype
graphs in these series are made of root and internal filaments, connected by two-body resummed bonds
according to well-defined topological rules. The resummed bonds depend on the particle densities and

decay faster than the bare Coulomb potential because of screening. Some bonds decay algebraically as
1/r in accord with the absence of exponential clustering, while the other ones are short ranged. This
ensures the integrability of all the above prototype graphs. Moreover, we show that the filament densi-

ties, which are the statistical weights of the filaments in these graphs, can themselves be calculated in

terms of the particle densities via a mell-behaved diagrammatic series. This provides a useful algorithm
for expanding the Maxwell-Boltzmann thermodynamic functions in powers of the particle densities, as
to be described in a second future paper. The exchange effects due to Fermi or Bose statistics will be
considered in a third paper.

PACS number(s): 05.30.—d, 05.70.Ce, 52.25.Kn

I. INTRODUCTION

A description of matter in terms of a quantum fluid
made of electrons and nuclei interacting via Coulomb
forces is of fundamenta1 importance for many physical
situations where a nonvanishing fraction of free charges
appears. For instance, this occurs in various astrophysi-
cal objects (such as the sun or white dwarfs) and in the
laboratory plasmas used in confinement experiments. In
this context, the study of the equilibrium properties of a
quantum Coulomb fluid is useful for both understanding
the structure of the above systems and analyzing the ob-
servational data (for instance, those from helioseismolo-
gy). Such a study is also of conceptual interest in under-
standing states of matter where only neutral atomic or
molecular entities exist. In this spirit, we mention the
beautiful work by FefFerman [1],who rigorously showed
that, in some low-temperature and low-density limit, elec-
trons and protons form a gas of hydrogen atoms. The
physical conditions on the Earth are far from this scaling
limit and favor the presence of molecular hydrogen.

The purpose of this series of papers is to propose sys-
tematic prescriptions for calculating the low-density ex-
pansions (at fixed temperature) of equilibrium quantities
in quantum Coulomb fluids. For systems with short-
range forces, the familiar Mayer expansion [2] used in
classical statistical mechanics has finite coefficients and
can be extended to the quantum case [3] by introducing
the Feynman-Kac path-integral representation [4]. For
classical Coulomb systems, all the Mayer graphs diverge

because of the long-range (nonintegrable) nature of the
Coulomb potential U, (r)= 1 lr (moreover in the classical
case the Coulomb potential is regularized at short dis-
tances in order to avoid the collapse between opposite
charges}. As first noticed by Mayer [5] and Salpeter [6],
these long-range (infrared) divergencies can be eliminated
by resumming all the convolution chains built with the
Coulomb potential. This mathematica1 recipe rejects
screening, a many-body (collective} efFect discovered in-
dependently by Gouy [7], Chapman [8], and Debye and
Hiickel [9]. Meeron [10] and Abe [11]have shown that
the chain resummation leads to a new class of graphs
built with short-range bonds. Our main point is to ex-
tend the Abe-Meeron procedure to the quantum case.
We show that the series of divergent graphs in the
Feynman-Kac representation can be reorganized in a
series of finite resummed graphs. This provides a useful
algorithm for calculating density expansions, where vari-
ous physical effects such as screening, diffraction, forma-
tion of atomic or molecular entities, and statistics are
treated in a simultaneous and coherent way.

In the literature, to our knowledge, there exist two at-
tempts to derive low-density expansions for quantum
plasmas. First, Ebeling [12] has applied Morita's idea
which consists in introducing classical equivalent systems
with two-, three-, and higher-order many-body effective
interactions. The two-body effective potential between
two charges is essentially defined as the logarithm of the
symmetrized density matrix associated with the two-body
Hamiltonian of these charges. Similarly, the N-body
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effective potentials (N&2) are defined recursively in
terms of the matrix elements of the N-body quantum
Gibbs factors and of the lower-order effective potentials.
In practice, only two-body effective potentials have been
retained [13,14]. This amounts to considering well-

behaved classical systems with two-body Coulomb in-
teractions that are regularized at short distances [quan-
tum effects smooth out the singularity of u, (r ) at the ori-
gin]. The contributions of the three-body and higher-
order interactions are expected to be at least of order p,
where p is a generic notation for particle densities. The
main drawback of this formalism is precisely the absence
of a detailed control of these contributions. Second,
Rogers [15] started with the standard quantum many-
body perturbative expansions with respect to the interac-
tion potential U, in the framework of the grand-canonical
ensemble. These expansions can be written in terms of
graphs similar to those which appear in field theory [16],
where ferrnionic or bosonic loops associated with
imaginary-time free propagators are connected at
different times by an arbitrary number of interaction lines

v, . The long-range Coulomb divergencies are eliminated
via the well-known ring resummations [17]. Rogers pro-
posed a classical treatment of these resummations com-
bined with a reorganization of the series in U, in order to
introduce Coulomb thermal propagators at short dis-
tances. In this procedure, some terms are left over since
they are expected to be quantitatively small in the physi-
cal regimes considered by the author (i.e., at moderately
high densities where complex entities made of several
charges may be formed).

In Sec. II, we define the model S. It is made of point
particles with mass m, carrying a charge e, and a spin

o,' a is a species index which specifies the nature of the
particle (for instance, electron or proton in the case of the
hydrogen plasma). Its Hamiltonian is purely Coulombic,
i.e., it involves only two-body Coulomb interactions of
the form e e&U, (r ). This Hamiltonian is nonrelativistic
and does not depend on the spins. Lieb and Lebowitz

[18] have shown that the present model has a well-

behaved thermodynamic limit if and only if at least one
species obeys Fermi statistics. Since the thermodynamic
and correlation functions for the bulk are then well-

defined intrinsic quantities, we will formally carry out the
diagrammatic resummations in an infinite volume. In
principle, there is no need to explicitly consider boundary
effects which should disappear in the thermodynamic
limit. Furthermore, although Fermi statistics are crucial
for avoiding the collapse of all matter into a macroscopic
molecule, the density expansions are term by term we11

behaved in the framework of Maxwell-Boltzmann (MB)
statistics. This is because disregarding the many-body
collective effect which induces screening, the contribu-
tions at a given order in the density involve a finite num-
ber of charges. Moreover use of the Slater sums provides
a natural perturbative representation of the exchange
contributions, where the reference system is described by
MB statistics. These circumstances allow us to proceed
as fo1lows. First, in the present paper, we only consider
MB statistics and we derive a forma1 diagrammatic repre-
sentation of the particle correlations where the 1ong-

range Coulomb divergencies are resummed. The corre-
sponding density expansions of the MB thermodynamic
functions will be studied in a second paper; each term of
these representations is finite, but the whole series should
diverge in agreement with the instability of the MB sys-
tem. The exchange effects associated with Fermi and
Bose statistics will be dealt with in a third paper.

We turn to the Feynman-Kac representation with MB
statistics in Sec. III. For the sake of pedagogy, we first
expose how the so-called Feynman-Kac (FK) formula is

inferred from the Feynman path integral for the thermal
propagator of one particle in an external potential. The
application of this formula to the MB N-body density
matrix of I leads, in a very natural way, to the introduc-
tion of an auxiliary classical system eV' made of closed
filaments (also called "polymers" in the literature [19]).
Since the filaments still interact via two-body forces, the
equilibrium quantities of S', and consequently those of

, can be represented by series of Mayer-like graphs
where the familiar points are replaced here by extended

objects.
The interaction potential between two filaments decays

as the Coulomb potential itself at large distances. Thus
all the above Mayer graphs for S' diverge and the situa-

tion is analogous to what happens for classical Coulomb
systems. In Sec. IV, we show that these long-range diver-

gencies can be eliminated by resurnrning the convolution
chains, as in the classical case. In fact, inspired by the
works by Meeron [10] and Abe [11], we transform the
whole set of Mayer graphs defining the two-body correla-
tions of 1* into a new set of finite resummed graphs with

the same topological structure. The new graphs are built
with four kinds of resummed bonds where the summation
of the Coulomb convolution chains makes the familiar

