PHYSICAL REVIEW E

VOLUME 49, NUMBER 1

Self-organized criticality in computer models of settling powders
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We present numerical simulations of powder flow in the regime of vacancy hopping, under gravity, in
two dimensions, for simplicity. Bulk properties such as density and angle of rest are measured and
correlated with the microscopic parameters of the model. Avalanches are identified as the damage
spreading from a single new vacancy introduced. They are found to exhibit universal power-law distri-
butions of both total size S and maximum height reached H, with Py(H)~H "#¥%%0 and
Ps(S)~8§ 1341001 At height h, the average width of avalanches (reaching H >h) scales as
(w)~hO4109 consistent with the assumption that S~ Hw (H). We also show that the distribution of
w at fixed h can be scaled as a universal function of w/{w ). The average lateral deviation of the core of
the avalanche from the avalanche origin, x (h), scales as {|x|)~h%3*%%  We have investigated the
correlation between successive avalanches precipitated from the same site. Both their survival to any
given height and their horizontal displacements at fixed height are strongly correlated—implying that
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the critical behavior of the avalanches is dictated by organized structure in the powder.

PACS number(s): 05.40.+j, 05.70.Jk, 46.10.+ 7

INTRODUCTION

In recent years it has become clear that a wide range of
irreversible systems can exhibit stable critical behavior in
that they are naturally driven to a regime of scale-
invariant and universal behavior without fine tuning of
external parameters. Early examples were in growth
models such as diffusion-limited aggregation [1] and col-
loidal (cluster-cluster) aggregation [2,3] and have been
confirmed by experiment [4—6]. In the context of stick-
slip systems such as sandpile surfaces [7] and earthquake
models [8], this was interpreted in terms of self-organized
criticality (SOC), highlighting the contrast with equilibri-
um critical phenomena which depend unstably on exter-
nal parameter values.

Bak, Tang, and Wiesenfeld (BTW) have shown in a toy
model that the surface of a powder can exhibit SOC when
driven towards the angle of rest by incrementing the local
slope. In particular, BTW observed universal and scale-
invariant (i.e., power law) behavior for the size and dura-
tion of surface avalanches resulting from a single local
addition to the pile [7].

Several groups have looked for these effects in real
powders. Held et al. observed a power-law distribution
for surface avalanche sizes in small, circular sandpiles [9].
Larger sandpiles, however, were characterized by period-
ic large avalanches caused by slope hysteresis. In an un-
published study, Rosendahl and Rutledge [10] also used a
circular pile and observed a power-law distribution of
smaller avalanches between the larger avalanches. On
the other hand, Liu, Jaeger, and Nagel [11] and Evesque
and Rajchenbach [12] used planar setups and did not ob-
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serve any evidence of SOC. Liu, Jaeger, and Nagel have
noted that in sufficiently small sandpiles, the motion of a
single grain can bring the system from a slope greater
than the maximum angle of stability to a slope less than
the angle of rest. They have suggested that apparent
SOC in the data of Held er al. data stems from this lack
of a metastable state [11].

In this paper we consider the related question of
whether the interior of a powder organized into a critical
structure as it settles, in our case under gravity, and
without any grain adhesion, plasticity, or inertial effects.
Our model is kinematic, with grains falling one step down
when they are insufficiently supported, thereby propaga-
ting a corresponding vacancy upwards. Experiments sug-
gest that kinematic models are more successful than plas-
ticity models at describing the velocity distributions of
coarse powders, although kinematic models break down
for fine powders [13]. Kinematic models have also had
triumphs in predicting flow patterns around obstacles
[14], and films of particle motion reveal the unsteady
motion predicted by kinematic models [15].

Our results mainly concern the flow due to vacancies
introduced from below, corresponding to the ‘“hour
glass” problem. However, they are also relevant to the
question of how a powder selects its resting density,
which various authors have previously investigated in
terms of models of mechanical shaking [16,17].

