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A comprehensive listing of the generic codimension-1 attractor bifurcations of dissipative dynamical

systems is presented. It includes local and global bifurcations of regular and chaotic attractors. The bi-

furcations are classified according to the continuity or discontinuity of the attractor path, which governs
the physical outcome that would be observed under a slow control sweep. Related issues of determinacy,
hysteresis, basin structure, and intermittency are addressed. Recently discovered chaotic bifurcations
are discussed in some detail, with particular reference to the regular or chaotic saddle-type destroyer
with which an attractor may collide.

PACS number(s): 05.45.+b, 47.52.+j

I. INTRODUCTION

Following Shilnikov [l], Zeeman [2], and others [3,4] it
is useful to classify the generic codimension-l attractor
bifurcations of dissipative dynamics according to the
response that would be observed as a control parameter is
swept slowly through its critical value. Physical interest
often centers on a loss of stability or increase in complexi-
ty, and for this reason we focus on a forward sweep
which generates these.

Such a classification naturally hinges on the most fun-
damental property of an attractor path in control-phase
space, namely, its continuous or discontinuous depen-
dence on the control, and three categories are immediate-
ly perceived [5]. In a safe bifurcation, typified by the su-
percritical local bifurcation of Fig. 1, there is no discon-
tinuous change in the size of the attractor, merely the
continuous growth of a new stable form. In an explosive
bifurcation, there is a discontinuous increase in the size
and form of the attractor, the new enlarged attractor
after the bifurcation including within itself the phase-
space regime of the old attractor. In a dangerous bifurca-
tion, such as a fold, or the subcritical local bifurcation of
Fig. 1, the current attractor simply disappears, forcing
the system to jurnp in a fast dynamic transient to a re-
mote and entirely new attractor.

Bifurcations lying within one or another of these three
categories tend to have other properties in common, re-
lating to questions of determinacy, hysteresis, basin
behavior, and intermittency, as shown in Table I. The bi-
furcations listed are generic for dynamical systems de-
scribed by differential equations (flows) defined by smooth
functions and having a global Poincare section for which
the Poincare map is a diCeomorphism, including, for ex-

ample, smooth periodically forced systems. One-
dimensional noninvertible smooth mappings, such as the
logistic map and sine circle map, are also considered; al-

though strictly speaking they cannot occur in difFerential

equations, their behavior is closely related to the behavior
of difFerential systems with large dissipation.

II. SAFE BIFURCATIONS

The safe bifurcations, with their continuous attractor
paths, initiate no fast dynamic jump or instantaneous en-
largement of the attractor. They are totally determinant
in nature, with a continuous outcome that is insensitive
to the rate of the control sweep and to the inevitable

SAFE

EXPLOSEVE

DANGEROUS

FIG. 1. Classification of bifurcations according to their out-
come.
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TABLE I. Phenomenological classification of attractor bifurcations. In this examination of the generic codimension-bifurcations
of dissipative dynamics we speak of a forward control sweep of a parameter, p, as one that generates instability or increased complex-
ity. Attention is focused on flows of continuous systems and their mappings generated by a Poincare section. The minimum flow di-
mension necessary to observe a bifurcation in a Euclidean space is denoted by D, and descriptions assume that we are in this dimen-
sion. So a fold will be described on its center manifold, as a repeller-attractor transition; embedding in a higher-dimensional phase
space, with attraction onto this manifold, would give the more familiar terminology of a saddle node. Notice that although a flip can
occur on a 2D Mobius strip, our Euclidean restriction necessitates D =3. The numbers listed after "Pictures" refer to references
(square brackets) and figure numbers (parentheses).

