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We discuss the conceptual differences between a nonequilibrium absolute temperature (defined as the
partial derivative of the steady-state nonequilibrium entropy) and the local-equilibrium absolute temper-
ature. We explore two situations in which this difference could be observed in molecular-dynamical situ-
ations. By using a simple model for the nonequilibrium entropy, we compute the difference between
both temperatures for gases, metals, and electromagnetic radiation. We analyze the compatibility of
both temperatures in two simple examples in the kinetic theory of gases and in an information-theoretic
analysis of harmonic chains. Finally, we compare with some other works which have proposed non-

equilibrium temperatures on several different grounds.

PACS number(s): 05.70.Ln, 44.10.+1

I. INTRODUCTION

Basic questions in nonequilibrium thermodynamics
concern the definition and meaning of entropy and abso-
lute temperature out of equilibrium. In classical irrever-
sible thermodynamics [1-4], based on the local-
equilibrium hypothesis, it is assumed that these concepts
do not need a reformulation out of equilibrium, and that
the usual equilibrium concepts may be applied locally in
nonhomogeneous nonequilibrium situations.

When the assumption of local equilibrium is relaxed,
one is faced with the problem of defining temperature and
entropy in nonequilibrium conditions. In rational ther-
modynamics, the difficulty is circumvented by consider-
ing entropy and temperature as primitive quantities, the
latter being measured by means of small and fast ther-
mometers [5]. Such a temperature is related to the
derivative of the entropy with respect to internal energy.
Since the entropy in rational thermodynamics is not
necessarily equal to the local-equilibrium entropy, as it
may depend on nonequilibrium quantities (such as the
temperature gradient or the velocity gradient) the abso-
lute temperature in rational thermodynamics does gen-
erally not coincide with the local-equilibrium absolute
temperature. However, in rational thermodynamics the
problem of the difference between both temperatures has
not been explicitly investigated.

Different concepts of “nonequilibrium temperatures”
have been considered in other contexts by different au-
thors. In that respect let us mention Meixner, who pro-
poses the concept of a “dynamical temperature” [6-8],
Miiller, who introduces a ‘“‘coldness” [9], Lambermont
and Lebon [10] and Muschik [11], who postulate ‘“‘con-
tact temperatures,” Keizer, who bases his analysis on sta-
tistical considerations of molecular fluctuations [12], Lan-
dauer, who works within the frame of electronic devices
[13], and more recently Jou and Casas-Vazquez [14,15],
Nettleton [16], and Sieniutycz and Berry [17], who re-
visited this concept in the context of extended irreversible
thermodynamics (EIT). The meaning of temperature in
nonequilibrium situations has also been discussed in in-
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formation theory [18-24], kinetic theory of gases
[25-30], and in computer simulations [31].

The aim of this paper is to present several considera-
tions about nonequilibrium temperature by starting from
a simple phenomenological model which presents the ad-
vantage to express the differences between non-
equilibrium absolute temperature and local-equilibrium
absolute temperature in an explicit form. In Sec. II two
different definitions of absolute temperature are reviewed.
Section III summarizes the macroscopic phenomenologi-
cal model used to discuss the nonequilibrium tempera-
ture. In Sec. IV we recall a possible experiment that we
suggested recently to make evident the difference between
nonequilibrium and local-equilibrium absolute tempera-
ture. This difference is explicitly calculated by using sim-
ple kinetic considerations. Section V presents some expli-
cit evaluations of the difference between both tempera-
tures for three different systems: ideal gases, metals, and
thermal radiation. Sections VI and VII underline several
microscopic interpretations of nonequilibrium tempera-
ture in the context of information theory and kinetic
theory of gases. Section VIII compares the present for-
mulation with other works mentioned in this introduc-
tion.

II. DEFINITION OF TEMPERATURE

The standard thermodynamic definition for the equilib-
rium absolute temperature is [32]

T '=(35/3U), , )

where S is the entropy (or s the entropy per unit mass), U
the internal energy (or u the internal energy per unit
mass), and ¥ the volume (or v the volume per unit mass).

Another way to define the temperature in nondegen-
erate systems of independent particles is through the
mean value of the translational kinetic energy of the par-
ticles, namely,

IkT={(1Imc*), ()

with k Boltzmann’s constant, m the mass of particle, and
c the peculiar velocity of the particle with respect to the
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barycentric motion. In equilibrium systems, both expres-
sions (1) and (2) lead to the same value of T. Note, how-
ever, that (1) is more general than (2), as (2) is not valid
for degenerate gases satisfying Bose-Einstein or Fermi-
Dirac statistics and, furthermore, (2) does not allow for
negative absolute temperatures, as those appearing, for
instance, in magnetic systems when more than half of the
population lies in the upper energy level.

