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In this paper we investigate the reaction eSciency of diffusion-controlled processes on finite, planar
arrays having physical or chemical receptors. This problem translates into the statistical-mechanical
one of examining the geometrical factors affecting the trapping of a random walker on small lattices of
dimension d =2, having N sites and average valency v. Extensive calculations of the site-specific average
walk length ( n ) before trapping, a measure of the efficiency of the underlying diffusion-reaction process,
have been carried out on triangular, square-planar, hexagonal, and Penrose platelets for N =16 and
N =48. From the variety of distinct lattices considered, and the data generated, three general con-
clusions can be drawn. First, for fixed N, the smaller the number Nb of vertices defining the boundary of
the finite lattice under consideration, the smaller the value of the (overall) average walk length (n ) of
the random walker before trapping. Second, for fixed N and fixed Nb, the smaller the value of the

2 1/2(overall) root-mean-square distance (r )' ' of the N lattice sites relative to the center of the array, the
2 1/2smaller the value of (n ). Third, for fixed [N, Nb, (r )'~~], (n ) decreases with an increase in the (overall)

average valency v of lattice sites comprising the array. Thus there are similarities but also real and
significant differences in the conclusions drawn here in studying stochastic processes taking place on
small, finite lattices of arbitrary shape and those found in studying nearest-neighbor random walks on
infinite, periodic lattices of unit cells characterized by a given (N, d, v). We comment on these and on the
possible relevance of this work to one aspect of morphogenesis, viz. , predicting the morphologies as-
sumed by small platelets when growth is optimized with respect to (chemical or physical) signal process-
ing at receptor sites.

PACS number(s): 05.40.+j

I. INTRODUCTION

Owing to physical and/or chemical interactions, the
defining constituents (atoms, molecules) of a surface are
often organized, at least locally, into well-defined constel-
lations having hexagonal, square-planar, or triangular
symmetry. Although such geometrical structures can
persist globally, on extended length scales it is more usual
to find that surfaces are broken up into domains, each of
finite extent, with the boundaries separating these
domains, and their intersections, defining a latticelike ar-
ray which itself may be regular, quasiregular, or random.
For finite systems, either isolated domains of definite
symmetry or patterns formed from the juxtaposition of m
domains, one anticipates that the overall shape ynd en-
compassing boundary of a finite array will be of critical
importance in influencing processes dependent on the
geometrical organization of the system.

As one example of such a process, consider a molecule
difFusing in free space and colliding with a surface. As-
sume that the molecule is suSciently entrained by surface
forces that there results a reduction in dimensionality of
its difFusion space from d =3 to d =2, and that in its sub-
sequent random motion the molecule is sterically con-
strained to follow the boundary lines separating adjacent
atoms or molecules in a given domain (or the boundary
lines separating adjacent domains). If at some point in its

trajectory the molecule becomes permanently immobi-
lized, either because of physical binding at a site or be-
cause an irreversible reaction has occurred at that site,
then, qualitatively, this sequence of events is descriptive
of many difFusion-reaction processes in biology, chemis-
try, and physics.

The above surface-diffusion problem can be translated
into a lattice-statistical one which, to our knowledge, has
not been studied systematically. The objective is to cal-
culate the mean walk length ( n ) of molecule constrained
to move (randomly) along sterically allowed pathways on
a structured surface until immobilized at a receptor or
target site. Although the literature dealing with various
aspects of the random-walk problem is vast [l], the im-
portant feature of the present work is that we consider
explicitly processes taking place on domains ofPnite ex-
tent having boundaries of arbitrary shape. Thus, in for-
mulating and then solving (here numerically) the stochas-
tic problem of determining the first moment ( n ) of the
underlying distribution function of the process, a quanti-
ty related to the mean relaxation time ~ and hence a mea-
sure of the reaction efBciency, the simplifying feature of
periodic boundary conditions cannot be imposed.

Recall that in the classic studies af Montroll and gneiss
on nearest-neighbor random walks on an infinite, periodic
lattice of unit cells [2], the mean walk length (n ) was
completely determined once the dimensionality d, the
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number N of sites, and the connectivity (or valency) v of
the underlying unit cell were specified. For the class of
d =2 problems considered here, we shall find, not unex-

pectedly, a more subtle dependence of (n ) on the lattice
parameters N and v and a further, pronounced depen-
dence on the shape of the domain. In particular, for a
given setting of Xb, the number of lattice points defining

the boundary of the domain, we shall show that trends in

the values of (n ) calculated for a wide variety of finite

lattices of given bilateral symmetry but of various shapes
can be systematically organized in terms of the (overall)
root-mean-square distance (r )'~ of the N lattice sites
from the center of the array.