(a) SAFE BIFURCATIONS
Subtle (i.e., continuous) bifurcations with the continuous supercritical growth of a new attractor path
Safe with no fast dynamic jump or instantaneous enlargement of the attracting set
Determinate with a single outcome even under small noise excitation
No hysteresis with attractor paths retraced on reversal of the control sweep
No basin change, with basin boundary remote from the bifurcating attractors
No intermittency in the steady-state responses of the attractors

(al) Local supercritical bifurcations

Supercritical Hopf (D=2): point to cycle
A spiral point attractor becomes a spiral repeller as a complex conjugate pair of fiow eigenvalues, k=a+ip,
leaves the left-hand stable half-space. A stable supercritical periodic attractor expands parabolically around the
primary path of point repellers. Examples are x= —y+x[p —(x'+y')], y=x+y[p —(x'+y')]; r'=r(p r'), 0=—1.
Precursor: Local transients have the form e 'sin(Pt) with the negative a increasing linearly through zero at C.
Other names: In aeroelasticity, galloping or flutter; the mapping equivalent is the Neimark bifurcation.
Applications: The galloping and flutter of elastic solids in a fluid flow, chemical oscillations.
Pictures: [7] (7.7.2), [5] (first excitation, 17.1.8), [8] (3.4.4), [25] (7.5,7.6).

Supercritical Neimark (D=3): cycle to torus
A spirally attracting cycle becomes repelling as a complex conjugate pair of mapping eigenvalues,
A=ct+iP=pe +'~, leaves the s—table unit disk. A stable supercritical toroidal attractor grows parabolically around
the primary path of repellers. Special resonances occur when the eigenvalues satisfy A'=1 or A =1.
Precursor: Local transients in a suitable polar map are r; =p' ro, 8;=Ho+i/ with p increasing linearly through + l.
Other names: Supercritical secondary Hopf bifurcation; the flow equivalent is the Hopf bifurcation.
Applications: Taylor-Couette flow, internal autoparametric resonance in coupled driven oscillators.
Pictures: [7] (7.7.6), [5] (second excitation, 17.2.6), [25] (8.18).

Supercritical flip (D=3): cycle to cycle
An inversely attracting nodal cycle becomes an inverting saddle as a real mapping eigenvalue A leaves the
stable unit disk at —1. A stable supercritical periodic attractor, with twice the period of the fundamental cycle,
grows parabolically away from the saddles of the primary path. Example in a 1D map is x;+&= —(1+p)x, +x .
Precursor: Local mapping transients separate as A with A decreasing linearly through —1 at the bifurcation.
Other names: Supercritical period-doubling bifurcation, subharmonic resonance; the flip has no flow equivalent.
Applications: Subharmonic resonances in driven oscillators, and is a building brick of the Feigenbaum cascade.
Pictures: [7] (7.7.4), [5] (octave jump, 17.3.7, 17.4.5), [8] (3.5.1), [25] (7.10, 8.6, 8.7, 9.4).

(a2) Global bifurcations

Band merging (D=3): chaos to chaos
A chaotic attractor with noisy 2" periodicity becomes a chaotic attractor with noisy 2" ' periodicity on absorbing
a period 2" ' inverting saddle. These bifurcations, discussed by Lorenz, form the noisy reverse cascade in the
logistic map which follows the more familiar Feigenbaum cascade.
Precursor: The separation between adjacent chaotic bands decreases in a locally linear fashion.
Other names: Lorenz reverse cascade.
Applications: An ingredient of the universal period-doubling route to chaos, encountered in many fields.
Pictures: [5] (chaotic octave jump, 22.2.2), [25] (logistic map, 9.8).

(b) EXPLOSIVE BIFURCATIONS

Catastrophic (i.e., discontinuous) global bifurcations with an abrupt enlargement of the attracting set
Explosive enlargement, but no jump to remote disconnected attractor
Determinate with a single outcome even under small noise excitation
Ko hysteresis with attractor paths retraced on reversal of control sweep
Ko basin change, with basin boundary remote from the bifurcating attractors
Intermittency: supercritical lingering in old domain, flashes through the new domain

F1ow explosion (D=2): point to cycle
A path of equilibrium fixed points exhibits locally a regular saddle-node fold; meanwhile the global dynamics
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TABLE I. (Continued. )

are such that the saddle outset flows around a closed loop to the node; when the saddle and node on this loop
annihilate one another at the fold, a stable limit cycle is created; initial period is infinite, due to critical slowing.
Precursor: The local subcritical behavior is identical to that of the static fold.
Other names: Omega explosion; the mapping equivalent is the map explosion.
Applications: Chemical oscillations, low-temperature semiconductors.
Pictures: [5] (blue loop in 2D, 21.1.6), [8] (3.4.5), [25] (13.3).