SIMULATION MODEL

Our system consists of a vertical, two-dimensional
“box” of unit square grains with periodic boundary con-
ditions on the side walls. The vertical coordinate of the
grains is discrete, so that they are confined to horizontal
layers. However, grains can lie anywhere along the hor-
jzontal axis, so long as they do uot overlap. Initial
configurations were generated by laying down grains
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along each layer with spacings drawn from a uniform dis-
tribution, whose range determines the starting density.

The dynamics are that grains fall if they are
insufficiently supported and there is room for them to
move. Specifically, at each time step each grain will fall
into the row below if the following conditions are
satisfied:

(1) Instability condition: the grain overhangs a void in
the row below it by more than the critical overhang ¢;

(2) Dynamical accessibility: There is space in its
present row for the grain to slide to overhang the void by
100%;

(3) Volume constraint: The void is wide enough to ac-
commodate the grain falling from there; and

(4) Competition: if the void is only wide enough to ac-
commodate one grain, the grain must overhang that void
by more than any competing grain.

The model is thus specified and simulated in terms of
the grains, but in practice the effect is that sufficiently
large vacancies are mobile upwards. A typical
configuration is shown in Fig. 1, together with an indica-
tion of the ““avalanche” of grains which would move fol-
lowing the removal of a particular grain to create a new
vacancy in the bottom layer.

CONSTITUTIVE PROPERTIES

The critical overhang parameter determines a natural
density of the powder p*(€), towards which initially un-
derdense samples spontaneously settle [see Fig. 2(a) and
inset]. The flow of vacancies upwards during this process
effectively makes a dynamical selection of powder
configurations, except in the (less disturbed) bottom few
layers. In order to minimize the effect of these less dis-
turbed layers on avalanche statistics, the bottom two lay-
ers of the sample are removed once the sample has conso-
lidated. We also investigated further consolidating our
model powders by successively removing grains from ran-

FIG. 1. Typical (but small) configuration of the semilattice
powder model, in which no grain can overhang a larger void by
more than €=0.01 grain lengths. The avalanche of grains that
would move in response to the grain in the bottom row being re-
moved is shown in outline.
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FIG. 2. Sample density vs time, starting from an initial densi-
ty of (a) 0.6 (underdense) and (b) 0.9 (overdense) for e=0.01.
Note the spontaneous settling of the underdense sample during
the first 30-50 time steps. Subsequent “equilibration” of both
samples is driven by removal of grains from the bottom row.
Inset: “natural density” p* attained, as a function of the critical
overhang €.

dom positions along the bottom row when no grain could
otherwise move, thus driving a vacancy flux throughout
the sample. However, this did not affect the height or
size distributions. While we always used initially under-
dense samples, it is interesting to note that if vacancies
are driven through the sample in this fashion, even ini-
tially overdense samples eventually approach the natural
density p*(e€) [see Fig. 2(b)].

Figure 3 shows a consolidated sample (without period-
ic boundary conditions) driven to exhibit the angle of rest
of its surface by first removing the right-hand wall to ex-
pose an unstable “cliff” and subsequently removing the
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FIG. 3. Sample (¢=0.01) driven to exhibit angle of rest by
removal of bottom right-hand grain whenever it would other-
wise hkave been stable. The inset shows the measured angle vs €,
for samples approximately 100 grains high, with error bars
representing the full spread of measured values rather than the
uncertainty in the mean.
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rightmost grain in the bottom layer when no other could
move. Measured over a height of 100 grains, the angle of
rest varies systematically with the critical overhang but
also shows significant scatter at each value.

SINGLE-AVALANCHE STATISTICS

An avalanche is defined as the totality of grain move-
ments in an otherwise stationary sample ‘“‘nucleated” by
the removal of one grain from the bottom layer. We in-
vestigated the possibility of universal scaling properties of
avalanche statistics, generally regarded as the hallmark of
SOC. Figure 4 indicates how the total height H, width
profile w(h), and lateral wandering x (4) are defined for
individual avalanches, the size .S being defined as the total
number of grain movements. In collecting statistics over
a large number, successive avalanches were nucleated at
random grains along the bottom layer; after each
avalanche the loss of one grain from the sample was com-
pensated by creating one new grain at a random point
along the top row of the box and allowing it to fall to a
stable position.