Out of equilibrium, the problem is more complicated,
as the entropy is not univocally defined. Definition (1) is
not directly operative and relation (2) is used as a
definition of temperature, both in kinetic theory of gases
and in molecular-dynamics simulations. This definition
of temperature is consistent with the local-equilibrium
hypothesis, which postulates that in a nonequilibrium sit-
uation the entropy may be defined locally by identifying
the entropy of small parts of the system with a given en-
ergy u and specific volume v with the entropy s(u,v) of
the system in an equilibrium state characterized by the
same values of ¥ and v. From a practical point of view
the calculation of T according to (1) is very simple, as it is
directly related to the mean translational kinetic energy,
a quantity which is well defined either in equilibrium or
out of equilibrium. However, the assumption that T is
the temperature measured by a thermometer implies the
hypothesis that T acts as a potential for heat transport,
i.e., that heat flows according to VT ~!; this hypothesis is
consistent in the framework of the local-equilibrium
theory, but must be revised in a more general context, be-
cause the natural potential for heat transport is (8S /U )
rather than the mean value of kinetic energy.

A way out is to start from the Boltzmann definition,
expressing the nonequilibrium entropy in terms of the ve-
locity distribution function f,

ps(r)=—k [ f(r,c)nf(r,c)dc . (3)

Since the form of f in a nonequilibrium steady state is a
priori unknown, the same is true for the nonequilibrium
entropy. In a system in a steady state under a heat flux q,
the entropy will depend not only on u and v, but also on q
or, if the system is submitted to a shear viscous pressure
P,,, the entropy will depend on u, v, and P;,. Here we
shall specialize our attention to a system under a heat
flux. Thus the entropy will generally depend on the heat
flux, so that one will have s =s(u,v,q). If s(u,v,q) is in-
troduced into definition (1), one has

0~ u,v,q)=(ds /du) 4)

v,q ?

which is, formally speaking, one of the equations of state
in this entropy representation. However, T only depends
on u, as in kinetic theory one imposes on the nonequi-
librium distribution function the auxiliary conditions

ffdc=ffeqdc=n , (5a)
[ fede= [ fycde=nv, (5b)
f%mczfdc=f%mczfeqdc=?nkT , (5¢)

with f, the local-equilibrium Maxwellian distribution
function corresponding to the number density n, the

internal energy u, and barycentric velocity v. Since f is
different from f, the higher-order moments of f, corre-
sponding to nonconserved quantities, will in general differ
from the corresponding moments of f.,. As a conse-
quence of (5), 6 defined by (4) cannot be equal to T
defined by (5) in nonequilibrium states. In this paper, we
will call 6 the nonequilibrium absolute temperature and T
the local-equilibrium absolute temperature.

In order to be more specific, let us expand s(u,v,q)
around its local-equilibrium value up to a second-order
approximation in q. This will result in

s(u,0,q)=s(u,v)—(a/2)q:q, (6)

where s (u,v) is the local-equilibrium entropy. The
coefficient a will be interpreted in the next section.

The relation between T and 6 at this order of approxi-
mation, according to (4) and (6), is given by

_ _ da
1— 1_1 | 22
6 T * | 3m

qq. (7)

This explicit expression is the basis of our analysis about
the conceptual and numerical differences between none-
quilibrium absolute temperature and local-equilibrium
absolute temperature. In general, s(u,v,q) is a much
more complicated function of q than (6), but this
simplified expression is sufficient for the present purpose.

III. MACROSCOPIC THEORY

For simplicity, consider a rigid solid or an incompressi-
ble perfect fluid at rest, locally characterized by the inter-
nal energy u per unit mass and the heat flux vector q
[33—-43]. The energy balance equation reduces to

pu=—V-q, (8)

where, for simplicity, no energy supply has been con-
sidered. To obtain an evolution equation for q compati-
ble with the second law, one postulates the existence of a
generalized entropy s which depends on u and q, and
whose total differential is given by

ds=60"'du—aq-dq, 9)

where 8~ 1=(3s /du )q is the generalized nonequilibrium
absolute temperature. The time derivative of s may be
obtained from (9) and written as

p§=—0"'V-q—paq-q, (10)

wherein use has been made of (8). The factor 6! in the
first term on the right-hand side may be introduced into
the divergent term so that

ps+V-(071q)=q- (V8 '—paq) . (11)

Comparison with the general form of the entropy balance
p§ +V-J'=0" leads to identify the entropy flux J° and the
entropy production o as

¥=0"lq, (12)
o'=q (V8 '—paq) . (13)
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To formulate an equation for the evolution of q compati-
ble with the required positive definiteness of ¢°, the sim-
plest hypothesis is to assume that

V6~ !'—paq=pq (14)

with £ =0. For small values of the heat flux, the contri-
bution of order q-q to the absolute temperature may be
neglected so that 6 is equivalent to the local-equilibrium
temperature 7. Then, comparison of (14) with the
Maxwell-Cattaneo equation [35,37,44]

4= —(q+AVT) (15)

(with A the thermal conductivity and 7 the relaxation
time) leads to the identifications

a=7t/AT?, p=ATH . (16)

We have written this short summary to emphasize that
it is the generalized absolute temperature 6 and not mere-
ly the local-equilibrium temperature T the relevant quan-
tity appearing in the entropy flux and the evolution equa-
tion for the heat flux. In view of (9) and the first of rela-
tions (16), the generalized Gibbs equation takes the form

ds=0"'du—(rv /AT*q-dq . 17)

Integrability condition of (17) leads straightforwardly to
expression (7).