Map explosion (D=3): cycle to torus
This mapping equivalent of the flow explosion has a saddle-node annihilation of two cycles; these lie on a drift
ring in the Poincare section, so that a toroidal attractor is created after the collision; critical slowing is observed
in the toroidal flow as the mapping point passes through the region of the recent cyclic fold.
Precursor: The local subcritical behavior is identical to that of the cyclic fold.
Other names: Omega explosion, mode locking, mode unlocking; the flow equivalent is the flow explosion.
Applications: Arises in the mode locking and unlocking of oscillators with two intrinsic frequencies.
Pictures: [5] (blue loop in 3D, 21.2.5), [25] (13.2, 13.3).

Intermittency explosion: flow (D=4): point to chaos
According to a geometrical model that has been proposed in 4D, a subcritical Hopf bifurcation can give, not
a dangerous jump to a remote attractor, but an explosive enlargement of the attracting set from a point to a
chaotic attractor containing the unstable focus. It is not clear whether this is possible in 3D.
Precursor: The subcritical transient behavior is identical to that of the Hopf bifurcation.
Other names: None.
Applications: None.
Pictures: [5] (no illustration).

Intermittency explosion: map (D=3): cycle to chaos
As in the map explosion, a cyclic fold can give, not a dangerous jump, but an explosive enlargement of the
attracting set; when this is to a chaotic attractor (as in the opening of a periodic window), critical slowing gives
an irregular intermittency in the chaotic motion. Subcritical Neimark and flip bifurcations can replace the fold.
Precursor: The subcritical transient behavior is identical to that of the constituent local bifurcation.
Other names: Temporal intermittency, Pomeau-Manneville (types I, II, III) intermittency.
Applications: Arises as the opening of a periodic window in the ubiquitous period-doubling route to chaos.
Pictures: [5] (Zeemans blue tangle, 21.3.4), [25] (13.7, 13.8; opening of window in logistic map, 9.7, 9.9).

Regular-saddle explosion (D=3): chaos to chaos
A chaotic attractor has an abrupt enlargement to a larger chaotic attractor, which includes the smaller as a subset,
on colliding with a regular saddle cycle. The larger attractor has a global annular structure, as in the bagel
or folded torus. The regular-saddle and chaotic-saddle explosion pair has an analogy in the catastrophes.
Precursor: Subcritical lingering near the impinging saddle, significant when the saddle is only weakly repelling.
Other names: (regular) interior crisis [3].
Applications: Explosion from band attractors to bagel (folded torus) in the velocity-forced Van der Pol equation.
Pictures: [5] (no illustration), [25] (13.9).

Chaotic-saddle explosion (D =3): chaos to chaos
A chaotic attractor undergoes an abrupt instantaneous enlargement to a larger chaotic attractor, which includes
the original attractor as a subset, on colliding with a chaotic saddle [21,3,22]. A simple example of this is
seen in the closing of a periodic window of the logistic map.
Precursor: Subcritical lingering near the impinging saddle, significant when the saddle is only weakly repelling.
Other names: (chaotic) interior crisis [3].
Applications: Escape from chaotic one-well to chaotic cross-well motions in the twin-well Duffing oscillator.
Pictures: [5] (Ueda s chaotic explosion, 21.4.9), [25] (closing of periodic window in logistic map, 9.9).

(c) DANGEROUS BIFURCATIONS

Catastrophic (i.e., discontinuous) bifurcations with the blue-sky disappearance of the attractor
Dangerous with a sudden fast dynamic jump to a distant unrelated attractor of any type
Determinate or Indeterminate in outcome, depending on the global topology
Hysteresis with original attractor not reinstated on reversal of the control sweep
Basin shrinks to zero (c2) or attractor hits boundary of a residual basin (c1) and (c3)
No intermittency, but note the critical slowing in the global bifurcations

(c1) Local saddle-node bifurcations
Static fold (D=1): from point
A path of point attractors folds back parabolically as a path of repellers on reaching an extreme value of the
control. Moving around the path a real low eigenvalue A, leaves the left-hand stable half-space at the node-repeller
transition. Example: x =@+x . Related pitchfork (cusp) and transcritical bifurcations are not directly generic.
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TABLE I. (ContE'nued. )