i (—:1) separating lattice points. That is, although we
shall consider lattices of diff'erent [N, Nb, v, ], where N is
the total number of lattice sites i, Xb is the number of
boundary sites, v; is the (site-specific) valency, and

II. FORMULATION

We wish to calculate the mean walk length ( n ) before
the trapping of a particle (atom or molecule) diffusing
randomly on a series of (d =2)-dimensional finite lattices
characterized by different geometries and connectivities
(valencies). The calculational procedure used here, which
leads to numerically exact values of (n ), is based on the
theory of finite Markov processes [3]. The interpretation
of the results generated rests on the relationship between
the moments of the underlying distribution function for
the process being described and solutions of the stochas-
tic master equation for the problem [4], where

dp;(t) = —g G, p(t) (i ="1,2, . . . , N)

for the specific lattice geometry and initial conditions be-
ing considered. In Eq. (1), p;(t) is the probability that a
diffusing particle has reached site i at time t on a lattice
of N sites. The G; is an NXN matrix whose elements
are the transition probabilities between neighboring sites
on the lattice; in particular, one assigns unit relaxation
rates between any two neighboring sites (i,j), so that
G, = —1 for i' and G, , =gk~;Gk;=v;, where k
indexes the nearest-neighbor sites (only) and v; is the
valency of site i of the lattice. Solutions of the above sys-
tem (1) of linear equations are of the form

p, (t)= g a, exp( At), —
,

m=1
(2)

where a, are coefficients determined by the initial condi-
tions and the A, are the eigenvalues of the G matrix.
For N large, it can be shown [5] that the reciprocal of the
smallest eigenvalue A,

&
of the G matrix is related to the

first moment (the mean walk length t', n })of the probabil-
ity distribution function defining the process, viz. ,

IV

&n &=vA, , ', (3)

where here v is the average valency of the (lattice) system.
Thus calculations of the average walk length (n ) before
trapping provide a measure of the efficiency of the under-
lying diffusion-reaction process, and it is this relationship
which is exploited in interpreting the results reported in
this paper.

Before proceeding, we note that alI lattices studied in
this paper are characterized by a common (unit) distance

9

1

I /2—FIG. l. (a) Lattice characteristics }X,Xb, (r )',v}
=

I 16, 10, 1.395 984, 3.125 }. {b) Lattice characteristics:

}X,N, {r )', v }
=

I 16, 10, 1.512 821,3. 125 }.
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3 11

X4.~ X2.X
2 ~ ~8 ~ ~16

6 ~ ~14
~10 ~

Lattice E Xb )1/2

Fig. 1(a)
Fig. 1(b)

Fig. 2(a)
Fig. 2(b)
Fig. 2(c)
Fig. 2(d)

16 10 1.395 984 23.325 121 3.125
16 10 1.512 821 23.697 968 3.125

16 12 1.500000 24.527 863 4.125
16 12 1.581 139 25.194 569 4.125
16 12 1.581 139 25.257 143 3.000
16 12 1.581 139 25.257 143 3.000

7.694
7.694

7.794
7.794
9.000
9.000

TABLE I. Lattice characteristics and stochastic results:
Figs. 1—3.

Fig. 3 16 14 1.802 776 27.989 569 2.375 10.392

7 ~

2 ~

0 ~

(b)

4 ~ 11 ~

2 ~ 8 ~ 14~

16'

~ 13~

1 ~

(c}

1 50 0 9 130 0

3 ~ 9 ~ 15

difFerent overall geometries, we impose here a common
metric I for all lattices. The number of microlattices
characterized by a given setting of [N, Nb, v; ) obviously
escalates with increase in N; the lattices studied here have
been designed to allow the separate influence of the vari-
ables [N, Nb, v; ) on the dynamics [as described by Eqs.
(2) and (3)) to be disentangled.

Consider first the structures diagramed in Figs. 1 —3.
Each of the structures is characterized by the triplet
(d, N, Nb )=(2, 16,N&). In particular, N& =10 for the two
Penrose platelets diagrammed in Fig. 1, Nb =12 for the
figures shown in Fig. 2, and Nb =14 for the single figure

displayed in Fig. 3.
Consider next the lattices diagrammed in Figs. 4-7.

The first series (Fig. 4) is characterized by (d, N, N&)
=(2,48, 22), the second series (Fig. 5) by
(d, N, Nb ) =(2,48, 24), the third series (Fig. 6) by
(d, N, Nb)=(2, 48, 30), and the fourth series (Fig. 7) by
(d, N, Nb ) =(2,48, 34).