Debye potential appear in a natural way. Two of these
bonds are short ranged and proportional to the charge-
charge and dipole-charge Debye screened potentials re-

spectively (the charges and the dipoles are those carried

by the filaments). On the other hand, the third and
fourth bonds decay only as 1/r at large distances. Al-

though this power law is at the border line for integrabili-

ty, the resummed graphs are indeed finite because they
are sufFiciently connected. Therefore the screening mech-
anisrn which eliminates the long-range divergencies is the
same one as in the classical case. However, it is not as

eScient since some resumrned bonds still decay algebrai-

cally. These slow decays should ultimately pollute the
correlations with algebraic tails in agreement with the
predictions of Refs. [20] and [21]:the effective multipole
potentials induced by quantum fluctuations cannot be ex-

ponentially screened.
The statistical weights in the above graphs are the fila-

ment densities p( 8) which depend on the shape of the
filaments in a complicated way. In Sec. V, we study the
functional p(8), by starting from its grand-canonical rep-
resentation in terms of fugacities. The long-range
Coulomb divergencies in the corresponding Mayer-like

diagrams are resummed by a scheme similar to that used

in Sec. IV. This provides a well-behaved diagrammatic
representation of p(A'), from which we infer the structure
of the small-fugacity expansion of this functiona1. Elim-
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inating the fugacities in favor of particle densities, we

then show that (C) can be represented by a double in-

teger series in p
~ and lnp. The first terms of this expan-

sion are calculated up to order p .
The resummed diagrammatic representation of the

particle correlations, combined with the particle-density
expansion of the functional p(C), allow calculation of any
thermodynamic function, to be described in the second
paper of this series. In the third paper, we shall evaluate
the exchange contributions and give the final form of the
density expansions for Bose and Fermi statistics. %e
shall then comment and compare with other theories. In
the meantime, we mention that part of the present work
has been announced previously [22].

fixed. The above theorem means that the thermodynamic
quantities relative to the infinite system have the right ex-
tensive properties. In particular, the bulk pressure P
given through

1
PP = lim —ln=TLp A (2.3)

is a well-behaved function of the intensive parameters p
and P which does not depend on the shapes of the finite

boxes considered in the TL. If the fugacities
z =exp(Pp ) are small enough (at a given temperature),
the system surely is in a fluid phase. The local density of
any species a then becomes uniform in the TL and
reduces to

II. MODEL

A. Definitions: Grand-canonical ensemble

pa zap Z Q

1
lim&L —ln" A

P

(2.4)

:-A=TrAexp —p H~ A Q IJ,,N, — (2.2)

where p is the chemical potential of species a. In the
definition (2.2), the trace Tr~ runs over all the states satis-
fying the above boundary conditions and symmetrized
according to the statistics of each species. Note that the
total charge g~ e carried by each of these states may
be diferent from zero.

B. The thermodynamic limit

Lieb and Lebowitz [18] have shown that the thermo-
dynamic limit (TL) of the present system exists if and
only if at least one species obeys Fermi statistics. The TL
is defined as the infinite volume limit (A~ oo), while the
chemical potential p and the temperature T are kept

We consider a multicomponent system Imade of point
charges e with mass m and spin 0 . The species index
a specifies the nature of the particle which will be either
an electron or a nucleus in mot applications. To ensure
charge neutrality, there are at least two species of charge
which are positive and negative respectively. The
charges are assumed to interact via the two-body
Coulomb potential, which reads e e&/r for two charges
e and e& separated by a distance r. The corresponding
Hamiltonian for N charges enclosed in a box with volume
A is

fi2 1 e, e,.
(2.1)

,. 2m,
' 2, , Ir, —rjl

i'
where i = ["]is a double index; k runs from 1 to the num-
ber N of charges of species a and a runs from 1 to the
number n, of species (the total particles number
N =g N ). The boundary conditions which define Hz ~
are of the Dirichlet type, i.e., the eigenfunctions of Hz A

vanish at the surface of the box.
Let the system be in thermal equilibrium at tempera-

ture T (P= I/ke P. The grand-partition function of the
finite system reads

Furthermore, the infinite system is locally neutral, i.e.,

pep=0 (2.5)

C. Maxwell-Boltzmann statistics

On the right-hand side of (2.2), the trace can be taken
over the symmetrized states ~R~cr&)s in configuration
and spin spaces, defined via the usual Slater sums,

for any set of the fugacities. This is due to the fact that
all the excess charges associated with non-neutral states

(g e N %0) go to the boundaries in order to minimize

the electrostatic energy. Once the TL has been taken,
these charges are rejected to infinity and the bulk region
is neutral [23].

The existence of the TL is guaranteed by the combina-
tion of several phenomena. First, the most probable mi-

croscopic configurations can be organized in sets of finite
neutral clusters which are weakly coupled because of
screening. This physical idea can be formulated in a pre-
cise mathematical way, with the help of the "cheese
theorem" and of the harinonicity of the Coulomb poten-
tial [24]. Of course, this screening mechanism requires
the presence of charges of opposite signs (otherwise the
system explodes). Second, the classical collapse between
two opposite charges at short distances is avoided by the
uncertainty principle. The latter ensures that the quan-
tum density matrix remains finite, and consequently inte-
grable, at zero separations in configuration space. Third,
the H stability prevents the macroscopic collapse of all
the matter into a big molecule. This property stipulates
that the Hamiltonian Htt in the finite volume is bounded
below by an extensive constant (i.e., the ground state of
HN is bounded below by Cst XN). Dyson and Lenard
[25] have proved that the H stability is enforced by Pauli
principle, which requires the presence of fermions.

In this series of papers, we are interested in bulk prop-
erties of the infinite system. Since the TL exists, it is
reasonable to assume that the corresponding quantities
can be obtained without any explicit consideration of
boundary effects. Therefore, from now on, we shall per-
form a11 calculations in the infinite volume.
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gge (P )

()1/2 p a

Z
N', rp (,)o p (, ) & . (2.6)

In (2.6), P is a permutation of (1, . . . , N ),

P (& }=(P(k),a) and e (P ) is either 1 if the particles of
species a are bosons (o integer) or the signature (+1) of
P in the fermionic case (cr half integer). Furthermore
, - means the tensorial product over the one-body states
l
ro'& describing a particle localized at r with the projec-

tion of its spin along a given z axis equal to o' [cr' may
take (2cr +1)values]. Using (2.6), we obtain

=0
P e.(P.)~.(P.') g g &

o' „ItT p (;) & I,g «, & r „,I(N; l exp( P&t—t, A) I ; I
r

g(N )) P P Q )~~

(2.7)

Since the Hamiltonian HN A does not depend on the
spins, the spin part of the matrix elements factorizes and
contributes the trivial degeneracy factor

, g; (o & . lo p (;) & which only depends on the pairs

of permutations (P,P').
The Slater-sum representation (2.7) of:"z provides a

natural perturbative scheme for treating the exchange
effects associated with Fermi or Bose statistics. Indeed,
the "square" terms (P,=P,' for any a), where the diago-
nal matrix elements of exp( PHD A) in c—onfiguration
space appear, obviously correspond to MB statistics. A
"rectangle" term (P,AP, for at least one species) in-

volves the exchange of n particles (n &2). The corre-
sponding matrix elements of exp( PHN A) are—off diago-
nal with respect to the positions of the n exchanged parti-
cles. Since these nondiagonal parts are short ranged, the
contribution of the above rectangle term is at least of or-
der p" (roughly speaking, a cyclic permutation of p parti-
cles of species a amounts to replacing them by one
effective particle with fugacity z }. The reorganization of
the representation (2.7) with respect to the number n of
exchanged particles then appears quite suitable for the
purpose of calculating low-density expansions. Since the
(N —n) particles, which are not involved in the exchange,
are described by MB statistics, the MB system turns to be
the natural reference system in this perturbative evalua-
tion of the exchange effects. In the first two papers, we
will study the MB reference system, while the exchange
effects will be considered in the third paper.