Precursor: Local transients have the form e ', with the real negative A, increasing linearly through zero at C.
Other names: Saddle-node bifurcation; in elasticity, limit point; mapping equivalent is below.
Applications: Snap-buckling of shallow elastic structures, including arches and shells; runaway of reactors.
Indeterminacy: In D=2 the 1D flow outset needs a nongeneric coincident saddle connection for indeterminacy.
Pictures: [7] (7.7.1), [5] (static fold, 18.1.10, 18.2.6), [8) {3.4.1), [25] (7.4).

Cyclic fold (D =2): from cycle
A path of periodic attractors folds back parabolically as a path of periodic repellers on reaching an extreme
value of the control. Moving around the path a real mapping eigenvalue, A, leaves the stable unit disk at +1
as the stable cycle becomes unstable at the extremum. Example in a one-dimensional map is x;+, =x;+p+x .
Precursor: Local mapping transients separate as A' with A increasing linearly through +1 at the extremum.
Other names: Saddle-node bifurcation, dynamic fold, periodic fold; flow equivalent is previous entry.
Applications: Jumps to and from resonance in driven oscillators under direct and parametric excitation.
Indeterminacy: Smooth mosquito-coil [31,32], or fractal basin [33) can accumulate onto saddle remote outset.
Pictures: [7] (7.7.3), [5] {periodic fold, 18.3.10, 18.4.9), [25] (7.9, 8.3).

(c2) Local subcritical bifurcations

Subcritical Hopf (D =2): from point
A spiral point attractor becomes a spiral repeller as complex conjugate flow eigenvalues, A=a+. iP, leave the
left-hand stable half-space. An unstable subcritical periodic repeller shrinks parabolically around the attractor,
pinching its basin of attraction to zero. Example: x= —y+x[p+(x +y')], y=x+y[p+(x +y )]; r'=r(p+r'), 8=1.
Precursor: Local transients have the form e 'sin(/3t) with the negative a increasing linearly through zero at C.
Other names: In aeroelasticity, galloping, or flutter; the mapping equivalent is the Neimark bifurcation.
Applications: The galloping and flutter of elastic solids in a fluid flow, onset of turbulence.
Indeterminacy: An example is the aeroelastic galloping in an asymmetric well [32].
Pictures: [5] (spiral pinch, 19.1.4), [25] (reversed time; 7.5, 7.6).

Subcritical Neimark (D=3): from cycle
A spirally attracting cycle becomes repelling as a complex conjugate pair of mapping eigenvalues,
A=a+i p=pe 'e, leav—es the stable unit disk. An unstable subcritical toroidal repeller shrinks parabolically
around the attractor, pinching its basin to zero. Special resonances occur when A'=1 or A =1.
Precursor: Local transients in a suitable polar map are r; =p' ro, 8 8 +io(() with p increasing linearly through + l.
Other names: Subcritical secondary Hopf bifurcation; the flow equivalent is the Hopf bifurcation.
Applications: Electrical circuits.
Indeterminacy: Generically possible, but no specific example known to the authors.
Pictures: [5] (vortical pinch, 19.2.6), [25] (reversed time; 8.18).

Subcritical flip (D =3): from cycle
An inversely attracting nodal cycle becomes an inverting saddle as a real mapping eigenvalue A leaves the
stable unit disk at —1. An unstable subcritical periodic saddle, with twice the period of the fundamental cycle,
shrinks parabolically onto the attractor, pinching its basin of attraction to zero. Example is x;+, = —(1+p)x;—x;.
Precursor: Local mapping transients separate as A' with A decreasing linearly through —1 at the bifurcation.
Other names: Subcritical period-doubling bifurcation; the flip has no flow equivalent.

Applications: Rayleigh-Benard convection, subharmonic resonance.
Indeterminacy: Generically possible, but no specific example known to the authors.
Pictures: [7] (7.7.5), [5] (octave pinch, 19.3.6, 19.4.6), [25] (8.8).