Finally, the simple "ladder" diagram (d, N, Nb)
=(2,48, 48), not displayed, has also been studied, along
with the more structured lattices displayed in Figs. 8 and
9.

III. DISCUSSION

Calculation of the site-specific (n ), for the lattices
considered in this study [6] reveals that, consistent with
one's "intuition, " the farther the receptor site (trap) is re-
moved from the "center" of a given lattice, the larger the
value of (n ), . This result already stands in contrast to

2 6 10 14
~ ~

7
3 ~ ~11

3 7 11 150 0 ~ ~ 4 12
1 ~ ~8 ~ ~15

0
8 12 16~ ~

2 9 16

FIG. 2. (a) Lattice characteristics:
[N, Nb, (r )'~, v) = [16,12, 1 500000,4 1.25). (.b) Lattice
characteristics: [N, Nb, (r )'~', v) = [16,12, 1.581139,4. 125).
(c) Lattice characteristics: [N, Nb, (r )'~, v)= [16,12, 1.581 139,3.000) . (d) Lattice characteristics:
[N,Nb, (r )', v) = [16,12, 1.581 139,3.000).

6 14
~10 ~

FIG. 3. Lattice characteristics:
= [16,14, 1.802776, 2.375).

{N,N„(r )'~', v)
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the one that pertains when nearest-neighbor random
walks on an infinite, periodic lattice of unit cells are stud-
ied. In the latter case, owing to the imposition of periodic
boundary conditions, the value calculated for (n ); is in-
variant regardless of the positioning of the trap. This dis-
tinction provides the first indication that one's intuition
might fail in trying to interpret the results reported here
on finite lattices, if that intuition were based solely on re-
sults obtained in earlier lattice-statistical studies in which
a unit cell was identified and periodic boundary condi-

[

tions were imposed or, more specifically, if one's under-
standing were rooted only in the analytical studies of
Montroll and Weiss [2]. Montroll proved, for (d =2)-
dimensional random walks on periodic lattices character-
ized by a uniform valency v, that

( n ) =
[ A, N lnN+ A 2N + A 3+ A4/N ], (4)

where the coefficients [ A „A2, A 3, A 4 ] for hexagonal
(v=3), square-planar (v=4), and triangular (v=6) lat-
tices are given, respectively, by

[ A i, A2, A3 j =
I 31/3/4n, +0..066206698, —0.2542279] (v=3),

[ A i, A2, A 3, A 4] =
I I /1r, +0.195 056 166, —0. 116964 81, —0.051 456 50] (v=4)

[ Ai, A2, A3] = [V'3/2m. , +0.235214021, —0.251407596] (v=6) .

(6)

(7)

21

14 29

8 ~ ~22 ~ ~36
3 ~ +15 ~ +30 ~ +42

4.~ ~«.~ X.~ X~.
1 ~ ~10 ~ ~24 ~ ~38 ~ ~47

2 ~ ~11 ~ ~25~ ~39 ~ ~48
X~.X X~~.X X».X W4~.X

~12 ~ ~26 ~ ~40 ~
7.~ &19.X X4.~ &46.

X3,'A %27,A X4',H
~20 ~ ~35 ~

~28 ~

den Hollander and Kasteleyn [7] showed analytically that
the term A4 for the square-planar case (v=4) was, in

fact, 34 =+0.484065 704, a result confirmed numerical-

ly in Ref. [8], where estimates of A4 for the cases v=3
and 6 were also given. However, the main point is that
for large lattices the behavior of ( n ) is dominated by the
first terms in the expression (4) which, in turn, means
that, for fixed v, ( n ) increases with an increase in the to-
tal number N of lattice points and that, for fixed N, (n )
decreases with an increase in the (uniform) valency v of
the lattice.

Whereas the N dependence of ( n ) is qualitatively
correct for the finite lattices considered in this study, the
observation that the lattices diagrammed in Figs. 1 —9 are
not characterized by a uniform valency v limits the use-

fulness of Eq. (4). In fact, we need to introduce some
composite (average) lattice parameters in order to be able
to compare trends in the data generated for the variety of
lattices considered in this study. Specifically, we need
one parameter to account for the nonuniform valency
and one parameter to refiect and/or characterize the
variety of geometrical shapes. Consistent with the
identification of an overall (average) walk length ( n ),

18 TABLE II. Lattice characteristics and stochastic results:
Figs. 4-7.

Lattice N Nb (
—

)
1/2.