The MB grand-partition function =z follows directly
from the representation (2.7) by keeping only the square
terms P =P. For each species a, the spin-degeneracy
factor reduces to (2o. +1);the contributions of all the
permutations P are identical to that of the identity and
lead to the multiplicative factor X I. %e then recover
the standard expression

with lR)v &
= , lr, &. Because of the absence of H stabili-

ty with MB statistics, the Tl. of (in=A )/A does not ex-

ist. However, we shall see that the MB equilibrium quan-
tities of the infinite system can be formally represented by
their density expansions which remain term-to-term we11

behaved. Indeed, the MB macroscopic instability does
not cause any short-range divergency in the viral
coeScients which involve a finite number 1V of particles.
It only affects the behavior of these coeScients in the
large-N limit and should, in principle, prevent the con-
vergence of the corresponding series.

III. THE FEYNMAN-KAC REPRESENTATION

A. The case of one particle

r exp —P — b+ V
2m

(all paths)

exp
S(r(t)) (3.1)

where S(r(t ) ) is the classical action in the potential —V,

2

S(r(t))= J dt-tt& m dr(t) + V(r(t))
0 2 dt

(3.2)

For the sake of pedagogy, we first illustrate the
Feynman-Kac representation for one particle with mass
m submitted to an external potential V(r). According to
the original path integral formulation introduced by
Feynman and Hibbs [26], the diagonal matrix element of
exp[ —P[ —(i)'t /2m )b, + V]] reads

N
OO z

MB— y g +
(2 +1) a

N =0 a

X dr; RN exp —HN A RN
l

(2.8)

for a path r(t} going from r to r in a "time" P))t. The
summation in (3.1) runs over all such paths. The adjec-
tive "genuine" will be used to refer to this direct formula-
tion of the problem. In (3.1) and (3.2), the variable
changes t =st and r(t)=r+Ag(s), with A=(Pfi /m )'~,
the de Broglie thermal wavelength, lead to the so-called
Feynman-Kac representation [4]
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r exp —P — b+ V
2m

with

3/2 exp —V*r, 3.3
(2m.A. )

i

V*(r,g') = f ds V(r+ A,g(s) ) .
0

(3.4)

The factor exp[ —PV*(r,g)] obviously arises from the
potential part of the action S. The corresponding kinetic
factor, i.e., exp[ —

—,
' fods[dg(s}/ds ] ], is absorbed in the

normalized Gaussian measure 2)(g') which defines the
functional integration over all the dimensionless Brown-
ian bridges g(s) subjected to the constraints
g(0}=g(1}=0.This measure is intrinsic, i.e., indepen-
dent of all the physical parameters, and its covariance is
given by

where („ is the component of g' along the p axis. It is

very natural to interpret exp[ —PV'(r, g') ] as the
Boltzmann factor corresponding to a classical closed fila-

ment located at r and with a shape parameterized by
A.g(s). The potential V' seen by this filament is the aver-

age of the genuine potential seen by the particle when it
runs along the curve r+A, g(s). The Feynman-Kac repre-
sentation (3.3) stipulates that the Gibbs factor for the
quantum point particle exactly reduces to the shape aver-

age of this Boltzmann factor with the Gaussian measure
2)(g'). The de Broglie wavelength I, controls the charac-
teristic size of a filament: roughly speaking, the statistical
weight of a filament with size R behaves as
exp( —8 /A, }. Note that the classical limit of the density
matrix is immediately obtained from (3.3) by replacing
V'(r, g') by V(r): in this limit, A, goes to zero and the spa-
tial extent of the filaments can be neglected in the calcu-
lation of V'(r, g).

B. The auxiliary system 4'

s(1 t), s~t—
pS vt pv~ (3.5) Similarly to the expression (3.3), the FK representation

of the diagonal matrix element of exp( PH~ ~) —reads

v(6, 8'}-I/(r —r'( when ~r
—r'(~~ (3.8)

since the filaments can then be replaced by points.
The insertion of the FK representation (3.6) in the

space-configurational expression (2.8) of:-~ leads to a
sum over the states of 4'* weighted by Boltzmann factors
for the filaments interactions. In this sum, it is quite nat-
ural to define the phase-space measure d 4 for a

where each Brownian bridge g';(s) parameterizes the tra-
jectory of the ith particle in the genuine Feynman path
integral and is distributed according to the intrinsic
Gaussian measure defined above. This representation
suggests introducing the following auxiliary classical sys-
tem S' made of closed filaments interacting via two-body
forces. Each filament is characterized by its spatial posi-
tion r and two internal degrees of freedom, the dimen-
sionless path g(s) associated with its shape and the
species index a which specifies its spatial extension A,

and the strength e of its coupling with the other fila-
ments. We denote by C=(a, r, g') the state of such a fila-
ment. Two filaments in states 6 and 8' interact via the
two-body potential e e .v(A', 6') with

1

v(8, 8') = f ds v, ( ~r+A, g(s) —r' —A, .g'(s}~ } . (3.7)
0

This potential is different from the electrostatic interac-
tion energy between two uniformly charged filaments, be-
cause the average of v, is taken only over pairs of posi-
tions g and f that correspond to the same s rather than
over all pairs. However, it reduces to the Coulomb po-
tential at large distances, i.e.,

(3.9)

where f( h k, CI } is the Mayer bond corresponding to
v(@k, @I),namely,

f(Ck, C&)=exp[ Pe e v(8k, @—I)] 1. —(3.10)

The identity (3.9) exemplifies the equivalence between
the quantum system 4 and the classical system I' for
studying equilibrium properties. In 4', the quanturn-
mechanical aspect of eV is hidden in the complex na-
ture of the filaments. In fact, these extended objects de-
scribe the quantum Auctuations of the point particles. In
the effective-potential method [27], the auxiliary classical
system is still made of point objects while the quantum
effects are taken into account in the two-body and
higher-order effective interactions. Here we stress that
the interactions between the filaments are strictly of the
two-body type.

C. Mayer-like expansions

The grand-partition function =z of 4'* has the same
mathematical structure as that of an ordinary one-

I

filament such that d@=da dry)(g) and to set z(8)
=(2o +1)z /(2nA)~ fo.r , its fugacity. The above sum

is then identified as the grand-partition function =z of
I', r.e.,
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component classical system made of point particles in-
teracting via two-body forces. Thus the thermodynamic
correlation functions of S* can be represented by
Mayer-like diagrammatic expansions in either the fugaci-
ty z(8) or the density p(@). The corresponding graphs
are built with f bonds which connect filaments instead of
points. Their topological structure and symmetry-
counting factors are defined via the usual classical rules
[28]. The class of z graphs can be transformed into the
class of p graphs by applying the familiar principle of to-
pological reduction [28] based on the identity

5 ln=~
p(A') =limTi z(6 )

5z( )

This principle essentially amounts to suppressing the arti-
culation points (filainents) defined in the following and
which appear in the genuine class of z graphs. For in-
stance, if we consider the two-point Ursell function [28]
such that

(3.11)

5 in=~
p( 8, )p( 6'i, )h ( B„6' ) =z ( 6, )z( 6 )lim

5z(6, )5z(6'~ )

(3.12)

its Mayer density expansion reads

h(h„e )= y J pd@„p(@„) gf
r Sr n=& r

(3.13)

In (3.13), the sum runs over all the unlabeled topological-
ly different and connected diagrams I"'s with two root
filaments a, b and X internal filaments (N=O, . . . , ~),
every filament having a unit weight. Moreover, a I dia-
gram contains no articulation filament (such a filament is
defined by the property that, if it is taken out of the dia-
gram, then the latter is split into several pieces, at least
one of which is no longer linked to any root filament).
Each pair of filaments is linked by at most one f bond.
[gf ]i is the product of the f bonds in the I diagram
and Sr is its symmetry factor, i.e., the number of permu-
tations of the internal filaments 8„which do not change
this product. For brevity, we have used the convention
that if X is equal to 0, no jd@„p(6'„) appears, and

[gf ]i- reduces to f(8„6'i,). In Fig. 1, we have drawn a
typical diagram which contributes to the right-hand side

FIG. l. A typical Mayer graph in the density expansion
{3.13) of h(6„@b). The open circles are the positions of the
root filaments 4, and @b, while the black circle denotes the po-
sition of the field filament Al. The closed curves starting from
and ending at each of these positions represent the shapes of the
corresponding filaments. The tubes connecting these curves are
Mayer bonds.

of (3.13).
The Mayer-like expansions of the MB quantities

follow directly from the equivalence relation between
and 4*. In particular, the diagrammatic expan-

sion of the two-point truncated distribution function

pT (a, r„a&r&) is readily obtained through the function-
al integration of each graph in (3.13) over the shapes g,
and gb of the root filaments 6, and 6'i, according to the
equivalence identity

pT (a, r„ai,ri, )= J 2)(g, )$(gi, )p(g, )p(gi, )h(C„A'i, ) .