When nonlinear terms in q-q are kept in the expression
for 6, the Maxwell-Cattaneo equation (15) generalizes as
follows:

rq+q=—AVo (18)

with a=7v/A6% and p=(A6?)"!. The linear Maxwell-
Cattaneo equation (15) has been used in many occasions
to describe heat waves in solids at low temperatures [44].
For a detailed discussion of this equation and its thermo-
dynamic consequences, the reader is referred to [34,35].
It is important to notice that (18) reduces to (15) when
the term in q-q which appears in 8 is neglected. The ap-
pearance of 6 instead of T in (14) and (18) is imposed by
thermodynamic requirements which are a direct conse-
quence of the use of the generalized entropy (9) instead of
the local-equilibrium entropy.

IV. THERMODYNAMIC
AND KINETIC INTERPRETATION
OF THE NONEQUILIBRIUM TEMPERATURE

The fact that the heat flux is proportional to V6 rather
than to VT suggests a possible experiment to check
whether 0 is a mathematical artifact arising from an un-
due extension of the classical definition (1), or whether it
is an actual physical quantity [15(c)].

We connect by means of a good thermal conductor two
thermodynamic systems. One of them is at equilibrium
(T,=06,=T) whereas the other is in a nonequilibrium
steady state characterized by a heat flux g, perpendicular
to the connection between both systems (7,76,=0)
(Fig. 1). The connection is installed in such a way that
the local-equilibrium temperature of the nonequilibrium
system at the position of the connection is equal to the

T

G| T

Y

FIG. 1. The system on the left is at equilibrium at tempera-
ture 7. The system on the right is in a nonequilibrium steady
state under a heat flux g,. Despite the fact that both ends of the
conducting rod are at the same local-equilibrium absolute tem-
perature T, a heat flow g, from the left to the right is predicted
to occur because 6 in the nonequilibrium right-hand side system
is less than T.

temperature of the system at equilibrium. According to
(18), one should observe in the steady state a heat flux
given by

g, =M, (6—T)/d (19)

along the connecting rod. Here A,, is the thermal con-
ductivity of the thermal conductor connecting both sys-
tems and d is the separation between them. In contrast,
in the local-equilibrium theory g, should be given by
g, =A,,(T—T)/d =0, because it is assumed that both
ends of the connection are at the same local-equilibrium
temperature 7.

Expanding 6—T up to second order in q, and taking
into account that for system 1, @=0, and in system 2 the
flux q is directed along the y axis, we can write (19) as

g, =X, /d)yT?q;] (20)

with y = 1(3a/3u ).

The measurement of such a heat flux g, between the
two systems at the same local-equilibrium temperature T
would offer strong support in favor of the generalized ab-
solute temperature 8. However, a direct realization of
such an experiment would require one to know whether a
thermometer measures 6 or T [45]. In fact, according to
our reasoning, the thermometer measures 6 rather than
T, because the condition of no heat exchange between
two systems (or between a system and a thermometer) is
that they are at the same 6 rather than at the same 7.
However, to avoid this problem, one may devise a micro-
scopic interpretation of the experiment which does not
require the use of a thermometer.

Suppose that the two systems in Fig. 1 consist of an
ideal monatomic gas, and study the power delivered to
both ends of the connecting rod. If the power arriving at
one side is higher than the power arriving at the other
side, it may be concluded that heat will flow from the end
receiving more power to the end receiving less power, un-
less the bar is insulating. We will show, in a qualitative
way, that even if both ends of the rod are at the same
local-equilibrium temperature, the end corresponding to
the nonequilibrium system is receiving less power than
the end at equilibrium; as a consequence, heat will flow
from the latter system to the former one, confirming our
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previous macroscopic prediction.

Consider the kinetic energy transferred to the wall due
to collisions of particles whose trajectory makes an angle
*¢ with the normal to the surface of the wall (Fig. 2). A
fraction of this energy will be delivered to the rod if it is
heat conducting. The energy arriving at the wall will be
proportional to a(d)[n T,V T, +n_T_+/T_],
where a (¢) is a geometrical factor depending on the an-
gle ¢ and on the energy transfer coefficient between the
molecules and the rod; n ,n_ and T, ,T_ are the num-
ber densities of particles and the temperatures at the posi-
tions shown on Fig. 2. Indeed, nV'T is proportional to
the flow of particles colliding with the wall (density times
speed) whereas T is the mean energy carried per particle.
Thus nTV'T is the flow of energy carried by the particles
colliding with the wall. As is well known in Kinetic
theory, one may fix the values of the density, barycentric
speed, and temperature independently of the value of the
heat flux, so that neither n nor T are affected by the pres-
ence of the heat flux.