(c3) Global bifurcations

Saddle connection (D =2): from cycle
A stable cycle expands towards a saddle fixed point whose inset forms the boundary of its basin of attraction;
the period of the cycle goes to infinity as it touches the saddle in a homoclinic saddle connection; at the
connection the cycle is its own basin boundary, and beyond it the cycle and basin vanish into the blue.
Precursor: The period of the cyclic attractor tends to infinity due to slow dynamics near the approaching saddle.
Other names: Homoclinic connection, separatrix loop; no mapping equivalent because connection becomes a tangle.

Applications: Chemical oscillations.
Indeterminacy: In D=2 the 1D flow outset needs a nongeneric coincident saddle connection for indeterminacy.
Pictures: [5) (periodic blue sky, 20.2.7), [8](4.4.2), [25] (13.4, 13.5, cover).

Regular-saddle catastrophe {D=3): from chaos
A chaotic attractor expands to hit a saddle cycle whose smooth, untangled inset forms its basin boundary; at
the collision the saddle simultaneously becomes homoclinic and the chaotic attractor and its residual basin vanish

into the blue. A simple example is seen at the end of the logistic map.
Precursor: subcritical lingering near the impinging saddle, significant when the saddle is only weakly repelling.
Other names: (regular) boundary crisis [3], chaotic blue sky catastrophe.
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AppII'cations: Blue sky instability of Birkhoff-Shaw folded torus in asymmetrically forced Van der Pol equation.
Indeterminacy: Generically possible with a smooth mosquito-coil accumu1ation, but no example known.
Pictures: [5] (chaotic blue sky, 20.3.11), [25] (13.11; end of logistic map, 9.8).

Chaotic-saddle catastrophe (D=3): from chaos
A chaotic attractor expands to hit the accessible saddle orbit within a fractal basin boundary, remaining however
at a distance from the main saddle cycle whose prior homoclinic tangling generated the fractal boundary. At
the collision the chaotic attractor and its residual basin vanish into the blue [36].
Precursor: Subcritical lingering near the impinging saddle, significant when the saddle is only weakly repelling.
Other names: (chaotic) boundary crisis [3], chaotic blue sky catastrophe.
Applications: Escape from a cubic potential we11 where bounded chaotic motions suddenly jump out of the well.
Indeterminacy: Determinate and indeterminate (fractal accumulation) examples in the twin-well Dufflng equation [31].
Pictures: [5] (Roessler's blue sky, 20.4.8), [25] (13.12).

noise present in a computer or laboratory experiment.
They exhibit no hysteresis, with the attractor path pre-
cisely retraced on a reversal of the control sweep. The bi-
furcating attractor lies totally within a basin whose re-
mote boundary plays no part in the event, and remains
topologically unchanged. There is no observed intermit-
tency or critical slowing in the response of the attractors
before or after the bifurcation.

Attractor continuity means that the phase-space re-
gime immediately after bifurcation can be kept arbitrarily
close to the old regime by holding the control sufficiently
near the critical value. Thus any undesirable conse-
quences of bifurcation can be avoided by sweeping very
slowly and reversing the sweep as soon as the bifurcation
is observed; it is therefore natural to follow Shilnikov [1]
and term such bifurcations safe. In [1],Shilnikov defines
safe with reference to a typical orbit just after bifurcation
remaining in a neighborhood of the old attractor; Zee-
man [2] introduced the notion of continuity of a function,
mapping each control value to the corresponding attrac-
tor. The two approaches are equivalent for generic bifur-
cations [6].

The safe category includes the well-known supercriti-
cal forms of the local Hopf, Neimark, and Hip bifurca-
tions [7,8]. These local bifurcations are often amenable
to closed-form analysis of the underlying diff'erential
equation models. Powerfu1 analytical techniques, such as
center manifold theory (also known as elimination of pas-
sive coordinates) and reduction to normal form, can be
brought to bear. A useful introduction to these methods,
and further references, can be found in a recent review
article [9].