(3.14)

Because of the long-range Coulombic nature of the fila-
ment potential v displayed through the behavior (3.8), all
the above Mayer graphs diverge. In Sec. IV, we will
show how these divergencies are eliminated by summing
the contributions of an infinite number of graphs. In this
procedure, we will take crucial advantage of the two-
body bond structure of the Mayer graphs in the
Feyn man-K ac representation. In the genuine
configuration representation, the density expansions can-
not be written in terms of graphs built with only two-
body bonds. This us due to the noncommutativity be-
tween the kinetic and the potential operators in the Ham-
iltonian H~ ~ which prevents expressing a space matrix
element of exp( PH+ A) a—s a product of two-body terms
depending only on the relative positions of the particles.
As far as formal infinite resummations are concerned,
this difficulty intrinsic to quantum mechanics is circum-
vented by use of the Feynman-Kac representation [29].
However, for practical calculations, the difficulty relies
on the functional integration over the shapes of the fila-
ments. In particular, we stress that the filament density
p(6) depends on the shape of the filaments considered.
Precise knowledge of this complicated shape dependence
is not needed for performing the resummations described
in Sec. IV. The method for calculating this functional in
terms of the particle densities will be revealed in Sec. V.

IV. RESUMMATIONS OF THE LONG-RANGE
COULOMB DIVERGENCIES

As in the classical case, it is particularly convenient to
carry out the resummation procedure for the two-point
Ursell function h(C„C&). The corresponding resummed
diagrammatic expansions of the thermodynamic quanti-
ties can then be inferred via standard identities, to be
given in the second paper of this series. For brevity, a
filament in state 8 will be called a point 6, and it will be
represented by a point in the figures. Moreover, we will
omit the superscript MB, keeping in mind that all the
quantities of 4 are calculated in the framework of
Maxwell-Boltzmann statistics in the paper.

A. Topological structure of the chain resummation

We start with the Mayer expansion (3.13) of h(6„6&)
in terms of the I diagrams built with the f bonds (3.10).
We define f„(6', , 6 ) as the asymptotic behavior of
f ( 6, , 6', ) at large distances up to the order
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+A, g (s) V, ]v, (r~. )

2

+ '
[v, (r,, )]2 . (4.1)

O(1/r, ") (r, ="~r, —r.~}. According to (3.10), if we use

the notation p,":—e, e p, then
t J

f (@,, 4'J. ) = P—,,v, (-r,, )

—P,, I ds[A, g;( s).V,

j-derived F bond if they were linked in the I' diagram by
a single i -and j-derived Coulomb chain [30], and a
"dressed" Fbond in other cases.

The above procedure for defining the II diagrams im-

plies that between two points P, and P of any diagram
II there cannot appear a convolution of two plain F
bonds, a convolution of an i-derived Fbond and a plain F

In order to resum the divergencies induced by the nonin-
tegrable part f„,we introduce the truncated fr bond
defined as

(4.2)

along with the fc bond and the g'; V;fc bond defined as

and

fc(C;,CJ ) = Pjvc(r; )— (4.3)

g'; V;f (4;,8 )=—P,"I dsA, g';(s).V, v (r,") . (4.4)

With these definitions the f bond reads
(a)

f=fr+fc+A, g; V;fc+A g'V fc+ fc
(4.5}

Then h (8„8&) can be expressed by the same formula as
(3.13) where now the I diagrams are replaced by I' dia-
grams made with f bonds which are equal either to fT,
fc, A, g; V,fc, or fc/2. The I and I diagrams have

the same topological properties.
We are interested in summing the contributions from

all the "Coulomb chains" defined as follows. A "plain
Coulomb chain" between the points 8; and 8 is a convo-
lution chain of fc bonds between these two points and an
"i-derived (j-derived) Coulomb chain" is a convolution
where the bond linked to 8; (CJ} is A, g','V,fc
( A, gI VJfc) and the other bonds in the chain are fc
bonds. These convolutions may either reduce to a single
bond or contain intermediate points. Moreover there are
i and j-deri-ved Coulomb chains where the bond linked to
8; is 1, g'; V;fc, that linked to CJ. is A, Jg~'VJ fc, and

there are possible fc bonds between them. The inter-
mediate points of the convolutions fco fc,
P ,.

4'. V fc] fc fc [.~ 0 'V fc] or [~.
, C 'V fc]

o[A, ~g~.VJfc] are called "Coulomb points" in the fol-
lowing. We notice that we can make a partition of the I
diagrams such that every diagram in a given class leads
to the same so-called prototype II diagram when all the
Coulomb points are integrated over. In Figs. 2(a}—2(c),
we show three I diagrams belonging to the same resum-
mation class. The points P; which are left over in the
chain resummation are still linked in the II diagram by
two-body bonds F(P;,P ). There are four kinds of. F
bonds and we call F a "plain" F bond if P; and P. were
linked in the I diagram by a single plain Coulomb chain,
an i- (j-) derived F bond if they were linked in the I dia-
gram by a single i (j-}derived C-oulomb chain, an i and-

(b)

{c)

FICx. 2. Three I diagrams contributing to h(6"„Cb). The
open circles represent the root points. The big black circle is
the Geld point which is left over in the resumption process.
The smaH black circles are Coulomb points. The bonds f&,
fz/2, A, g; V~fz, and fz are, respectively, represented by sin-

l

gle straight lines, double curved lines, single straight lines with
an arrow, and single dashed lines (the direction of the arrow in-

dicates the i point in A, g'; .V;fc).
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bond ending at P, a convolution of a plain F bond start-
ing at P, and a j-derived F bond, or a convolution of an
i-derived F bond and a j-derived F bond. If we keep the
above four kinds of bonds together with the latter topo-
logical rules for building the II diagrams, the sum of the
I diagrams exactly reduces to a sum of II diagrams, i.e.,

h(@„bb)= g f g dN„p(6„) Qf
I n=1

=X
~ J II dP-)(P-) IIF „

H ~ m=1
(4.6)

as shown in the Appendix. The resummed F bonds take
the form

B. Calculation of the resummed bonds

Let us first compute the plain F bond. Since the f&
bonds are shape independent, the functional integrations
over the shapes of the intermediate C I,

'J! filaments lead to
the replacement of p(83,"!) by the particle density p
Thus the summation of all the present convolution chains
can be performed in terms of the familiar Debye potential
$D(r)=exp( ar)/r [with a=(4m—pg e p, )'~ ], and the
plain Fbond is merely equal to

f (P;,PJ)= p; p (r,, ) . — (4.8)

In the same way the i-derived Fbond, which is the sum
of all the single Coulomb chains which are linked to the
point P; by a A, g; V,fc bond, is equal to A. (, .V, fD
with

g;.V;fD(P, ,P, ) =— P,, fds A, g, (s)—.V, P-D(r,, )

(4.9)

f gdeI, '~)Z(ej'~)) gf, , (4.7)
r. lj

)'j IJ

where the sum runs over all the unlabeled I, diagrams
which are built between the two root points P. and P by
adding Coulomb chains made with n,,Cj'~ Coulomb
points according to the prescriptions described above.
We notice that the expression (4.7) for a bond F(P;,P~)
between a given pair [ij ] does not depend on the global
structure of the considered prototype diagram. In other
words, the simultaneous resummations of the Coulomb
chains between the various pairs [ij ] are completely
decoupled. We stress that the topological structure of
the Mayer I diagrams is conserved through the resum-
mation process, with, in addition, the above excluded-
convolution rule which avoids double counting.

dipole electrostatic potential between the filaments P,
and P. .