Fig. 4(a)
Fig. 4(b)

48 22 2.565 801
48 22 2.576 481

91.099 492 4.979 31.177
98.892 923 3.458 28.426

12

FIG. 4. (a) Lattice characteristics: [N, Nb, (r )',v]
= [48,22, 2. 565 801,4. 979 ] . (b) Lattice characteristics:
[N, N„,(r )',v] = [48,22, 2.576481,3.458].

Fig. 5(a)
Fig. 5(b)
Fig. 5(c)
Fig. 5(d)

Fig. 6(a)
Fig. 6(b)

Fig. 7(a)
Fig. 7(b)
Fig. 7(c)
"Ladder"

48 24 2.757 565 98.482 040
48 24 2.757 565 101.380 56
48 24 2.857 738 103.240 59
48 24 3.024 208 105.281 53

48 30 2.901 149 116.438 33
48 30 3.685 557 128.675 19

48 34 3 ~ 181 981 135.708 86
48 34 3.708 099 154.133 15
48 34 4.681 524 175.763 61
48 48 6.940 221 431.17647

4.875
3.417
3.417
4.875

3.291
2.625

2.583
2.583
3.166
2.917

30.311
30.311
35.000
30.311

32.000
41.569

38.971
38.971
30.000
23.000
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(n)=

where ( n ); is the mean walk length for a trap situated at
site i on a given lattice, and the sum is over all lattice

V=

V.

sites i, we construct

22 ~ 22 ~

16 16~

11 ~

, ~,) 7 ~

4 ~ 4 ~

2 ~ 2 0

~ ~ 1 ~ 31 ~ 4

~ ~ ~

25 33 41~ ~ ~

4 12 20 28 36 440 0 ~ ~ ~ ~

5 13 210 ~ ~ 29 37 45~ ~ ~

6 14 22 30 38 46~ ~ ~ ~ ~

7 15 23 31 39 470 ~ l ~

8 16 24
~ ~

32' 40

2 10 18 26 34 42
~ ~ ~ ~ ~ ~

3 11 19 27 35 43
~ ~ ~ ~ ~ ~

20

&0 ~ ~30
'.X ~2~.X &40.

2 ~ ~22 ~ ~41

3 + +23 + +42

4 ~ ~24~ ~43

X.X X4.~
5 ~ ~25 ~ ~44

6 ~ ~26 ~ ~45

7 ~ ~27 ~ ~46

8 ~ ~26 ~ ~47

9 ~ ~29 ~ ~46
19' 39

1/2— 1/2—FIG. 5. (a) Lattice characteristics: [N, Nb, (r )',vj = [48,24, 2.757565,4.875j. (b) Lattice characteristics: [N, Nb, (r )'~,vj= [48,24, 2.757565, 3.417j. (c) Lattice characteristics: [N, Nb, (r )'~, vj = [48,24, 2.857738,3.417j. (d) Lattice characteristics:
[N', Nb, (r )'~, v j = [48,24, 3.024208, 4.875j.
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where v,- is the valency of site i of the lattice, the sum
again being taken over all sites i. To distinguish among
the various geometrical shapes of the finite lattices con-
sidered here, we construct

TABLE III.
Figs. 8 and 9.

Lattice

Lattice characteristics and stochastic results:

(
—

)
1/2

(
—&)1/2

1/2

(10)

Fig. 8(a)
Fig. 8(b)
Fig. 8(c)
»g. 8(d)
Fig. 8{e)

48
48
48
48
48

34
34
34
34

1.651 588
2.975 595
3.165 570
3.230 712
4.672 615

132.792 28 4.458
134.294 19 4.458
137.970 04 4.458
145.592 84 4.458
178.123 32 4.458

25.981
25.981
25.981
25.981
25.981

(a)
7 16 25 34

!

0 ~ -- ~ ~

8 17 26 35 i

~ 0 ~ ~

Fig. 9(a)
Fig. 9(b)
Fig. 9(c)
Fig. 9(d)

48
48
48
48

34 3.099 059
34 3.158 982
34 3.350 995
34 3.705 289

134.31009 3.208
137.018 50 3.208
142.545 92 3.208
151.711 08 3.208

30.000
30.000
30.000
30.000

9 18 i 27 360 ~ 0 0

10' 19 28 ' 37' 43 46~ ~ — ~ ~ ~

2 I 5 11 20 29 38~ 0- 0 0 0 44

3 0- ~ -- 1 ~ ~ — ~

22 31
~ ~

I

130

45
~ — ~

14 23 32 41
~ ~ ~ 0

15 24 ' 33 420 0 0 --0

21
&3 ~ ~&&

14 30
7 ~ ~22 +0 0

8 23 38

0 e 0

4 16 32

~9
0 0

I I

26& 40 48'