In the gas at equilibrium, n and T do not depend on the
position, so that n, =n_=n and T, =T_=T. In the
nonequilbrium system n (y) and T (y) depend on the posi-
tion, but the product n (y)T (y) must be independent of y,
in order to avoid convective motion (constant-pressure
condition); thus n,T,=n_T_ and T, =T+8T,
T_=T—8T, with 8T =IVT sing, [ being the mean free
path (in this qualitative discussion we simply assume that
particles coming from longer distances will not arrive at
the wall due to collisions with other particles). Thus the
energy transferred to the wall per unit time will be, in the
equilibrium system, and for a given angle ¢.

J$)=2a($)nTV'T . Qn
In the nonequilibrium system it is given by
J2U$)=a(d)nTV'T {[1+(8T /T)]'/?
+[1—(8T/T)]"%} 22)
or, expanding up to second order in 8T /T,
J$)~2a($)nTV'T [1—L8T /T)?]
=2a(¢)nTV'T[1— LIV InT)Xsing)?] . (23)

Thus J.°%¢)<J;%#) and the net energy flow may be
found by integrating (21) and (23) for —7 <¢ <, so that

AJ,=J1N9—J=—(A/4)I%V InT)> (24)

FIG. 2. The power delivered through molecular collisions to
ends of the rod is less in the presence of the heat flux g, than in
the equilibrium system.

with
A=nTVT [" a(¢p)sin’pds .

Integration over all angles ¢ from — to 7 shows that
the energy per unit time arriving at the end of the rod in
contact with the system at equilibrium is higher than at
the other end, in contact with the nonequilibrium system;
this result has been established despite both systems be-
ing at the same local-equilibrium temperature, meaning
that they are characterized by the same mean molecular
energy.

This interpretation shows that the nonequilibrium tem-
perature 6 is not contradictory with the concepts of
local-equilibrium temperature and ideal-gas temperature
used in nonequilibrium computer simulations. The latter
is related to the internal energy of the ideal gas, but it is
not exactly the temperature measured by the thermome-
ter, because, as we have seen in this section, two systems
at the same T, but one in equilibrium and the other one
out of equilibrium, have a net exchange of heat. The
difference between 6 and T is of second order in [V InT,
so that T and 0 are identical in a first-order theory, i.e., in
usual hydrodynamics and in classical irreversible thermo-
dynamics. However, the difference between both con-
cepts is of interest in second- and higher-order develop-
ments of the kinetic theory of gases as, for instance, in
the Burnett and super-Burnett approximations [46,47].

V. EVALUATION OF THE NONEQUILIBRIUM
TEMPERATURE

In this section an estimation of the order of magnitude
of the difference T'—6 is carried out. For a monatomic
ideal gas one has, according to the kinetic theory of gases
[46], A=3(k*Tn /m)t, so that 7v /AT?=2/(5pT) with
p =nkT. Then, by integrating relation (17), the expres-
sion for the entropy up to second order in q is

s(u,q)=s,,(u)—[1/(5p*T)]q-q . (25)

For a metallic conductor, the heat is carried out by elec-
trons, and one has A=(72/3)(k2Tn /m)r from which fol-
lows (1v /AT?)=3/(7*k*T>n?) so that the entropy is

s(u,q)=s.4(u)—[3/(2m*k>T*n?)]q-q . (26)

Taking the derivatives of (25) and (26) with respect to u
at constant q and bearing in mind that du =¢,dT with c,
the specific heat [¢,=3k /2m for monatomic gases and
¢, =(m*kT /2meg) for an electron gas in metals] one ob-
tains the respective explicit expressions of the generalized
temperature, namely,

67 '=T""+2(m/n%3T*q-q, 7
0 '=T"'+(9/7*)mep/n*k*T)q-q, (28)

where m is the mass of the molecules in (27) or the elec-
tron mass in (28), n the number particle density, €5 the
Fermi energy of the metal, and k the Boltzmann constant
(k=1.38X10"2 J/K).

To estimate T — 0, assume, for instance, that the sub-
systems are composed of CO, at 300 K and 0.1 atm.
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Then m =4X1072% kg and n =2.6X10%* particles/m’
and we have from (27) T —6=9.6 X IO”Iqu, with g, ex-
pressed in W/m’K. Thus, for g, of the order of 10°
W/m?K, the effective temperature difference 7T —6
would be of the order of 9.6 X 1072 K. If the two subsys-
tems are made of copper (n=8.45X102? cm™3,
Tr=€ep/k=8.12X10* K, m=9.1X10"% kg), the
difference T — 6 for a temperature gradient in the y direc-
tion of the order of 10* K/m would be of the order of
2X 1073 K, less than for the gas of the previous example.