Now we turn to the dressed F bond which involves the
other basic bonds fT and fc/2 and products of Coulomb
chains. In the I diagrams each pair of points is linked by
at most one basic bond fT, fc, ,'fc—, k. .g, V,fc, or

l

.g, V,fc. So when one or several Coulomb chains are
multiplied by a basic bond, these Coulomb chains must
be genuine chains, i.e., chains which contain at least one
internal point. Then it is convenient to compute the
dressed F bond as the sum of the contributions from (a)
either the basic fz bond or the basic fz/2 bond; (b) one
of the basic bonds fT, fc, fc/2, k g;.V;fz, or

V,fc multiplied by a product of q, with q ~1,
genuine Coulomb chains (which can be either plain, i de-

rived, j derived, or i and j derived); and (c) a product of q,
with q 2, genuine Coulomb chains (which can be either
plain, i derived, j derived, or i and j derived). Every case
is illustrated in Figs. 2(a), 2(b), and 2(c), respectively,
where the dressed bond connects 6, and P, .

We first calculate the contribution of the single genuine
Coulomb chains. In these chains, as in the case of the
plain or derived F bonds, the shape independence of the

fc bonds allows replacing p(C j'J) ) by p, and the sum-
k

mation makes the Debye potential reappear. Then, the
considered contribution is —p,,g, h with

p,h(P, , PJ ) =(pD —Uz)(r
~

)

+[A, g, V, +k g, V, ](pD —U&)(r;, )

+[a.g, V, ] [x. g, V, ](p, —U, )(r,, ),
(4.11)

where the substraction of the Coulomb potential is due to
the absence of any direct bond connecting P; and P in

the genuine chains.
Now we turn to the contribution from the I, diagrams

which are products of q genuine Coulomb chains between
the two points P, and P~. Let b, be such a diagram. The
general form of its contribution can be found by the fol-

lowing topological argument. After integration over the

intermediate points CI,'J), Igk" &d8j'~)p(CI, 'J) )[gf ]z is

just the product of the contributions from every chain.
Moreover, the contribution of a given chain is a function
I(c) which depends only on the number c of intermediate
points in the chain and the symmetry factor of the dia-

gram is just Q," &q, !,where q, is the number of chains in

the diagram 6 which have c intermediate points. Thus
the sum over all the topologically di6'erent diagrams
made with q chains reads

whereas the i and j-derived Fbond reads

fq;~(P;, P~)—: P,~ fds f ds'[A, —g;(s.) V, ]

1 qc 1n, nl( )'= —, X I( )
—qc=l q&'c=l q' c=l

q

X[A, g, ( ).Vs, ]

X[pD —
U, )(r,") . (4.10)

At large distances, the f~; bond behaves as the dipole-

(4.12)

In the present case Q, ,I(c) is equal to —p,"g,h and the
contribution from the products of q chains is
(
—p,,g, l, )~/q! Thus the dresse. d F bond is the sum of
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the contributions

fT+ ,'fc-

ij ch

ij ch 1+p

(4.13a)

(4.13b)

(4.13c}

which reads
—P)(u+f p )=e

+P;, {Pp+[A,, g; V;+A, g', Vj]imp

+ [A, g,'V, ][A, g'j Vj ](Pp —vc ) ] (4.14)

after combining (3.10}, (4.11), and (4.5). We notice that

fz depends on the density only through the inverse
Debye-Hiickel length a.

According to the topological analysis of Sec. IV A, two
points of the diagram II are connected by at most one
bond, either an fp bond, a A, g; V;fp bond, an fz;v

bond, or an fz bond. Furthermore, the excluded-
convolution rule stipulates that between two points P;
and P there cannot appear either a convolution fpo fp,
[& .g'; V;fp]efp, fpo[&~, g'; V,fp], «[~ g; V~fp]
o[A, ,g, V~fp]. If we set A, =0, the derived bonds

disappear, fz reduces to exp( —P; Pp) —I+P, Pp, and"

we recover the Meeron classical result [10]. In Fig. 3, we
draw the II graph generated by the resummation of all
the I diagrams belonging to the same class as those
shown in Fig. 2.

C. Integrability of the II diagrams

At this level, it remains to show that the integrals over
the internal points of any II diagram are convergent. The
functional integrations over the shapes of the filaments
surely are well behaved because of the Gaussian decay of
the measure D(g) [it is quite reasonable to assume that
the functional p(P) does not explode faster than a Gauss-

FIG. 3. The prototype II graph generated by the resumma-

tion of all the I diagrams belonging to the same class as those
shown in Fig. 2. The hatched bubble represents and fz bond.
The wavy line, without and with an arrow, are bonds fjj and
"ji,,g Vfv, respectively (the direction of the arrow has the same

meaning as in Fig. 2).

ian function for large filaments]. In the original I' dia-
grams, the possible short-distance singularities of the
Mayer bonds f are smoothed out by the functional in-
tegrations according to the Gaussian measure $(g} [31].
In the present II diagrams, there may be spurious nonin-
tegrable singularities at r=0 arising from the introduc-
tion of auxiliary Jbonds which diverge at the origin. In
fact, these spurious divergencies already appear in the
classical Abe-Meeron expansion as pointed out by La-
vaud [32]. In principle, they should cancel out by suit-
ably collecting together the dangerous graphs.

The long-range divergencies in the original I diagrams
are expected to be eliminated by the resummation pro-
cess. In fact, we will show below that the II graphs are
indeed integrable at large distances. Obviously, fp and
A, g; V;fp decay exponentially fast, but the study of the

l

contributions of fz and fd;& requires more care. Accord-
ing to the definition (3.10) of f, we can rewrite fR as

fz =expI —P; (v —vc [A,.g"V +A .g'V ]uc [A .O'V;][A, g'V ]uc)]

XexpI Pj(gp+[A, —g;V, +A, g, V'j]gp+[A, 'g; V;][I, g;Vj]gp)]
—I+P;, [Pp+[A, g'; V;+A, g', V, ]iIip+[A, g', V, ][A, g, V, ]($ pu, )] . (4.15)

Since Pp decays exponentially fast at large distances, the
leading algebraic term in the asymptotic behavior of f„
is immediately obtained from (4.15) by setting Pp =0 and
by replacing u by its multipolelike expansion. The
monopole-monopole and dipole-monopole terms cancel
out in the argument of the first exponential of (4.15). The
first nonvanishing term comes from the dipole-dipole-like
interactions and leads to

fz ——Pj —,J ds[A, g;(s}.V;+A, g'j(s}.V . ] uc(r j },
r;j —+00 . (4.16)

This shows that fz decays only as Ilr at large dis-
tances, as fT itself. From the definition (4.10), it is obvi-
ous that fs; decays as 1 lr also. Although this power
law is at the border line for integrability, it does not cause
any logarithmic divergency because the II diagrams are
sufficiently connected [33]. The integrability is indeed
essentially ensured by the following simple mechanism.
When a cluster of points is sent to infinity, the product of
the bonds [gF]n decays at least as I/R because the ab-
sence of articulation points guarantees that this cluster is
connected via at least two bonds to the remaining part of
the diagram considered. Thus every II diagram is inte-
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grable at large distances as required.
The structure (4.8), (4.9), and (4.15) of the resummed

bonds fD, A, g, .V;fD, and f„, respectively, show that

the monopole-monopole and dipole-monopole interac-
tions are exponentially screened as in the classical case.
Moreover, it turns out that this screening mechanism is
entirely controlled by the classical Debye length K

The higher-order multipole interactions should not be
screened so efhciently, as indicated by the slow decays of
fR and fz;~. This should ultimately induce algebraic tails
in the correlations in agreement with the predictions of
Refs. [20] and [21].

D. Diagrammatic expansion of pz (a, r„ab rb )

The required diagrammatic expansion of the two-point
correlations of eV is immediately obtained by inserting
the II diagram representation (4.6) in the identity (3.14).
Each graph is multiplied by p(A', )p( 8b ) and integrated
over the shapes g, and gb of the root filaments 6, and
6'b.

Strictly speaking, the previous diagrammatic represen-
tation of pr (a, r„acerb) does not constitute an explicit
expansion with respect to the particle densities p, in the
sense that the statistical weights of the points in the
graphs are the shape-dependent filament densities. In
fact, the functional p(6) can be itself expanded in powers
of the particle densities as shown in Sec. V.

