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Recently physical and computer experiments involving systems describable by continuous maps that
are nondifferentiable on some surface in phase space have revealed novel bifurcation phenomena. These
phenomena are part of a rich new class of bifurcations which we call border-collision bifurcations. A
general criterion for the occurrence of border-collision bifurcations is given. Illustrative numerical re-
sults, including transitions to chaotic attractors, are presented. These border-collision bifurcations are

found in a variety of physical experiments.

PACS number(s): 05.45.+b

In the literature dealing with bifurcation theory, it is
usually assumed that the dynamical system arises from a
differentiable process. On the other hand, systems that
are not differentiable on a surface in phase space occur in
a variety of physical situations, and this circumstance
leads to a rich class of new bifurcation phenomena.
Indeed several experimental and numerical studies [1-6]
in systems of this type have reported seeing a new kind of
bifurcation. For example, in experimental and numerical
studies of self-synchronization of digital phase-locked
loops and the chaotic synchronization of digital phase-
locked loops [1,2], it was observed that there is a transi-
tion from a periodic orbit to chaos, and this transition is
different from those of maps which are everywhere
differentiable. A similar phenomenon was observed in a
He-Ne laser [3,4] and in studies of grazing impact in
mechanical oscillators [5], to mention a few examples. In
this paper we give an explanation of these observed bifur-
cation phenomena.

The purpose of this paper is to study the occurrence of
such a new bifurcation phenomenon for a variety of phys-
ical models, two of which will be emphasized. In [7]
two-dimensional piecewise smooth maps are examined,
and a variety of examples are presented. At that time, no
physical examples were known. In this paper the maps
we investigate are more general than those in [7]. In par-
ticular, we treat the physical important case of a square-
root singularity. We obtain a general result on bifurca-
tions of maps that are not differentiable on some surface
in phase space. We illustrate this result in numerical ex-
periments.

As an example involving a two-dimensional map, as-
sume that a particle undergoes forced damped harmonic
motion:

X+2ayx+y*x=F(t) for x >x, , (1

with a hard wall at x =x_ at which the particle under-
goes elastic reflection; here F is a periodic function of the
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time ¢t with period 27, a >0 is the damping parameter,
and ¥ ~!>0 is the ratio of the driving to the natural fre-
quency for the system. Forced impact oscillators have
been intensively studied for several years as examples of
nonlinear systems exhibiting complicated dynamics; see
[5,8-11] and references therein. In this case, a curve T
in the two-dimensional time-27 surface of section is
determined by the condition of grazing incidence of the
hard wall, and the derivative of the time-27 map has a
square-root singularity on I'. As a special case, the im-
pact oscillator (1) is considered in [5] with elastic impact
atx =x,=—1and

F(t)=(u+1)[(y2—1)cos(t)—2ay sin(t)] .

Here u is regarded as the bifurcation parameter. Note
that x (¢)=(u+1) cos(?) is the attracting solution as long
as —2<pu<0. As p is increased through O, the stable
periodic solution x (¢)=(u+1)cos(¢) will be grazing the
wall at £=0. Our results for this system are summarized
later in this paper.

In the bifurcation theory for maps, attention has been
focused on differentiable maps when one or more eigen-
values of a fixed point (or periodic point) cross the unit
circlee. When this occurs, the nature of the fixed point
changes. For example, a fixed-point attractor becomes a
saddle (possibly a flip saddle) or a repellor. We say a map
is smooth if the map has a continuous derivative. We as-
sume that there is a smooth surface I' which separates
the k-dimensional phase space into two regions denoted
by R, and Rp. Let F(-,u)=F, be a one-parameter fam-
ily of continuous maps from the k-dimensional phase
space to itself, being smooth on the regions R ; and Rp
and depending smoothly on the parameter . In particu-
lar, physical situations arise in which F, has a square-
root singularity on I'. Let E, denote a fixed point of F,
defined on —e <pu <e and depending continuously on pu,
for some £¢>0. We say that E, is a border-crossing fixed
point if it crosses the border I between the two regions
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R , and Rp. We will assume that the crossing occurs at
pu=0. We say that a border-crossing fixed point E,, is an
isolated border-crossing fixed point if the point E,, is iso-
lated in phase space when u=0, that is, in the phase
space, there exists a neighborhood U of the point E such
that E is the only periodic point in U when p=0. The
case where E,, is a periodic orbit can be dealt with simi-
larly, but for simplicity we restrict our attention to the
case where E, is a fixed point.