The nonequilibrium entropy for thermal radiation un-
der a heat flux q is given by

S( U, V,q)=%a 1/4U3/4Vl/4_%a 1/4c *2V9/4U—*5/4q2 ,
(29)

where the first term is the usual local-equilibrium entro-
py. This is obtained from (6) by taking into account that
k=§c 24T>r, where c is the speed of light in vacuum and
a the blackbody constant. Differentiating this expression
with respect to U at constant ¥ and q yields

67 '=T 1+ 82U ¥?q"] . (30)

In order to roughly estimate this nonequilibrium temper-
ature 6 we assume that at the surface of a star the radia-

tion flux is given by the Stefan-Boltzmann law,
g=+c(U/V), and then expression (30) yields
6~ '=1.031T . Thus the modification in the tempera-

ture in this region is of the order of 3%. On the other
hand, substitution of the above expression for g into (29)
and use of the definition of the local-equilibrium tempera-
ture T in terms of internal energy U=aT*V, yield for the
entropy of nonequilibrium radiation S=1.31aT3V, a
value which is less than the corresponding value for the
entropy of the radiation in equilibrium at the same tem-
perature, S =?aT3 V. Rather than being related to the
energy content, temperature 0 refers to the rate of change
of energy with entropy at constant q (see Fig. 4).

VI. LAGRANGE MULTIPLIERS AND
INFORMATION THEORY

Information theory is a field where the question about
a nonequilibrium absolute temperature arises in a natural
way. One could assume, for instance, a homogeneous
system with a total internal energy U and a given heat
flux Q. In this case, maximum-entropy arguments lead
for the probability distribution function to an expression
of the form

f=Z'exp[-BH—vJ], 3D

where Z is the partition function, H the Hamiltonian of
the system, J the microscopic heat flux operator, and 8
and y Lagrange multipliers determined by the conditions

(H)=U, (J)=Q . (32)

In equilibrium statistical mechanics the Lagrange multi-
plier B is identified as B=(kT)”!, with T the absolute
temperature; therefore it is logical to ask whether in
nonequilbrium S may be identified as 3 =(k6)"!, with 0
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the generalized absolute temperature. From a formal
point of view, the latter interpretation coincides with
67'=(3s/du), To check if it is physically realistic to
interpret B as a quantity proportional to the inverse of a
temperature, we consider the problem of heat propaga-
tion in a harmonic chain treated by Miller and Larson
[24], and we propose a possible experiment analogous to
the previous one discussed in Sec. IV.

In a harmonic chain, the phonon mean free path is
infinite, so that the energy flux along it is not proportion-
al to the temperature gradient but to the temperature
difference between the reservoirs located at its ends. To
avoid complications associated with the boundary condi-
tions, Miller and Larson eliminate the boundaries by con-
sidering that chain ends are linked together to form a
ring. In this case, the system turns out to be a ‘““supercon-
ductor” of thermal energy, because of its infinite heat
conductivity: a heat flux lasts indefinitely, without ap-
pealing to boundary reservoirs to sustain it.

The system consists of a linear chain of N particles,
each of mass m. Each particle is connected to its nearest
neighbors by Hookean springs with stiffness k. The Nth
particle is connected by a spring to the first particle, so
that the chain forms a closed ring. One may choose a
system of units where the mass is expressed in terms of
m, time in units of (m/k)'/2, and energy in units of
(h /2m)k/m)V2, h being Planck’s constant.

The Lagrange multipliers 8 and y may be explicitly
found in terms of U and Q through the constraints (32),
which may be expressed by

U=(H)=—-0InZ/3B, Q=(J)=—08IZ/dy . (33)
The final result for the partition function Z reads [24]
Z=[e(1—x)*]¥ (34)

with e=U/N and x =Q/e. In particular, 8 and y are
given by

1+x?

A+xt 2N x|
e(1—x2) €

. (35)
1—x?

B:
For x =0 one recovers the usual equilibrium results,
whereas for x2—» 1, both B and y diverge.

The entropy and the generalized Lagrange multiplier 8
deserve special comments. According to (31) and the
usual relation

S=—k [finfdly_,, (36)

where dI'y _| is the volume element of the phase space,
the entropy may be written as

S=k(BU+yQ+InZ) . (37)

In the thermodynamic limit when N tends to infinity, the
entropy per particle turns out to be, in view of the expli-
cit form (34) of Z,

s= lim (S/N)=k[1+Ine+In(1—x?)] . (38)
As expected, the presence of the heat flux modifies the
value of s. For small values of the heat flux, (38) reduces
to
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5(6,0)=s¢,(€)—(k/e$)Q* . (39)

The dependence of this expression on the heat flux Q was
obtained from arguments drawn from information
theory; it provides a further corroboration of the basic as-
sertions of extended irreversible thermodynamics, stating
that the entropy is a function of the heat flux out of equi-
librium.