Figure S shows
avalanche heights,

the cumulative distribution of

C,(h)=3 P,(H),
H=h

interpreted as the probability of an avalanche reaching at
least height h. The same power-law behavior

Cy(h)~h'"®, a=1.4710.02,

is consistent with the data for three quite different values
of the critical overhang, suggesting universality. The cor-
responding distributions by size are shown in Fig. 6, con-
sistent with a universal power law

C.(s)~s'"P  B=1.3440.01 .

Figure 7 shows the average avalanche width (w) vs
height A, averaged over only those avalanches reaching at
least height A, and supports a universal power law,

(w(h))~h?, y=0.46+0.09 ,

suggesting that the avalanches are statistically self-affine
in shape. In this case we have further evidence that a
true scaling behavior applies from the superposition of
the distributions of w for different heights 4 and overhang

x(h)
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FIG. 4. Definitions of avalanche height H, width w (), and
wander x (h).
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FIG. 5. Number of avalanches C,(h) reaching at least height
h, both on logarithmic scales (base 10). The data are for three
different values of critical overhang (as shown), from samples at
initial density 0.6 over a 200X 200 size grid, collected over ap-
proximately 3600 avalanches each. The straight line corre-

sponds to the universal power law
Cy(h)~h'"", a=1.47%0.02,

consistent with all three sets of data.

parameters €, as shown in Fig. 8. The scaling function
appears consistent with the simple exponential form

P (wlh,e)=(w),lexp(—w /{w),,) .

The power laws observed above are consistent with a
simple scaling law based on the assumption that
avalanches are compact, so that typically

S~H{(w),~H'""",

whereupon it follows by comparing the cumulative distri-
butions that
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FIG. 6. Number of avalanches C(s) reaching at least size s,
samples as per Fig. 5. All are consistent with the power law

C,(s)~s'"P ., B=1.34+0.01,

as shown.
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FIG. 7. The width w (k) at height h averaged over the first
200 avalanches, samples as per Fig. 5. All averages are restrict-
ed to avalanches reaching h. The straight line indicates the
universal power law

(w(h))~h", y=0.4610.09 ,

which is consistent with all of the data.

a—1

B—1

Our independent estimates for the two sides of this equa-
tion are 1.46+0.09 and 1.38+0.07, respectively.

Also associated with an avalanche is its flux j(h)
defined as the net flow of grains across the row at height
h. However, for the density of the powder to be
preserved, the average number of grains crossing each
row per grain removed from the bottom must be precisely
unity. Therefore, if as for the width, we restrict averages
at height & to avalanches reaching at least that height
and we have

(j),Chu(h)=1

1+y=
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FIG. 8. Overlaid distributions of reduced width w/{w) for
various values of the height h and critical overhang parameter
€. All samples were size 200 X 200.

and, hence,
(] >h Nha_l .

If the avalanche flux were to be interpreted as the width
w (h) falling through the order one row, then it would fol-
low that

<j>h~<w)h ’

which would give us a second scaling law

a—1=y.

This is consistent with our simulation results.
We also measured the lateral wandering x (k) of the
avalanches and found

(|x(m)|)~n", 7=0.3310.09,

as shown in Fig. 9. This gives n—y = —0.13%0. 13 (tak-
ing their errors as independent), compatible with n=7y
but favoring the peculiar result 7 <y. While it might be
expected from our definitions that typically |x|<w, a
smaller exponent 1<y would be more surprising. At
face value it suggests that as avalanches grow large and
wide they grow increasingly symmetric about the vertical
line through their nucleation point. Note, however, that
our values of |x (k)| are not particularly large compared
to unity and so the scaling of this quantity might be
suspect.