0 0 0
I

18' 34 46'

~26 ~ ~41
0 0

I

12' 27 42

~19 ~ ~35 ~0

20

2 I/2—Flay. 6. (a) Lattice characteristics: I N, X~, ( r )', v I

4 ), 8032. 901 149,3.291 ]. (h) Lattice characteristics:
I&V,.Vb(r 1'', vI = I48, 30, 3.685557, 2. 625).

the root-mean-square distribution of lattice sites with
respect to the "center" of a given lattice. For those lat-
tice structures characterized by two (or more) axes of bi-
lateral symmetry, the intersection of these axes is taken
as the "center" of the lattice. For lattices with only one
axis of bilateral symmetry, we identify a "stochastic
center, " defined as that lattice point on the bilateral axis
for which the calculated ( n ); has the minimum value.

From the (n ); data calculated for each of the lattices
diagrammed in Figs. 1 —9 [6] and from a consideration of
their respective geometrical "shapes, " we have calculated
(n ), v, and (r )'~ for each lattice. These values are
recorded in Tables I—III, along with the values of X, Nb,
and 3, where A is the area encompassed by the given
figure. These data will be the basis of our subsequent dis-
cussion, and will provide the basis for the correlations de-
rived in this study.

Turning first to the data displayed in Table I for the
case N = 16, it is evident that the primary "order parame-
ter" is X&. Once Xb has been specified, the root-rnean-

square distance (r )'~ provides a systematic organization
of the data. Then, for a common setting of the

t Xb, (r )' ), the data may be further organized in terms
of the average valency ~ of the lattice being considered.
In particular, as Nt, increases from Xb =10 to 12 to 14,
the values of (n ) (taken as a group) systematically in-

crease. For Nb=10, (n ) increases as (r )' increases
(while v remains constant); for Nb = 12, a similar increase
of (n ) with (r )' is observed. Notice, however, that for
fixed {Xb=12,(r )' =1.581 139I, (n ) increases with
respect to a decrease in the average valency v. Thus, for
fixed IXs, (r )' I, the qualitative dependence of the
average walk length (n ) on the valency (here, v) is the
same as that predicted by Eq. (4), the latter result proved
for nearest-neighbor random walks on infinite periodic
lattices. Finally, examination of Figs. 2(c) and 2(d) and
the corresponding data in Table I reveals that for fixed
IX,&Vb, (r )', vI, the value of (n ) remains constant,
despite the fact that the shape of the lattice "looks"
different. This last case reAects the fact that finite lattices
subject to a difFeomorphic transformation leave invariant
the value of ( n ). Since (n ) summarizes the net result of
considering all possible Qows initiated from all possible
sites (i.e., "initial conditions" ) on the lattice, (n ) is play-
ing the role of a topological invariant for the class of
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11
5 ~ ~17

33
27 ~ ~39

13 29
5 ~ ~21 ~ ~37

6 18 28 4p
1 ~ ~12 ~ ~23 ~ +34 ~ ~45

0

2 13' 24 35~ 46
+7 ~ ~19 ~ ~29 ~ ~41 ~~

0 0 0 0

8 20 30 42
3 ~ ~14~ ~25~ ~36~ ~470 0

4 15 26 37~ 48'
~9 ~ ~21 ~ ~31 ~ ~43 ~

6 22 38
1 ~ ~14 ~ ~30 ~ ~45

0

2 15 31 46
~7 ~+23 ~ ~39 ~

24 40
~16 ~ ~32 +0

17 33'
9 ~ ~25 ~ ~41

10 22' 32 44
~36 ~ 10 26 42

3 ~ ~16 ~ +34 + +47
0

4 19 35
~11 + +27 +

17
~ — ~ ~

2
~

18 34

12 2S'

~20 ~ ~36 ~
3 0

35
~ ~

4 22 36
~ ~

5 23
~ ~

37

6 24 38
~ ~

7 25 39
~ ~ ~

8 26
~ ~

400

9 27 41
~ ~

10 28 42
~ ~

29 43
~ ~

12 30 44
~ ~

13 31 45
~ ~

32 46~ 0

15 33e ~

16 34~ 0

470
I

46~

2 1/2— ~ ~ —2 1/2—FyG. 7. (a) Lattice characteristics: INq(r )'~2, v) = I48, 34, 3.181981,2.583[. (b) Lattice characteristics: IN, Nq(& )
= 148,34, 3.708099,2.583). (c) Lattice characteristics: IN, N&, (F ),vJ = f48, 34,4 68& ~&4, 3 &66j.
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problems studied here.
The conclusions noted above for the case X =16 are

sustained if one considers the more complex structures
diagrammed in Figs. 4—7 and the (N, Nb)=(48, 48}
"ladder" diagram (not displayed). Generally speaking,
(n ) increases with increasing Nb, once (N, Nb) are set,
(n ) increases with increasing (r )'; and, once