V. THE FUNCTIONAL p(4)

In this section we show how the functional p(8) can be
calculated from the particle densities pz. We start from
the Mayer-like expansion of p(D) in powers of the fila-
ment fugacities, z(8)=(20 +1)z /(2m', ), which do
not depend on the shapes of the filaments [for notational
convenience, we set z(6) =z' in the following]. In Sec.
VA, we give the topological prescriptions which define
the corresponding Mayer z graphs. The familiar degen-
erescence in the fugacities, which is induced by the neu-
trality condition (2.5) specific to Coulomb systems, is also
discussed and exploited. The long-range Coulomb diver-
gencies are resummed in Sec. VB. This provides a di-
agrammatic representation of p(6') in terms of prototype
graphs built with resummed bonds partly scaled by
~, =(4~PE e~')" instead of ~. In Sec. VC, we pro-
duce simple arguments showing that these resummed
prototype graphs do converge. We show that each proto-
type graph can be expanded in a double integer series
with respect to z' and 1nz in Sec. VD. In Sec. VE, the
structure of the corresponding fugacity expansion of p( )
is derived and the first two terms of it are computed. The
required particle-density expansion of p( 8) is then in-
ferred and calculated explicitly up to order p, in Sec.
VF.

A. Grand-canonical representation of p( @)

In the framework of the grand-canonical ensemble, the
functional p(E) depends on the fugacities z* and on the
temperature, of course. Once the thermodynamic limit

has been taken, the functional p(@) becomes translation-
ally invariant, i.e., p(A') =p (g'), while the particle densi-
ties p = 12)(f )p (g) satisfy the neutrality condition (2.5)

for any set of fugacities [18]. The possible excess charges
always go to the boundaries, where they form an electri-
cal double layer, the total surface charge of which is con-
trolled by a specific combination of the fugacities [23].
Since the n, bulk densities involve only (n, —1) indepen-
dent functions of the n, fugacities, a continuous family of
sets Iz" ] belonging to a one-dimensional curve in the

n, -dimensional fugacity space is associated with each set

I p, ] of the particle densities satisfying (2.5).
In principle, the above degenerescence is automatically

taken into account in the fugacity expansion of p (g).
However, in the following, for reasons of technical con-
venience, we split this degenerescence by adding the con-
straint

ge z*=O. (5.1)

This specifies a bijective relation between the p's and the
z*'s (at a given temperature). In the n, -dimensional fuga-
city space, the unique point [z* ] corresponding now to a
given set Ip ] is the intersection of the above degeneres-
cence curve with the hyperplane defined by (5.1}. The ar-
bitrary constraint (5.1) is also the most natural, since it
guarantees that p behaves as z* in the small-fugacity
limit, as shown later.

The fugacity Mayer expansion of the density p (g}
reads in a way similar to that of h ( B„Ab )

where the definitions are the same as in (3.13) apart from
the following topological differences: the connected 6 di-

agrams have only one root point 8 and they may contain
articulation points. Moreover, the weight p(A'„), which

appears in (3.13), is replaced by z" in (5.2). All the
n

above Mayer graphs diverge, like those defining
h(A'„A'b) in (3.13), because of the long-range Coulomb
nature of the filament potential U. These long-range
divergencies will be again formally resummed in the
infinite volume.

B. The resummed fugacity expansion of p ( g')

The scheme for the resummation of the long-range
Coulomb divergencies is the same as that used in Sec.
IV A with the decomposition (4.5) and the introduction
of prototype P diagrams along with the analog of the pre-
vious excluded-convolution rule. However, the existence
of articulation points in the G diagrams implies not only
that the P diagrams may contain articulation points too,
but also that there exist rings which disappear when the
Coulomb points are integrated over: these are the convo-
lution rings where all the intermediate points are
Coulomb ones and are not connected to any point outside
the ring. As a consequence the weight of the P points
which are left over in the resummation process is
changed from z' to W(P ) which depends on the role
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of P in the topology of the P diagram; in the meantime'
the exclusion rules are reexpressed in order to take
weight into account.

The reason for the existence of resummed bonds and
weights, generic for all the diagrams, is similar to that ex-
plained in Appendix A for the resummation of the I
graphs. For each labeled diagram G~», [gJ]G can be

lab

factored as

p2e2 ' gz'e fdrv, (r—r }
a

X f dsg' (s).V, [PD,
—vc](r —r )=0. (5.6)

and the substraction of u, reflects the fact that a ring of

fc bonds contains at least one internal point. The sum of
the i-derived rings (which contain at least two Coulomb
points} is

g C g
pairs( ij I

where G," is the part of 6&,b which connects P; to P.
directly and/or by products of Coulomb chains and 6„;
is the part of 6&» which is made of plain, i-derived, or
twice i-derived Coulomb rings which are directly at-
tached to P; (P; being their common articulation point).
When we first integrate over the Coulomb points we have
to choose the labels for the M P s, for the n;J Coulomb
points of every 6;, and for the n„; Coulomb points in the
Coulomb rings which are attached to every P, . The
number of ways of choosing these labels is
N!/(M!g(; !n;!g;nz;!). So the analog of (4.6) reads

N

p-(&}= -' r f n «.'„rv,—

g g n=1

W(8. )f g dP W(P ) gE,
p P m=1

(5.3)

The expression for F*(P"P ) depends on
a, =(4npg e~*)' insteadofa=(4npg e p )' since
the summations involve points with a weight z instead

n

ofp(8„).
In order to avoid counting some rings twice, we intro-

duce P diagrams made with two kinds of points: "bare"
points and "dressed" points. A bare point is a point
which has no Coulomb rings attached to it in the 6 dia-
grams which lead to the diagram P by the summation
scheme, whereas a dressed point has at least one ring at-
tached to it in the G diagrams. Hence the weight of a
bare point P is z' whereas that of a dressed point is

m

W„(P ), where W„(P ) is the sum of the contributions
from all the Coulomb rings which may be attached
directly to the point P in the 6 diagrams. Three 6 dia-
grams which belong to the same resummation class are
drawn in Figs. 4(a) —4(c).

According to the same topological argument as that
used in Sec. IVB, W, (P ) can be expressed in terms of
an exponential

It vanishes because of the rotational invariance of the po-
tentials PD, and uc, whereas the twice i-derived rings lead
to

(a]

W„(P )=z' [e" —I], (5.4}

where I„ is the sum of the plain, i-derived, or twice i-
derived rings of all the possible lengths attached alone to
the point P . The contribution of the plain rings reads

——Pe [Pz, —uc](r=0}=—e a, ,
1 2

(5 5) (c)

where —,
' is the symmetry factor of a plain ring diagram FIG. 4. Three G Chagrams contributing to p(@).
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—,'P e A, gze fdr f ds g' (s)V, Uc(r —r )

a

X ds s 'V D Uc

= —
—,'Pe A, a,' g f ds[g (s)]„. (5.7)

P

Eventually I„(P ) reads

1 2

I„(P )=—,'Pe Ir, ——,'Pe A, lr, g f ds[g (s)]&
P

(5.8)

Contrarily to the bare weight z*, the dressed weight
m

W„(P ) depends on the shape g (s) of the filament P
Now we turn to the explicit value of the bonds. The

summation involves weights z" instead of p(A'„), so the
n

bonds fD, A, g; V;fD, and fz,~
are replaced by bonds

fD„A, g; V'; fD„and f~;~„respectively, with a, in place

of ~. In the same way the value of the generic dressed
bond fIt, is the same as that of Sec. IV with p changed
into z*. However, the dressed bond between an articula-
tion point P; and a point P which is not. connected to
any other point must be handled with care in order not to
count any ring twice. If P is a dressed point [with a
weight W„(P )] the dressed bond is the generic one fJt„
but, if P. is a bare point, the dressed bond is reduced to
f„, minus the contributions where P would be in fact a
Coulomb point in a ring attached to P;. The correspond-
ing truncated dressed bond is

fit. (P; PJ ) =fR, ,'fD, ——

[fD ~.
, C V—fD fc~.', C ''V fc]

,'[(A, g V f—D—) —(A, g V fc) ], (59)

where the substractions of fcA, g, V,fc and
I

(A, g, V,fc) reflect the fact that any two points in the 6
I

diagrams are linked by at most one basic bond.
%e notice that, contrarily to the H diagrams involved

in the p(6') expansion of h(6'„6b), the P diagrams are
built with five resummed bonds instead of four. The
present extra bond fz, decays as 1/r at large distances.
As in the case of the II diagrams, there is at most one
resummed bond between two points. In particular, there
exists no ring made with only one intermediate point
(such rings are already resummed in the expression of the
dressed bond). Moreover, the excluded-convolution rule
implied by the summation scheme still exists: the mid-
point P of a chain made either with two fD, bonds,
with a fL„bond and a A. $, .V, fD, bond (with imam), or

I

with a k g;.V,fn, bond and a k .g' V fD, bond (with
1 J

imam and jism) must be a dressed point. In Fig. 5, we
show the P graph generated by the resummation of all
the 6 diagrams belonging to the same class as those
shown in Fig. 4.