A fourth type of safe bifurcation is the band merging
most familiar in the bifurcations of the one-dimensional
logistic or quadratic map, where the Feigenbaum cascade
of period doublings is followed by a reverse cascade in
which at each stage a chaotic attractor consisting of 2"
bands or intervals grows and consolidates to an attractor
of 2" ' bands [10]. As merging occurs, an unstable 2"
periodic orbit with negative multiplier is absorbed into
the attractor. The fundamental measure of complexity of
a chaotic attractor is the ensemble of unstable periodic
orbits within an attractor, so it is appropriate to consider
a control sweep away from the Feigenbaum point to be a
forward sweep. Equivalently, this may be understood in

terms of syncope [11]: the strict rhythm with which the
2" bands are visited before merging becomes syncopated
after merging, and only a 2" ' rhythm is strictly fol-
lowed. A scaling law for the broadening of 2" ' spectral
peaks has been proposed for band merging [12—14]. The
final merging in the reverse cascade, from the two-band
to one-band attractor, is sometimes called Ruelle's point
[15].

III. EXFLOSIVE BIFURCATIONS

The explosive bifurcations violate the continuity of the
attractor path by causing the attractor to suddenly en-
large. The new attractor includes the old attractor as a
proper subset, so there is no jump to a remote attractor.
The new attractor is determinant, with a single outcome
independent of the rate of control sweep and insensitive
to the presence of small noise. Upon reversal of the con-
trol sweep, the attractor irnplodes to the old attractor at
the same critical control value, with no hysteresis under
infinitely slow control sweep. (When sweeping at a finite
rate, apparent hysteresis may be observed, but over a
control range that can be reduced to zero by slowing the
rate of sweep. ) There is no associated change in basin
structure as the newly enlarged attractor is still remote
from its basin boundary. Just after an explosion, the new
region of the attractor is visited infrequently, and the sys-
tern spends long periods in or very near the old phase-
space regime, resulting in temporal intermittency [16,17].

Explosive bifurcations of regular attractors are trig-
gered by local subcritical and fold bifurcations occurring
within a global structure that brings an orbit recurrently
back to the neighborhood of the old regular attractor.
The most familiar examples are mode unlocking, where a
cyclic fold occurring within an invariant torus (in Poin-
care section, a closed curve), and the analogous static fold
occurring within an invariant circle. If an orbit on the
new enlarged attractor recurs via a homoclinic tangle or
horseshoelike global structure, the bifurcation is a route
to chaos by temporal intermittency. The routes from cy-
cle to chaos were classi6ed by Pomeau and Manneville
[16] according to the form of the initiating local subcriti-
cal bifurcation, and Poineau [18] proposed a geometric
model for explosion from an equilibrium point attractor
to chaos via a subcritical Hopf bifurcation. A common
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example of the cycle to chaos route is the opening of a
periodic window in the logistic or quadratic map; this ex-
plosion is generated by decreasing the usual parameter,
which is a forward sweep considering the complexity of
the attractor only. Intermittency explosions have been
observed in several diverse experiments as, for example,
in [19].

Intermittency explosions are subject to a scaling law
for the proportion of time spent near the old regular at-
tractor; the dependence on the control comes in part
from the generic form of the initiating local bifurcation
[16]. In experiments, this scaling may be governed by
subtleties not included in the most naive analysis [19].

Recently, a new form of intermittency has been report-
ed in which hysteresis was observed [20]. The mecha-
nism involves the coincidence of the initiating local bifur-
cation together with an additional and independent con-
straint on the reinjection produced by the global re-
current structure. In the perspective of the present
classification, the two independent constraints require
coordination of two different controls, and hence this
phenomenon is not generic when sweeping a single con-
trol The .robustnes. ". of the phenomenon observed in [20]
is due to the fact that, in the particular systems studied
there, the two independent codimension-1 bifurcation
arcs are not strongly transverse, but happen to meet in a
very acute angle, and so remain close together over an ex-
tended region in the space of two controls. This well il-
lustrates the caution necessary in interpreting Table I.

Chaotic attractors can also explode in size. Such a bi-
furcation was first documented in a differential equation
in [21] and was independently recognized in [3] and
called an interior crisis. A common example is the clos-
ing of a periodic window in the logistic map.