For border-crossing fixed points, the Jacobian matrix
of the fixed point generally changes discontinuously, and
the fixed point can, for example, change from being
strongly repelling to strongly attracting as y crosses zero.
To analyze these bifurcations that occur while the fixed
point crosses the border, we need the concept of the “or-
bit index” of a typical periodic orbit [12]. This approach
was used in [7] to investigate the bifurcations that occur
in the case that the crossing fixed point for two-
dimensional piecewise smooth maps changes from being a
repellor to a saddle as u crosses zero. We say that an or-
bit of period p is typical if the Jacobian matrix of the pth
iterate of the map at a point of the orbit exists and no ei-
genvalue of the Jacobian matrix is on the unit circle. Let
P denote a typical fixed point of F,,. Let A4 be the Jacobi-
an matrix of F M evaluated at P, let m be the number of
real eigenvalues of A smaller than —1, and let n be the
number of real eigenvalues of 4 greater than +1. The
orbit index I of the fixed point P is defined by [12]

0 if m is odd
I=1—1
+1 if both m and n are even .

if m is even and n is odd

Assume that there exists a number € >0 such that (a)
E, is an isolated border-crossing orbit with E, on the
border of the two regions R , and Ry, (b) for —e<u <0
the fixed point E,, is in the region R , and its index is I ,,
(c) for O <u <e the fixed point E, is in the region R and
its index is I, and (d) I 4,51Ip. Since I #Ig, as p ap-
proaches 0" or 07, the orbit E, cannot be the only orbit
that approaches the point E, since that would violate
the invariance of the orbit index [12]. Thus it is neces-
sary that something else happens. What can it be? The
following two possibilities, which we shall demonstrate,
actually occur: (1) There are additional periodic orbits
which shrink to E, as u—0" and/or u—0" (these bifur-
cating orbits need not be stable), and (2) a chaotic set or
sets shrinks on to E, as u—0" and/or u—0".

We emphasize that E,, may be nonattracting in both
R , and Ry but other orbits which shrink to E;, may be
attractors [7]. Using arguments similar to those in [7],
we can show the following: If the index of an isolated-
border-crossing fixed point E,, of F,, changes as u crosses
0, then at u=0, a bifurcation occurs at this point E,, a
bifurcation involving at least one additional periodic or-
bit. Since this bifurcation occurs while the fixed point (or

periodic point) crosses the border of the regions R , and
Ry, we call it a border-collision bifurcation. In other
words, a border-collision bifurcation is a bifurcation at a
fixed point (or periodic point) on the border of two re-
gions when the orbit index of the fixed point before the
crossing of the border is different from the orbit index of
the fixed point after the collision. We find that border-
collision bifurcations constitute an extremely rich class of
bifurcation phenomena. As an example of possibility (1)
above, there may be a periodic attractor of period P, ex-
isting for u <0 and a periodic attractor of period P, exist-
ing for u >0, and these may shrink to the fixed point E|
as u—0. In this case we say there is a period-P, to
period-P, border-collision bifurcation.

We can now summarize our results for the impact os-
cillator in Eq. (1) as follows. In the majority of the cases,
the fixed-point attractor for u <0 (index = + 1) converts
to a flip saddle (index =0) for u>0. Hence, at u=0, the
orbit index of the fixed point changes from +1 to O.
Therefore, a border-collision bifurcation occurs at p=0.
Applying the orbit-index result described above implies
that there must be other bifurcating orbits involved. Our
numerical examples include a variety of border-collision
bifurcations from a fixed-point attractor to a chaotic at-
tractor. (The numerical simulation in [5] with @ =1.25
and ¥ =0.1 is a border-collision bifurcation from a fixed-
point attractor to a chaotic attractor for the time-27
map.)

Now consider one-dimensional maps that occur in the
studies of laser systems in [13,14]. Define the one-
parameter family of maps F, by

ax+up if x =0
F,(x)

W= gty it x>0, 0<a<l, B<—1, 2

where 0 <z =1 and the parameter p belongs to some in-
terval I surrounding O.

F u is continuous, and is smooth in the regions
R, ={x:x <0} and Rz={x: x >0}. If u <0, then the
map F, has a fixed-point attractor, and the index of this
fixed point is +1. For small positive p, F, has a fixed
point which is a flip saddle, and its index is 0. Therefore,
at =0, a border-collision bifurcation will occur at x =0.