[ N, N„, ( r )
' r~

j are set, ( n ) increases with decreasing v

[compare Figs. 5(a) and 5(b) and the corresponding data
in Table II).] That v does not take precedence over

(r )' as an organizing parameter for (n ) can be seen in

several cases, e.g., the lattices [Figs. 5(c}and 5(d)], where
v=3.417 in the former case and %=4.875 in the latter
figure, with the corresponding ( n ) values increasing

20

~30
+21

12 31

+22 +
13 + ~32

14 ~ ~33
8 ~ ~24 ~ ~39 44

1 ~ ~6 ~ W«R N4.X N2.X &'.

17 ~ ~36
+27 +

18 + +37
+28

19 + ~38

20

11 ~ ~30

(~)
12 ~ ~31

+22 +
13 + ~32

3 8 ~ ~23~ ~39 44

1 ~ ~6 ~ ~14 ~ ~33 + ~42 + +47
'~g X'NZ4 A'NO R'%5

2.~ ~~ ~ ~&~.X ~~4.X ~4~.~ ~~.
W.R W.P N.X ~4'.X %46 X

16 ~ ~35
~26 ~

17 ~ ~36
~27

18 ~'~a~/
~28 ~

19 ~ ~38

20

11 ~ ~30
(c)

12 + ~31
3 8 ~ ~22 ~ ~39 44

' W W W X X W X W4' W W~.X ~9.X ~23.X ~40.& ~45.X
2.X ~7.X ~.X X».X X4'.X &4~.

15 + ~34

16 ~ ~35

t ~26
17[ ~'~36

~27 ~
18 ~ ~37,

~28 ~
19 ~ ~3S

~29

20

11 30

3 8 ~ ~21~ ~39 44

1 + ~6 + +12 + +31 + +42 + +47

~.~ ~9.X ~22.~ ~4'.~ ~4'.X
2 ~ ~7 ~ ~13 ~ ~32 ~ ~43 ~ ~48

~5.X ~0.& ~23.X ~4'.X ~46.X
14 ~ ~33

~24 ~
15 + +34

16 ~ ~35

17 ~ ~36
~27 ~

18 + ~37
~28 ~

19 ~ ~38

I /2
2 I/2—

FIG. 8. {a) Lattice characteristics: [N, Nb, (r )',v] = t48, 34, 1.651588,4.458]. (h) Lattice characteristics: [N, Nb, (r )',v(
I /2= [48,34,2.975595,4.458]. (c) Lattice characteristics: tN, N~, (r )'~, v] =(48,34, 3.165570,4.458]. (d) Lattice characteristics:

t N, Nb, {r )'~, v] = I48, 34, 3.230712,4.458]. {e)Lattice characteristics: t N, Nb, (r )'~, v] = [48,34,4.672615,4.458].
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with an increase in the value of v. See also Figs. 7(b) and

7(c).
Finally, consider the more structured lattices displayed

in Figs. 8 and 9, together with the data presented in
Table III. Within each of the individual series, Figs. 8
and 9, it is seen that, consistent with our previous discus-
sion, for fixed (N, Nb) =(48,34), the (n ) values calculat-
ed increase with increasing values of (r }' . In fact, an
even more striking correlation can be seen. Notice first
that all of the lattices diagrammed in Figs. 8 and 9 are
characterized by a single axis of bilateral symmetry; in
contrast, the (N, Nb)=(48, 34) lattices displayed in Figs.
7 have two, mutually perpendicular axes of bilateral sym-
metry. Except for the single inversion in the data for
Figs. 8(d) and 9(c), the {n ) values calculated for all lat-
tices within a given symmetry class once again increase
with increasing values of the root-mean-square distance
(
—2)1/2

IV. CONCLUSIONS

In this section, we contrast and distinguish the results
obtained here for (d=2)-dimensional nearest-neighbor
walks on finite lattices with those derived from studies of
random walks on periodic lattices of unit cells. With
respect to the latter class of problems, we shall rely not
only on earlier analytical work [1,2], but also on numeri-
cally exact results obtained using the theory of finite
Markov processes when applied to walks on hexagonal
[3(b)] (v=3), square-planar [9] (v=4}, and triangular [8]
(v=6) lattices.