In all types of explosive bifurcation, the old, smaller at-
tractor comes near and touches an unstable equilibrium
or unstable periodic motion. In other words, just as the
stable behavior is associated with a we11-defined structure
in phase space, the attractor, so too is the instability asso-
ciated with a well-defined geometric structure in phase
space. It is useful to have a name for this impinging un-

stable structure, and we suggest the term destroyer. In
one-dimensional maps, the destroyer is a repeller, but in
higher dimensions it is usually a saddle with one-
dimensional outset or unstable manifold. In the How and
map explosions, the outset branch facing away from the
old attractor is not tangled, and the destroyer is just a
saddle point or periodic orbit, an isolated component of
the nonwandering set that remains remote from all other
nonwandering points until the bifurcation threshold is
reached. That is, the destroyer is a regular saddle. In in-
termittency explosions to chaos, the destroyer outset
branch away from the old attractor is tangled, and the
destroyer is part of a complicated component of the
nonwandering set with horseshoelike structure, that is, a
chaotic saddle.

A similar distinction can be drawn within the category
of chaotic explosions or interior crises. Examples of
chaotic explosion by collision with a chaotic saddle in-
clude [21], which shows clearly the tangled structure of
the outset branch facing away from the old attractor, and

[22], in which the nonwandering set itself just prior to ex-
plosion is illustrated. The most familiar example of a
chaotic-saddle explosion is the closing of a periodic win-
dow in the logistic map; the gaps filled in by such an ex-
plosion were filled with chaotic transients prior to the ex-
plosion. Another simple case is the escape from chaotic
one-well to cross-well motions in the twin-well Du%ng
equation [23,24]; here a simply folded band attractor con-
taining just one inversely unstable harmonic explodes and
absorbs the simple band in the adjacent weil. On the oth-
er hand, chaotic explosion by collision with a regular sad-
dle can also occur given the appropriate global structure.
Examples include Fig. 13.9 in [25], and [26], and also the
escape from chaotic librational motions of a periodically
forced rigid-arm pendulum to rotational chaotic motions.

This distinction among chaotic explosions, based on
the regular or chaotic structure of the impinging saddle-

type destroyer, is rather more subtle than the other
categories in Table I and would require some ingenuity to
be detected by experimental observations. It is therefore
appropriate to ask whether or not this distinction carries
with it any predictive power. Figure 2 suggests a possible
answer to this question; shown are prototype schematic
phase diagrams of four topologically distinct types of at-
tractor explosion. In each case, the phase diagram corre-
sponds to the condition of incipient explosion, with a
small attractor prior to explosion, and a nearby saddle-

(aI

I'L,OW or MAP

(e.g. mode unlocking)

INTERMIT I'L'NC'Y

(e.g. TYpe I')

(d)

REGULAR-SADDLE
(e.g. to Hirkhoff attractor)

CHAOTIC-SAD D LI''

(e.g. logistic map periodic window)

FIG. 2. Four types of attractor explosion, arranged by rows

according to the regular or chaotic structure of the small attrac-
tor prior to explosion, and by columns according to the type of

impinging saddle-type destroyer: (a) How or map explosion,
from point attractor to attracting invariant closed curve; (b) in-

termittency type I from regular to chaotic attractor; (c) regular-

saddle explosion or interior crisis from small chaotic attractor
to enlarged chaotic attractor with a folded torus structure; (d)

chaotic-saddle explosion or interior crisis from small to en-

1arged chaotic attractor.
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type destroyer, whose collision with the small attractor
will trigger explosion. In the upper row of Fig. 2, the
small attractor is indicated by a solid (filled) point,
representing a stable equilibrium, or a stable periodic or-
bit in the Poincare section.

Just as Fig. 2 is arranged so that the two rows contain
different types of small attractors (regular or chaotic), so
in a similar way has Fig. 2 different types of impinging
saddles in the two columns: a regular saddle (drawn as
half-hollow dots) in the left column and chaotic saddles
in the right column. The chaotic structure of the-saddles
in the right column is indicated schematically by showing
enough of the outset branch facing away from the attrac-
tor to identify a transverse homoclinic intersection with a
branch of the inset.