FIG. 5. The P graph generated by the resummation of all the
G diagrams belonging to the same class as those shown in Fig. 4.
The hatched bubbles and the wavy lines represent bonds fz,
and f „ore pse tcively, while the wavy line with two opposite ar-
rows is a bond f~;~, . The large open circles attached to part of
the field points are statistical weights 8'„.

C. Integrability of the prototype P diagrams

const X f dflRH(go) fn(g, )&(g;}f3(&ko fi » (5.10)

where d Q,R is the integration measure over the orienta-

The integrability of the prototype P diagrams at short
distances can be dealt with as in Sec. IV C when studying
the II graphs. At large distances the bonds fD, and

g; V;fD, do not cause any trouble since they decay ex-
'

ponentially fast. A priori, one has to be more cautious
with the bonds fa;„„fz„and fz„which decay algebrai-
cally as 1/r3 When tw. o clusters of points are separated
by a distance R, the product ( gF, )p may now decay
only as 1/R because of the possible presence of articula-
tion points. Consequently, this configuration leads to
conditionally convergent integrals.

The way in which these integrals must be calculated
could be found by analyzing the behavior of the boundary
contributions, all of which vanish in the infinite volume
in agreement with the existence of the thermodynamic
limit. In fact, this problem is similar to that of the con-
vergence of the coeScients of the fugacity expansions for
the classical two-dimensional two-component plasma
[34]. The analysis carried out in this case by Speer [34]
strongly suggests that one must perform first the integra-
tions over the relative positions of the points belonging to
each of the above clusters, then the functional integra-
tions over the shapes of all the filaments except over that
of the root point, and third the angular integration over
the orientation of R. Then, the remaining integrand de-
cays in fact faster than 1/R for the following rea.sons.

Let us consider the two filaments which appear in the
1/R -decaying bond. %e call 0 the filament which is in

the same cluster as the root point 6, and 4,- the other
one. Do may be either an internal point or the root point
itself. After the integration over the internal points in

the cluster, the a priori 1/R -decaying term in the large-
R expansion of the integrand takes the general form
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tion of the vector R. An extra integration over go is per-
formed only if 80 is different from the root point. Since

8, belongs to the cluster where all the variables, except g,
and r, , are integrated over, IC(g;) is invariant under the
rotations of g; whereas H(g'0) is not invariant under those
of g'0. f3 denotes the asymptotic parts of either f~; „
fz„or fx„which involve the following 1/R -decaying
terms,

fez(g;, g, ;r)=fT(g'; g, ;r)

(5.14)

where the functions H„and G„can be calculated from

(4.14) by expanding exp( —P,J1(t,h„„) in powers of f,h„„.
For instance, we 6nd

f ds f ds'[g'0(s) V][g;(s') p'] (5.11)
H, (g;,g';x) = —P;. [e "—1] (5.15)

r

s os' . s 2

r

(5.12)

f ds—g (s) P'1

o0 Z' g (5.13)

Because of the rotational invariance of the Gaussian mea-
sure 2)(g), after functional integration the odd terms in
the g' 's corresponding to the internal points cancel out,
while the terms [g (s) V] (1/R) become proportional to
V (1/R) when the other part of the integrand is invariant
under rotation of g' . The harmonicity of the Coulomb
potential then implies that the latter terms are in fact
short ranged. Thus, after integration over g, , (5.11)
vanishes while the long-range part of (5.12) involves
only J ods[Ago(s) , V] (1/R). Since [go(s) V] (1/R)
=2[)'0(s)] P2(cos8)/R, where 8 is the angle between
go(s) and R, this term vanishes upon integration over the
direction of R, for any given g'0(s), by virtue of the ortho-
gonality of the Legendre polynomials P„(cos8). The in-
tegration over the orientation of R also cancels (5.13).
Consequently, the integration procedure considered does
ensure the convergence of all the P diagrams, as expect-
ed.

D. Small-fugacity behavior of the P diagrams

The analysis of the small-z behavior of the P diagrams
is complicated by the dependence of the resummed bonds
on the fugacities. The bonds fD„A, f; V;f~„and fz;,
are entirely scaled by sc, ', while the bonds fx, and fz,
are controlled not only by sc, ', but also by the
temperature-dependent lengths Pe er (Landau length)
and A, (de Broglie wavelength). The occurrence of vari-
ous length scales in the resummed bonds prevents simple
evaluation of the spatial integrals based on the variable
changes r,. =sc, 'I, .

In order to disentangle these scales, it is convenient to
rewrite fz, (g;,g. ;r), with r=r,.—r and x=a.r, as

pz —2x

G, (g;, g, ;x)= (5.16)

G3(g';, g'l;x) = ~(g [1—e '"]

+PJ f ds[A, g;(s).x —
A, g (s) x]

[1—(1+x )e "]
X

3
(5.17)

fT(g, g';k)= fdre' 'fr(g g' r)

P(g, f;u) =f dx e'"'*$(g,g', x),

(5.18)

(5.19)

and we apply the generalized Plancherel identity. In
Fourier space, the integrand of II," takes the general
form

where x=x/ix i. The corresponding decomposition of
fz, follows immediately by inserting (5.14) into (5.9) and
has the same structure as (5.14) with function H„T and

6„. In fact, H„ is reduced to H„ for any n, while only
the first three functions G„are different from the corre-
sponding G„'s, i.e., G„=G„ for n )5 (in particular Gz
vanishes). The functions G„(x) and G„are integrable at
large distances as the functions H„(x) for n )4, since
they decay at most as 1/x" for x large. The truncated
bond fr does not depend on ~, ' and is scaled by the
above temperature-dependent lengths. The above decom-
positions of fR, and fz, with respect to the various scales
are quite useful for our purpose, because each term de-
cays at least as I/r at large distances. Consequently, use
of these decompositions in a given P diagram provides a
representation of P as a sum of integrals Ip"', the in-
tegrands of which are products of functions fT(g, g';r ) by
functions scaled by a, ' with the generic form v~P(g, g';x)
(where p is a natural integer).

The small-z behavior of Ip is not easy to analyze in
real space, because, in general, a given point appears in
the arguments of functions controlled by various scales.
In order to circumvent this diSculty, we introduce the
Fourier transforms

PgP(g, g';LC([ ]))gf (f,g', ,LC(I ())gf (f,g', LC([q])+,LC([ j)), (5.20)
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where I. is an integer while LC is a generic notation for
linear combinations of the wave vectors q or u.

Each function fr(g, g', LC(Iqj )+a,L.C(I uj )) can be
replaced by its Taylor expansion with respect to
a,LC((uj) since fr(g, f;k) is analytic everywhere ex-
cept at the origin. Since the large-r expansion of
fz (g, g', r) only involves inverse integer powers of r start-
ing with 1/r, the small-x, expansion of
fr(g, g', z,LC(Iuj )) only involves integer powers of a.,
with possible multiplicative lnK, factors. Inserting these
small I~, expansions of fr(g, g', LC( tqj )+ir,LC(I uj ))
and fz(g, g', lc,LC(I u j )) in (5.20), as well as the small-z

expansions of the statistical weights W(a, g}, we obtain a
formal representation of I""' as a double integer series
in z' and lnz. The coeScients of these series are related
to the moments of the functions (t, i.e., tou, ';LC u LC u P 521

and also to

q z, ,'LC q (5.22)

where the generic notation fz~'(g, j;LC(Iqj)} means a
partial derivative of order p with respect to k„of
fz(g, g';k'} Th.e integrals (5.21) and (5.22) with large
values of p diverge in general because the functions

f&~'(g, j;k) are not integrable at k=O and the functions

P behave algebraically for u large; in real space, the func-
tions P are not analytic functions of x at the origin and
some of them are even not integrable at x=O because
they involve high powers offd;, which itself diverges as
1/x as x goes to zero (the latter divergencies are spurious
and have already been discussed in Sec. IV C). However,
since only integer powers of u arise in the large-u expan-
sions of P and only integer powers of k (apart from possi-
ble multiplicative logarithmic terms} arise in the small-k
expansion of fz~', these divergencies should not modify
the structure of the small-z expansion of I~" predicted
above.