First consider the case z=1. In this case there is a
square-root singularity in the derivative. This case is par-
ticularly interesting because it illustrates generic features
of impact oscillators such as (1). The phenomenology
and scaling relation given below has been previously re-
ported by Nordmark [5] in the two-dimensional case, and
provides a good illustration of a border-collision bifurca-
tion. Indeed, it can be shown that results for (2) with
z =1 correspond to bifurcations of the impact oscillator
when the oscillator is overdamped [a > 1 in (1)]. For ex-
ample, for the parameters =0.5 and f= —2, Fig. 1(a)
shows that decreasing p from 0.1 to O, the bifurcation di-
agram (and consecutive blowups not shown) exhibit an
infinite cascade of reversed “period addings.” That is, at
the right-hand side of Fig. 1(a) there is a stable period-3
orbit, then a stable period-4 orbit to the left of it, then a
stable period-5 orbit to the left of it, then a stable period-
6 orbit to the left of it, and so on. As u continuously de-
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FIG. 1. Border-collision bifurcations for F,, where

F,(x)=ax +p if x<0 and F,(x)=—2Vx +p if x>0. The
chaotic  attractor for u©u>0 lies in the region
F2(0)=p—2Vpu<x <p=F,(0).

creases toward O, there are infinitely many such windows
with the period going to infinity. These windows are
geometrically accumulating on =0 with p scaling by
the factor a? at successive period addings. We can show
the following.

If 0<a <4, then, as p decreases through 0, the map F,
with z =1 exhibits a border-collision bifurcation from a
fixed-point attractor to a reversed infinite cascade of
period addings accumulating at x =0. If 2<a <1, then,
at p=0, the map F, with z = has a border-collision bi-
furcation from a fixed-point attractor to a chaotic attrac-
tor at x =0 [see, e.g., Fig. 1(b)].

For 2<a<1, as u decreases towards zero from large
positive values, there will be several period addings but
these will cease after a finite number of addings, followed
by an interval in p extending to u=0, in which the at-
tractor is chaotic, that is, the attractor contains a trajec-
tory consisting of infinitely many points whose Lyapunov
exponent is positive [Fig. 1(b)]. The number of period
addings that occur before the cascade aborts increases to-
ward « as a approaches 2 from above. Figure 1(b) for
a=0.8 shows a case where the cascade aborts after the
period-4 window.

To understand the geometric accumulation of period
addings and the associated scaling factor, we focus our
attention on the periodic orbit attractor in a period-
adding window. Say that this orbit has a period m and
denote the range in the parameter p over which this orbit
exists as an attractor by

e >u>p,, . (3)

Here, p,, is the parameter value at which the periodic or-
bit loses its stability, and u, is the “tangent” bifurcation
parameter value. We wish to find u,, and u),. We ob-
serve from our numerics that the period-m orbit spends
m — 1 iterates in x <0 and one iterate in x >0. Let

X1 <X2< tet <xm__1<0<xm

denote the orbit points for this periodic orbit. We now
ask, what is the condition for such an orbit to exist?
Since x,_;<0, we have, from (2), x,<p and
x;>p+BVu. On the other hand, iteration of
X, +1=ax, +u from x, to x,, _, yields

Xpo1=a™ " +(1—a" " )(1—a) .

Combining these yields the following condition for the
existence of the orbit:

2
(B/a*)(1—a)

* — _2m
p<pm=a P

4)

We now ask, when is the orbit stable? Differentiating (2),
and noting that the orbit has m —1 points in x <0 and
one in x >0, we have that 1> 1a™ ~Y(—B)/V x,, for sta-
bility. Combining this with

x,=a" x;+(1—a™ H(1—a)

[which follows from X, =F7 "~ Hx ] and
x,=p+ BV x,,, we have the stability condition
3B 1—a

S e L g
Thus we see that both p, and u? scale as a?™ yields
geometric convergence of the window width to zero at
the rate a®. Also, we obtain a condition for the period-
adding cascade to occur. In particular, from (3) we must
have uy, >p,,. Using (4) and (5) with m — oo, this yields
the condition a <2 for occurrence of an infinite cascade
of period addings.

Now consider the case z =1 in Eq. (2) for which F,, is
piecewise linear. Let n =2 be any integer. Using knead-
ing theory [15] and the results in [16], we can show the
following.