Finally in this section, we note that measurements of
avalanche lifetime, defined as the total number of time
steps for it to be complete, showed this to be almost iden-
tical to avalanche height, as might be expected for our
dynamics.
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FIG. 9. The lateral wandering x (h) at height 4 averaged over
the first 200 avalanches, samples as per Fig. 5. All averages are
restricted to avalanches reaching h. The power law

(x(m)|)~h", $=0.33+0.09

is consistent with all of the samples.
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FIG. 10. Height correlations between pairs of successive
avalanches started from (nearly) the same place. Plotted is the
probability for the second of an avalanche pair to reach height 4
conditional on the first having done so, P(2]1), compared to the
unconditional probability for it to do so, P(2). In the absence
of correlations, this ratio would be unity. Data are taken from a
sample at initial density 0.6 over a 200X 200 size grid, collected
over 400 avalanche pairs.

CORRELATION MEASUREMENTS

The power-law “survival” probabilities of avalanches
and also their width scaling suggest that nontrivial struc-
ture is organized in the powder under vacancy flow. To
test this interpretation we investigated the correlation be-
tween pairs of successive avalanches nucleated at (almost)
the same location along the bottom layer.

Figure 10 shows the probability for the second of an
avalanche pair to reach height 4 conditional on the first
having done so, P(2|1), compared to the unconditional
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FIG. 11. The normalized correlation of the lateral wander-
ings of avalanche pairs at height 4,
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Data as per Fig. 10.

probability for it to do so, P(2). There is clear enhance-
ment by a factor of 1.4. For cases where both avalanches
did reach height A, Fig. 11 shows the normalized correla-
tion of their lateral wandering at height A,

((xl—xl)(xz—x2)>ﬁ

clx,x,)=
(X1 =X Dems( X2 = X2 )emg

and shows correlation of order 50%.

Taken together, these results clearly show that the
scaling behavior of the avalanches is dictated by the
structure selected in the powder, in a manner which is to
some extent persistent. The powder does not behave as a
simple, uncorrelated random medium. Equivalently, one
cannot take the vacancies as performing a biased random
walk upward [18-20].

DISCUSSION

Our two-dimensional model shows all the hallmarks of
self-organized criticality for the bulk structure of a
powder consolidated by vacancy flow. In particular, the
avalanches show universal, self-affine scaling of their
shape and power-law distribution by size.

The power law for avalanche survival vs height means
that the avalanches cannot simply be interpreted as in-
dependent vacancies diffusing upwards. It is crucial that
vacancies can be trapped and also subsequently liberated,
so that the avalanche propagation is nontrivially coupled
to the structure of the powder built up by previous
avalanche events. The strong correlation between
avalanche pairs nucleated in the same place further
confirms this.

We could find no evidence of significant avalanche
branching, and the scaling law relating size to the prod-
uct of height with width strongly indicates that they are
compact rather than fractal. The scaling law relating
width to flux further suggests that they can be interpreted
as a bodily fall of a whole region. However, it is not the
case that these regions of partial collapse spread out-
wards with anything like a characteristic angle (e.g., of
rest), which would have required y =1.

Our numerical results suggest that the scaling of
avalanche survival, width, and size are all simply related,
and it would be particularly interesting to see if this car-
ries over to related models in three space dimensions.

Other avenues for further work must include more
realistic particle geometry such as discs or spheres, in ful-
ly continuous space. This would raise an important dis-
tinction between the propagating vacancies in our present
study, which must be at least one grain big and so are not
easily subdivided, and those in the continuum, which
could, in principle, divide indefinitely. Avalanche
branching would seem more likely with divisible vacan-
cies.

The particle-shaking studies of Barker and Mehta [16]
and of Jullien, Meakin, and Pavlovitch [17] might be
closely related to our work, or at least its continuum gen-
eralization discussed above. One has to interpret the
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shaking as an injection of vacancies, and then their re-
sults such as the upwards segregation of larger particles
are an obvious consequence of vacancies having to flow
around them. In this context it becomes important to es-
tablish to what extent the propagating vacancies turn out
to be quantized in continuous systems.
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