If the Lagrangian multiplier B can be interpreted in
terms of a generalized absolute temperature 6 defined as
0=1/(kp), it follows from the definition 6~ !=(ds /9€)g
that

0 1=T"'+(2k /€*)Q?, (40)

indicating that the generalized temperature 6 differs from
the usual local equilibrium T by terms of order Q2. This
is a supplementary argument that supports the introduc-
tion of a generalized absolute temperature.

To check the physical content of 6, an experiment
analogous to that exposed in Sec. IV could be considered.
A harmonic chain ring is at equilibrium with energy U
and another identical chain has the same energy U but it
sustains a nonzero energy flux J (Fig. 3). If both systems
are put in contact through a thermal conducting string,
the classical theory predicts that no heat will flow be-
tween them because they both have the same local-
equilibrium temperature T=U/kN. In contrast, EIT
predicts that some heat should flow from the first (equi-
librium) system to the second (nonequilibrium system),
because the generalized temperature of the latter is less
than that of the former.

It is interesting to calculate the energy distribution in
the final steady state when no more energy flows between
systems 1 and 2. In this situation, one has, according to
EIT,

6,=6,
or, equivalently,

Bi=8, (41)

rather than T, =T,, but recalling that B is related to the
energy per particle by means of the first of expressions
(35), one may write

1 2

FIG. 3. Two circular harmonic chains are thermally connect-
ed. Both chains are assumed to have the same energy per parti-
cle (i.e., the same local-equilibrium temperature T). However, a
steady heat flux Q flows along one of the chains, so that the gen-
eralized absolute temperature 0 in this chain is less than 7. As
a consequence, some heat is predicted to flow from the equilibri-
um to the nonequilibrium system.

1 1+(Q/€,)? _1

— ) (42)
€ 1-(Q/¢)? &

Since the total system is isolated, one has €,+¢€,=¢,
where €=€ jnitiai T €2 initiar  UP to the second order in
(Q /€), Eq. (42) yields, in the steady state.

e, =(e/2)[1+4(Q /)],
€,=(e/2)[1—4(Q/e)] .

When Q =0, €,=€,=€/2, but for Q0 the steady state
does not correspond to T, =T,.

It must be noted that an analysis of energy transport in
continuous systems based on maximum entropy argu-
ments was carried out by Robertson [18] and Luzzi and
co-workers [21]. In these works, it is found that the heat
flux is related to the gradient of the Lagrange multiplier
B, which then does play the role of a temperature, as the
heat transfer between two bodies will be zero only when B
has the same value for two systems.

(43)

VII. MICROSCOPIC INTERPRETATION

The definition of temperature in kinetic theory has
been also widely discussed in the case of dense gases with
intermolecular interactions [25-28]. Two definitions of
temperature are generally used: the first one relates the
temperature to the molecular kinetic translational ener-
gy, the second expresses the temperature in terms of the
total molecular energy. The two definitions yield the
same result in equilibrium, but out of equilibrium they
differ by quantities which are proportional to the velocity
gradient and they lead to different values for the bulk
viscosity. In the present work, where the velocity gra-
dient is assumed to vanish, these corrections do not ap-
pear, but we think it is worthwhile to mention them. It
must be added that Garcia-Colin and Green [28] have
shown that the two descriptions yield equivalent results
at the macroscopic level.

To our knowledge not much attention has been paid to
the definition of absolute temperature as the derivative of
the entropy in dilute monatomic gases in nonequilbrium
situations [29]. In this section we show that expression
(2) of entropy is confirmed by the kinetic theory of gases
in the 13-moment Grad approximation [46]. In the kinet-
ic theory of monatomic gases, the temperature is usually
defined through the expression u =3kT/m, u being the
mean kinetic energy per unit mass, whereas the thermo-
dynamic definition (1) is not used. It is worth noting that
the notion of a local-equilibrium absolute temperature T
related to the mean kinetic energy does not preclude the
possibility to formulate other definitions of the tempera-
ture. To show that let us ask the following question:
What is the energy u* of a gas in equilibrium to which
corresponds the same entropy as a gas with energy u but
subject to a heat flux q? In other words, we seek an ener-
gy u* such that

Seq(u*)=s(u,q)=s.(u)—(a/2)q"q, (44)

where expression (6) for the generalized entropy has been
used. The expression for s(u,q) used in (44) may be de-
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rived from the kinetic theory of gases as follows. In the
Grad approach, the nonequilibrium distribution function
under a heat flux q is given by

2
gp—k’;‘—ﬁ[gmcz—;kﬂc-q : (45)

Introduction of this expression into the Boltzmann for-
mula (3) for the entropy yields, as indicated in Sec. V,

m
S =pPSee— —5q'q - (46)
PS=PSeq SpkT? qq
Expanding s.,(4*) up to the first order in u* —u, one
obtains