First of all, as noted earlier, from Montroll's results for
periodic lattices [see Eq. (4)], it is known that (n ) in-
creases with increasing N. Our results on finite lattices
support this conclusion. Moreover, our studies on finite
lattices also show that (n ) generally increases with in-

creasing Sb. The only case uncovered for which there
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FIG. 8. (Continued).
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was an "inversion" in order with respect to the depen-
dence on Nb was Fig. 4(b) vs Fig. 5(a); in the former lat-
tice, [Nb, V}= I22, 3.458}, whereas in the latter one

[Nb, v} = [24,4.875}, and it is probable that the higher
connectivity of the lattice, Fig. 5(a), may account for the
slight difference in (n ) values: (n ) =98.892923 [Fig.
4(b)] vs (n ) =98.482040 [Fig. 5(a)], a difference of less
than 0.5%.

It is in the dependence of (n ) on the (average) valency

v that the results obtained here stand in greatest contrast
to the analytic and numerical results obtained for period-
ic lattices. Once again, from earlier studies on periodic
lattices, it is anticipated that (n ) should decrease sys-

tematically with increase in the (uniform) valence v of the
lattice [again, see Eq. (4) and Eqs. (5)—(7)]. In fact, this
result pertains as well to random walks on (d =3)-
dimensional periodic lattices of unit cells [9,10] and can
also be demonstrated analytically and numerically for
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walks on higher-dimensional (d ~ 8 ) cubic lattices
[11,3(c)]. In the latter problem, v=2d and hence the
higher the dimensionality of the space, the greater the
number of pathways to a centrally located deep trap in a
periodic array of (cubic) unit cells; in fact, the decrease in

( n ) is found to be quite dramatic with increase in the
dimensionality d, and hence v. On the other hand, it
should also be recognized that an increase in v will result
in a greater number of pathways that allow the random
walker to move away from the trap. For periodic lat-
tices, this latter option simply positions the random walk-
er close to the trap in an adjacent unit cell. It is evident
therefore why the strong v dependence seen for periodic
lattices is weakened when one studies the same class of
nearest-neighbor random-walk problems on the finite lat-
tice systems considered here: for finite lattices, moving
away from the trap does not position the random walker
closer to a trap in a neighboring unit cell; it positions the
walker closer to the finite boundary of the lattice from
whence it must (eventually} work itself back.

The discussion presented in Sec. IV leads to the con-
clusion that the root-mean-square distance (r )'~, calcu-
lated with respect to the "center" of the finite lattice, is a
parameter second in importance only to IN, Nb] in or-
ganizing the data on (n ). A further, concrete illustra-
tion of this conclusion is provided by considering in more
detail the Penrose decagons diagrammed in Fig. 1 and
the larger Penrose platelet shown in Fig. 4(a). As is evi-
dent, the latter figure may be constructed by a superposi-
tion of the simpler structures I, II, and III, and IV. No-
tice that, as labeled, the figures I and II are "optical iso-
mers, " as are figures III and IV. No differences in the
(n) values calculated for the structures I and II are
found (nor are the (n ) values for III and IV diff'erent);
however, the ( n ) values for I (II) are diff'erent from those
for III (IV}. The only lattice characteristic that distin-
guishes I (II) from III (IV) is the value of (r )'~i, the
values of V and A being exactly the same (see Table I).
With respect to the calculation of (r )'~ in these two
cases, whereas the "geometric center" and the "stochas-
tic center" for the figure I (II) coincide, the two "centers"
are difFerent for III (IV), a consequence of the fact that
III (IV) has only a single axis of bilateral symmetry.
Once the importance of choosing the "stochastic center"
in calculating (r )'~ for finite lattices with a single axis
of bilateral symmetry is understood, the results calculat-
ed for the structures I (II) and III (IV), as well as the re-
sults for the full range of structures displayed in Figs.
1 —8, fall into place.

A further interesting feature of the four N =16 Pen-
rose decagons is that, for 1V = 16, the value of Nb is srnall-
er than any other "regular" lattice that we have been able
to construct (see Figs. 2 and 3) subject to the constraint
that the "bond length" connecting all lattice points be
fixed. (Recall that we set the metric for all lattices at
1 = 1.) Given that the ( n ) values calculated for the
N = 16 Penrose decagons are smaller than the ( n ) values
for the other N = 16 lattices diagrammed in Figs. 2 and 3
points again to the importance of 1Vb as a principal or-
ganizing parameter for the class of random walk prob-
lems studied here. %'hen lattices N =48 are considered,

however, it is possible to construct a (triangular) lattice
[Fig. 4(a)] with the same nuinber N&=22 of boundary
sites as the Penrose platelet [Fig. 4(b)]. In this case,
(r )'~ is smaller for the lattice diagrammed in Fig. 4(a),
with the consequence that the overall (n ) is smaller for
the more compact "triangular" lattice. Finally, a distin-
guishing feature of the Penrose platelet diagrammed in
Fig. 4(a) is the presence of one site of valency v=7; posi-
tioning a trap at that site leads to the smallest site-specific
value of ( n )( =36.212 847) for all lattices with N =48.