E. Small-fugacity expansion of p (g').

X ln constX4mP g e z*
r

p
col, n, p(g)

(5.23)

with I,p natural integers and n a relative integer. In
(5.23), P' ( Iz~ j ) are homogeneous polynomials of degree
I in the fugacities zr with coefficients depending on the
temperature, while the "constants" in the arguments of
the logarithmic terms are built with the lengths Pe es
and A, . Moreover, the functionals 9'"i'(g) also depend
on the temperature.

According to the small-z representations of the P dia-
grams derived in Sec. V D, the functional p (g) can be ex-

panded as
' n/2

p (g)= g P'([z* j) 4nP+e z"
I, n, p

4~Pe
za.ea.

Kz a J l
(5.24)

which vanishes because of the constraint (5.1). Without
the latter, the above contribution would have been of or-

der z and then an infinity of P diagrams with the above

fD, bonds in them would have contributed to the same

order in z.
It is thus straightforward to show that the leading term

of the fugacity expansion of p (g) is z: it arise entirely

from the trivial P graph built with the bare root point
alone. The next term is of order z . It is given by the
expansion of the following two diagrams: the single
dressed root point and the graph where the root point c.

is bare and linked to a dressed point P, by an fD, bond.
The sum of the latter graphs reads

W„(6')+z,' 4mge, gz* e J 2)(gi)8'„(a„pl)
Kz

I

(5.25)

and the leading term of its fugacity expansion is given by
replacing W„(P ) by the first term of z,' I„(P ) with the

m

result

g' '( tz' j ) =z* —e a, —2mP e
Z

(5.26)

Thus the explicit form of p (g) up to the order z ~'- is

p.(C)=z:+g.""'(tz," j)+g'."(tz*, j 4)

+z""'(I"j g) (5.27)

where g'2'(Iz' j,g) is the term of order z in (5.23) and
R'~~~'(Iz' j,g) is the remaining part in (5.23) which

starts at the order z . %e notice that the shape depen-
dence of p (() does not appear until order z at least.

The fugacity expansion of the particle densities directly
follows from (5.23) via functional integrations of the
V'"'i'(g) with respect to the Gaussian measure 2)(g). The
global structure of (5.23) is unchanged through these in-

tegrations, i.e., p is represented by a double integer
series in z' and lnz. In particular, the expansion of p
up to the order z3~ coincides with (5.27) since p (g) does
not depend on g at this order, i.e.,

(5.28)

Now we perform the explicit fugacity expansion of
p (g) up to order z ~ . First we notice that the weight of
a bare point P is exactly z*, whereas the fugacity ex-

m

pansion of the weight of a dressed point P starts as z

according to (5.4) and (5.8). Moreover, if P. is a bare

point which is connected to only one point P; by an f~,
bond, then the contribution of this bond is factored as

fdP z* (
—Pe e )PD, (r, —

r~ )
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The neutrality rule (2.5) should be satisfied term by term
as it can be explicitly checked for the first two terms.

X ln const X4mp g ez p gl, »,p(g)

(5.29}

which has the same structure as (5.23). The polynomials

I

F. Particle-density expansion of p {f )

Since p behaves as z* when all the z's go to zero, the
inversion of the above z expansion of p leads to a similar
representation of z*, i.e., a double integer series in p'
and lnp. Moreover the corresponding half powers of p
enter in x=(4rrPQ e p )' In.serting the p expansions
of the z's into (5.23), we finally obtain the required expan-
sion of p, (g}.

' n/2

p,(g)= g Q'([pr]) 4nP+ezrp
l, n, p

P

Q' and the functionals 9'"p(g) are related to the P,'s
and to the p'" p(g')'s. The explicit derivation of these re-

lations is not easy to carry out in general.
Of course, the leading term in (5.29) is nothing but the

particle density of species a itself. The identity

p = fD(g)p (g) along with the fact that the first /-
dependent term in the z expansion of p (g) is of order z

imply that the next correction is of order p and only in-
volves the shape-dependent part of the z term in (5.27}.
A straightforward elimination of z in favor of p by using
(5.28) permits rewriting (5.27) as

».&I&=».+ g "'&f».,&I& ,J&—&r»&' "&&»., &

+0( 5/z) (5.30)

By inspection of the small-fugacity behavior of the P
graphs, the p term in (5.30) is found to be given by the
expansion of the graph where the bare root point is
linked to a bare point P, by a fz, bond, with the result

» &I& » +.X»=~.,J«f&&Ii& f~&Ik'& J&&f'&f~&—I'6'& +0&»'"&.
y

{5.31)

According to the definition (4.2) of fT, after integration over f„fT can be replaced by f in the integrand of (5.31).
Therefore the first two terms in (5.29) are merely calculated as

p (g)=p + gp~, fdrfS(g', ) exp Pe er—f dsvc[~r+ArPi(s) —
A, P(s)~]

y
0

' exp —e~e~ s U& r+ ~, s —
~

' s +0 p'~' . (5.32)

The structure of the p term in (5.32) is identical to that
for a system with short-range forces. In other words, no
screening mechanism is needed for ensuring the finiteness
of the corresponding integral, the integrand of which
indeed decays a 1/r after integration over the angles of
r. The first nonanalytic term in (5.32) which is induced
by the long-range nature of the Coulomb potential is of
order p

~ . Contrarily to the p term, the latter results in
part from screening efFects and consequently makes ~ ap-
pear. Eventually, we notice that the identity

p = 12)(g')p (g') implies that each corrective term to p
in (5.32) must be such that its integral over g vanishes.
The p term obviously exhibits this property.
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APPENDIX

In order to prove the relation (4.6) we have to go back
to the formulation of diagrammatics with labeled dia-

, fn«. p(&. ) r
labeled I N

rv —.

{A1)

Every diagram I & leads to a prototype diagram II with
M internal points P, 's (M&N} when all its. Coulomb
points are suppressed and [gf ]r can be factored as

N

g(;!b„d,[gf]r, where I', is the part of the diagram
IJ

I & which connects P; to P- directly and/or by products
of Coulomb chains. If we first integrate over the
Coulomb points we have to choose the labels for the M
P 's and for the n,, Coulomb point-s. CI,'1}'s of every I;J.
The number of ways of choosing M labels among X is
N!/(N M)!M! and the num—ber of ways of choosing the
n, labels for each pair [ij j among N —M labels is
(N — M)!/g ; (nI};.!, so

I

grams as Meeron did in Ref. [10]. The relation between
the formulations with either unlabeled I diagrams or la-
beled I z diagrams (where N is the number of internal
points of the diagram I'~) is the following:

~(&. &»=r,' f n«. p(~. ) 'rrJ,
F i=n
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n,

tV =0 ' M=O '
m =I labeled lI [n. . )

iJ' (ij) bonds k= 1

(~ j)

labeled I,"
IIJ p

(A2)

where g(„) is the sum over all sets of n,, 's which satisfy g(; )
n, =N M.—Now the summation over N can be elim-

tJ tJ 1 J JJ

inated and the constraint over g(, )
vanishes with the result

h(6„A'b)= g f p dP p(P )
M=O '

m =1

with the definition

labeled Il~ Iij I bonds

F(P;,Pj) (A3)

F(P, , P, )= y, J 1Idej'J)p(eI, 'j))
n. . =0 ij ' k=1

tJ labeled f'"
tJ

Coming back to the formulation with unlabeled diagrams we get
M

h(@„8„)=g J g dP p(P ) gF
rr ~ m=1

with

(A4)

(A5)

(A6)
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