0Seq

(u*—u)+--- (47

Seq(u*)=seq(u)+

and after comparing with (44), it follows that
u*=u—1Taq-q (48)

with 7'=[(3s.,/0u ) —u*]” I, Since for a monatomic
gas, energy and temperature are related according to the
expression u =3(k /m)T, relation (48) can be formulated
in terms of the temperatures

T*=T[1—(m/3k)aq-q] . (49)

The meaning of the temperature T* is the following. We
know from Eq. (44) that in the nonequilibrium state with
energy u and heat flux q, the gas is characterized by less
entropy and then more order, than in equilibrium with
the same energy. Thus not all the energy u contributes to
the molecular disorder; the part of ¥ which contributes to
this molecular disorder is precisely u*, so that T*/T
expresses the fraction of internal energy which really con-
tributes to the molecular disorder.

It is important to realize that the temperature T* is
not exactly equal to the absolute nonequilibrium temper-
ature 6 given by (27), which can be rewritten as
6~'=T""[1+(m /k)aq-q]. In Fig. 4 are sketched s, (1)
and s(u,q) in terms of u, and 6~Y, T7! and T* ! are
represented as the slopes of the curves at the points A4, B,
and C, respectively. From (27) and (49) it follows that for
small ¢, T7'<T* '<6~'. It must be noted that, ac-
cording to what has been said earlier, T is related to the
internal energy by means of the definition (1), 6 is the
temperature measured by the thermometer, and T* is re-
lated to the fraction of the internal energy which contrib-
utes to molecular disorder.

The value of the generalized temperature depends on
the constraints acting on the system. For instance, the
value of the temperature calculated at constant heat flux
q is different from the value at the constant-temperature
gradient. To be explicit, consider a monatomic ideal gas
with purely repulsive power-law potentials. For this sys-
tem, one has 7=aT ~°, with a a constant and 0<b <4,
the limiting values b =0 and b =1 corresponding, respec-
tively, to Maxwell molecules and to hard spheres. The
entropy in the steady state takes the form

5 =50~ (7/2pAT?)q-q=5.,,— (TA/2pT*)VT-VT .  (50)
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FIG. 4. The local-equilibrium entropy S.,(U) (upper curve)
and the generalized equilibrium S(U,q) (lower curve) are
shown. The three temperatures 6, T, and T* mentioned in the
text are given by the inverse of the slopes of the curves at points
A, B, and C, respectively.

Now we take into consideration two alternative
definitions of the generalized temperature, namely,

35 as
Jou ou

6~ '= = (51)

b

vT
which correspond to two different choices of independent
variables. In the framework of the kinetic theory, the
first choice is related to the Grad method and the second
one to the Chapman-Enskog expansion. The Grad
method is more suitable than the Chapman-Enskog ex-
pansion for situations characterized by fast changes of
variables describing the system. As in both developments
the problem of a nonequilibrium temperature arises, our
aim here is restricted to a comparison of these general-
ized temperatures emerging in two different physical situ-
ations, namely, q or VT are kept fixed during the change
of internal energy. Recalling that kz%(szn /m)T, ex-
pression (50) reads

s =5.4—(5n%kT?)q-q
=Seq—(5k’a?/4m)T T2V T VT . (52)

Observe that when s is written in terms of q does not de-
pend explicitly on T and, as a consequence, is independent
of the particular form of the intermolecular potential. In
contrast, expression s (u,VT) at constant VT is related to
the intermolecular potential through the parameter b. By
differentiating s (u,VT) at constant VT with respect to u
we obtain

O* '=T"1+(1+2b)(7A/2pc, T*)VT-VT . (53)

For Maxwell molecules (b =0) and for hard spheres
(b =1), one has, respectively,

T '+ (7A/2pT?,)VT-VT (Maxwell)

*—1__
o T~ '+(rA/pT?,)VT-VT (hard spheres) . (5

4)

Similar remarks can be repeated concerning the definition
of the nonequilibrium temperature in systems under
shear, for which the EIT entropy is [34,35]

5 =Seq —(7/29Tp)P3, =Seq —(m/2Tp)y?,
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where P, is the shear stress and 7 the shear rate, related
to P, by P,=7y. In a monatomic gas, one has
n=nkT, so that

§ =5¢q—(2n2kT?m) 7 P} =5 —(kT?/2m)p? . (55)
The corresponding temperature is
o-1= | | 1 (n%TOme,)" P, (56)
au P12

whatever the form of the intermolecular potential. In
contrast, at constant 7 one has

6* '=T"1+(2bk72/2¢,Tm)y> (57)
so that 8* =T for Maxwell molecules, but
6* '=T"'+(k7*/2c,Tm)y* (58)

for hard spheres. Brey and Santos [29] have used the
definition 6* at constant y in their analysis of the
influence of the shear rate on the nonequilibrium temper-
ature, and they found that 6* =T for Maxwell molecules.