In the preceding section, we noted that finite lattices
subject to a metric-preserving, diffeomorphic transforma-
tion leave invariant the value of (n ); recall the results
obtained for Figs. 2(c) and 2(d}. From the results ob-
tained in studying the labeled Penrose decagons I and II
(or III and IV), lattice pairs which are "optical isomers"
of each other, we also find that the number ( n ) plays the
role of a topological invariant. Finally, we note that ( n )
is invariant when computed for random walks on the
finite strip, Fig. 7(c), when that lattice is subject to the
following two operations: (1) joining the sites 1,16; 17,34;
33,48; and (2) joining the sites 1,48; 17,34; 33,16. That is,
the ( n ) values calculated for random walks on a "ring"
versus walks on a Moebius strip are identical. The com-
mon feature in each of these cases is that calculation of
( n ) does not allow one to discriminate between certain
pairs of finite lattice structures [Fig. 2(c) vs Fig. 2(d); I vs
II (or III vs IV) in Fig. 1; the "ring" versus the Moebius
strip generated from Fig. 7(c)]. It is interesting to consid-
er what constraint on the motion of the random walker
would have to be relaxed in order that different values of
(n) would result in each of the cases noted. Two
"symmetry-breaking" possibilities that will be pursued in
our subsequent work are (1) allowing non-nearest-
neighbor transitions of the random walker between sites
on the lattice, and (2) considering the presence of down-
range potential interactions between the random walker
and the stationary target (trap). While the flows would
still be ergodic, both generalizations would allow the ran-
dom walker to sample a larger fraction of the surface (ac-
cessible phase space) in its site-to-site displacements, and
may result in discrimination between the pairs of lattice
structures considered.

Finally, it is of interest to speculate on the possible
relevance of our study and attendant conclusions to a
process of morphogenesis. For definiteness, consider the
composite set of data for the case N =48 (see Tables II
and III). Generally speaking, the lattice structures
characterized by the smaller values of X& are more com-
pact. The more articulated structures can be thought of
as being generated by transposing interior lattice points to
the boundary of the figure. Suppose that this process is
induced by a molecule difFusing in (d =3)-diinensional
space, impinging on the surface, diffusing randomly on
that surface in a series of nearest-neighbor displacements,
and then triggering a geometrical transformation of the
lattice, i.e., an increase X&~N& with N& &N& [Recall.
that the values calculated for (n ) reflect all possible ini-
tial conditions (i.e., initialization points in the particle s
trajectory) and all possible nearest-neighbor trajectories
to the target or receptor site. ] One can then envision a



1060 ROBERTO A. GARZA-LOPEZ AND JOHN J. KOZAK

further "unfolding" of the initial structure,
N, ~N,' N,

"
(with N,

"&N,' &N, ), «igge«d by a simi-

lar process of surface-mediated walks of an "activator"
molecule to a "receptor" site (molecule). If one is seeking
an "order parameter" for this series of transformations,
one that ensures that the underlying reaction efficiency of
the process at each stage be maximized (i.e., that ( n ) be
minimized), our studies show that parameter would be

( r )
' ~z. In other words, if one demands that the

efficiency of the morphogenetic process be optimized
as the original structure "unfolds, " one would select
those new structures characterized by settings of
Nb, Nb, Nb', . . . for which (r )' is minimized.

Two specific examples can be given here. First, in the
set of possible structures evolving from the
(N, Nb ) =(48,24) lattice, Fig. 6(a), via a signal-processing
event of the type described above, the (N, Nb)=(48, 34}
lattice, Fig. 9(a), would be the preferred structure, rather

than the options in Figs. 9(b), 9(c), or 9(d). Second, any
of the articulated (N, Nb ) =(48, 34) lattices, Figs.
8(a) —8(d), evolving from the (N, Nb ) = (48,24) lattice, Fig.
5(a), would be preferred to the "linear" (N, Nb )=(48, 34)
lattice, Fig. 8(e), if morphogenesis is guided by the order
parameter (r )'~ . It is this observation, arising from an
analysis of the lattice-statistical data presented in this pa-
per, which we believe may have relevance to the morpho-
genetic problem of predicting the optimal design (here,
shape} of finite, planar arrays having physical or chemical
receptors.
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