If O<a<l and —a' "<B<a(l—a) (1—a'™),
then, at u=0, the map F ,, exhibits a “period-1 to period-
n” border-collision bifurcation at x =0. If 0<a <1 and
a(l—a) (1—a ") <B< —a!™", then, at x=0, the map
F, has a border-collision bifurcation from a fixed-point
attractor to a chaotic attractor at x =0.

In these bifurcations an interesting bifurcation
phenomenon occurs. Let n >3 and 0<a <1 be given,
and consider border-collision bifurcations while decreas-
ing B continuously in the interval

<2 _(1—a™ <B<—al™".

l1—a

Then we can show the following: There exist constants
* B (depending on a) for which

——lfa(l—a_”)<B; <Bf<—a'™"
such that if B,” <B< —a'~", then the map F, exhibits a
border-collision bifurcation from a fixed-point attractor
to a 2n-piece chaotic attractor; if B <B=< B,T , then the
map F, exhibits a border-collision bifurcation from a

fixed point attractor to an n-piece chaotic attractor, and
if
a —n *
m(l—a )<B<By ,

then the map F, exhibits a border-collision bifurcation
from a fixed point attractor to a 1-piece chaotic attractor.
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The case n =2 has not been resolved yet.
As a special case, illustrating the above, consider
a=0.5, which applies for Fig. 2. If

=2 B —2" 7141,

then the family F, has a “period-1 to period-n” border-
collision bifurcation at x =0. For n =3 this gives
—4<pB<—3 which is the case for Fig. 2(a). If
—2"+1<B<—2""1 then at u=0, there is a border-
collision bifurcation at x =0 from a fixed point attractor
to a chaotic attractor. For n =3 this gives —7<f< —4,
which is the case for Figs. 2(b), 2(c), and 2(d). Here Figs.
2(b), 2(c), and 2(d) have chaotic attractors consisting, re-
spectively, of six pieces (B <B< —4), three pieces
(BY <B<P5) and one piece (—7<B<pB%). For Fig. 2(a)
note that the fixed point in u <0 and the period-3 attrac-
tor in u >0 both have index + 1, while the fixed-point at-
tractor in u <0 converts to a fixed-point flip saddle (index
0)in u>0.

We now show why the chaotic attractor has six pieces,
three pieces, and one piece in the ranges of 3 correspond-
ing to Figs. 2(b)-2(d). Let u>0; then for —7<B8=< —4
there are three intervals (depending on pu,a), say, J,, J,,
and J;, which are invariant under the third iterate of F -
For f= —4, every point in J; (1 <k =3) which is not a
period-3 point, is a period-6 point. Therefore, there is no
chaotic attractor for = —4. The absolute value of the
derivative of F§, at points in J; (1 <k <3) where it exists,
exceeds 1 for —7 <3< —4. Decreasing the constant f3,
initially there are two invariant subintervals for F 2 in
each J, (1 <k =3). When the constant B is decreased,
there exists a value B;, such that in each J; (1=k =3)
the two invariant subintervals will merge. It can be
shown that for 87 <B< —4, the map F . has a dense tra-
jectory on the union of these six intervals. Similarly,
there exists a value B¥, —7<pB%<py, such that if
Bt <B <Py, then F, has a dense trajectory on the union
of three intervals J, (1<k <3). If —7<B<pJ, then F,
has a dense trajectory on the interval [Fﬁ(O),F#(O)].
The conclusion is that if B;r <B< —4, then F“ exhibits a
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FIG. 2. Border-collision bifurcations for F,, where

F,(x)=0.5x +pif x <0and F,(x)=px +pif x Z0.

border-collision bifurcation from a fixed-point attractor
to a six-piece chaotic attractor; if B§ <B<B;, then F,
exhibits a border-collision bifurcation from a fixed-point
attractor to a three-piece chaotic attractor; and if
—7<B=pj3, then F, exhibits a border-collision bifurca-
tion from a fixed point attractor to a one-piece chaotic at-
tractor. The main conclusion is that border-collision bi-
furcations occur in a wide variety of physical cir-
cumstances.

The computer-assisted pictures were made by using the
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FIG. 1. Border-collision bifurcations for F,, where
F,(x)=ax+p if x <0 and F,(x)=—2Vx +p if x>0. The
chaotic  attractor for p>0 lies in the region
FL0O)=p—2Vpu<x<p=F,(0).