VIII. CONCLUDING REMARKS

We recall here some results obtained by other authors
on the definition of a nonequilibrium temperature. Re-
garding the difficulties of finding a rigorous and unique
definition of entropy in nonequilibrium, Meixner [6-8]
tried to avoid the use of the entropy in his formulation of
an entropy-free thermodynamics. However, he was not
able to avoid the introduction of a dynamical tempera-
ture by means of a kind of entropy flux in the Clausius in-
equality. No operational definition of the dynamical tem-
perature is given, but only its existence is assumed. The
values of the dynamical temperature on the surface of a
part of the body are supposed to be given by the tempera-
tures of fictive heat baths in contact with the surface of
the body. The fundamental inequality of this thermo-
dynamics is then written as

Jatl(Tg' =T Vi +p~'q-VT7']20 (59)

with T the dynamical temperature and T, the local-
equilibrium temperature. Equation (59) follows from the
Clausius inequality in which the entropy flux from the
equilibrium heat bath to the nonequilibrium system is
given by q/T. The difference between T and T, is ex-
pressed by a constitutive relation as a function of u, v, u,
and q. However, to our knowledge explicit expressions
for this difference have not been worked out [7]. In our
case, expressions (27), (28), and (30) are not particular ex-
amples of a general constitutive equation but equations of
state in the entropy representation of some model systems
[34].

Miiller [9] introduced a nonequilibrium entropy 7 de-
pending not only on the empirical temperature 6, but
also on its time derivative. Accordingly, he defined the
coldness A as the derivative of the entropy with respect
to internal energy. Such a coldness depends on the

1047

empirical temperature and on its time derivative, that is,
A=A(09,0'e) and it must be continuous at the wall of a
perfect thermometer. For steady states, in which the
time derivative of the empirical temperature is zero, the
coldness reduces to the usual temperature.

Keizer’s approach [12] starts from the analysis of fluc-
tuations in nonequilibrium steady states. He defines an
entropy S by using the Einstein relation between the
second moments of fluctuations and the second
differential of the entropy, namely,

(Bu du ) ~exp[(82S)/2k] . (60)

If the second moments of the fluctuations depend on
nonequilibrium parameters (as, for instance, on the mean
heat flux applied to the system), the entropy S defined by
(60) will also depend on the fluxes and therefore its
derivative with respect to the internal energy will also de-
pend on the fluxes. However, for the case of heat con-
duction. Keizer takes the classical Fourier law, so that
he has not considered modifications to the entropy in
simple heat conduction. Accordingly, he has identified in
this case the local-equilibrium temperature with the
nonequilibrium temperature. In principle, the difference
between both temperatures could be seen by experimen-
tally measuring the fluctuations in a nonequilibrium
steady state.

Temperature is not the only thermodynamic quantity
to contain nonequilibrium corrections: they should also
arise in the pressure or in the chemical potential. These
corrections may be of especial interest, because of their
consequences on phase diagrams, electromotive forces,
and coligative quantities in general. Keizer has studied
theoretically and experimentally the corrections to the
electromotive force in a nonequilibrium situation [47].
The experimental consequences of the nonequilibrium
contributions to the chemical potential in polymeric solu-
tions have been analyzed in the framework of extended
irreversible thermodynamics [48]. In both works, the
corrections turn out to be measurable.

In the case of mixtures (electrons and ions, or matter
and radiation) the problem of temperature measurement
presents other kind of subtleties, such as the fact that
different thermometers may respond to different constitu-
ents and therefore may indicate different temperatures.
In contrast, our analysis has been concerned with the
more basic concept of the definition of temperature in the
simplest situations, for instance, in a single-species mona-
tomic gas.

In summary, in the present paper we have emphasized
the need of a more thorough discussion of the concept of
temperature in nonequilibrium situations, and contribut-
ed to this aim with a special, but explicit, model which is
helpful in obtaining expressions for several definitions of
absolute temperature in nonequilibrium steady states.
We have pointed out that (8S /dU) is not equal to the in-
verse of the local-equilibrium temperature when second-
order nonequilibrium terms are considered into the none-
quilibrium entropy. We have emphasized that whereas T’
retains its meaning as the measure of the mean transla-
tional kinetic energy in nonequilibrium states, it is 6 rath-
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er than T the temperature which acts as a potential for
heat transfer in nonequilibrium situations. The difference
between 0 and T may be attributed to the fact that the
nonequilibrium state has less molecular disorder than the
equilibrium state. Also we have examined some specific
examples which could be amenable to dynamic computer
simulation and helpful in deciding which of the several
temperatures is measured by a thermometer immersed in
an ideal gas.
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FIG. 2. The power delivered through molecular collisions to
ends of the rod is less in the presence of the heat flux g, than in
the equilibrium system.