The upper left diagram in Fig. 2(a) describes an inci-
pient omega explosion, in either its flow or map form.
The hollow dot represents a focal repelling point which
will be encircled by the exploded attractor. The upper
right diagram, Fig. 2(b), represents a type-I intermittency
explosion, from the periodic attractor in the Poincare
section to the chaotic attractor. In the lower left dia-
gram, Fig. 2(c), an explosion from small to enlarged
chaotic attractor is triggered by a regular saddle. In the
known examples cited above, the resulting enlarged at-
tractor has the global structure of a folded torus, some-
times called a Birkhoff attractor. For this reason, Fig.
2(c) shows the saddle outset branch away from the small
attractor, making a circuit around a focus repelling point.
This repeller need not be present in systems such as the
forced pendulum, where the folded torus attractor struc-
ture can arise by virtue of the underlying cylindrical
structure of the phase space. Finally, Fig. 2(d) represents
a prototype explosion from small to large chaotic attrac-
tor involving a chaotic saddle.

It seems likely that a chaotic-saddle explosion could
also produce an exploded attractor with folded torus
structure, although there are at present no known exam-
ples. So Fig. 2(d) is not meant to exclude such a possibili-
ty, but Fig. 2(c) is meant to suggest that in the case of
regular saddle explosions the folded torus structure of the
result is not optional but necessary.

It seems plausible that chaotic explosions involving a
regular saddle can only happen if the explosion produces
a global annular structure in the Poincare section of the
new attractor. If a chaotic attractor collides with a regu-
lar saddle, all orbits will be drained away across the des-
troyer; without a global annular return circuit, the forrn-
er attractor could not be part of the new steady-state
response. That is, the event would not be an explosion
but a dangerous bifurcation. Thus, of the four diagrams
in Fig. 2, the two in the left column have in common a
necessarily annular structure in the exploded attractor.

A recently published conjecture holds that a folded
torus attractor will have among its periodic orbits of least
period an equal number of directly and inversely unstable
orbits, as a consequence of the global constraint on Poin-
care indices in an annular or cylindrical absorbing region
having an Euler characteristic equal to zero [27]. This
suggests the following.

Conjecture. When a generic explosion of a chaotic at-

tractor of a two dimensional smooth diffeomorphism is
initiated by collision with a regular saddle, the increase
hD in the number of directly unstable periodic orbits of
least period within the attractor is at least one greater
than the increase EI in the number of inversely unstable
periodic orbits of the same period; that is, AD & AI, and
the large attractor includes a folded annular structure.

For example, if a periodically forced oscillator that is
known to be uniformly dissipative has a regular saddle

explosion, it can be inferred from the above-conjectured
attractor topology that the displacement coordinate is an
angular variable. For chaotic explosions generally, the
mean time between intermittent bursts just after explo-
sion is governed by a scaling law [28], as has been
confirmed in experiments; e.g., [29].

IV. DANGEROUS BIFURCATIONS

The dangerous bifurcations are characterized by the
blue sky disappearance of the current attractor, giving
rise to a jump to a remote attractor of any type. The
term hard transition is also used to describe these bifurca-
tions. On reversal of the control sweep, the response will

typically remain on the path of the new attractor, giving
rise to hysteresis. Since the different attractors are gener-
ically remote and separated from each other by a phase-
space distance that remains bounded away from zero, the
loss of stability of one attractor will not be correlated
with the loss of stability of another attractor and will

occur at a different value of the control.
Two different basin scenarios can be observed within

the dangerous category. In one, typified by the subcriti-
cal forms of the Hopf, Neimark, and flip bifurcations, the
basin shrinks around the attractor and pinches it off at
the critical control value; the size of the basin drops con-
tinuously to zero as the bifurcation is approached. In the
second scenario, typified by the saddle-node folds, the at-
tractor moves towards the edge of its basin, colliding
with a saddle in the basin boundary at the point of bifur-
cation; there is a residual basin at the critical value of the
parameter [30]. In the cyclic fold the saddle will be a cy-
cle, onto which can be accumulated thin fingers of one or
more basins of attraction in either a mosquito-coil [31,32]
or a fractal [33] structure. There is then an indetermina-

cy in the outcome of the dynamic jump, because the basin
into which the system moves depends sensitively on the
precise manner in which the bifurcation is realized and
on the inevitable noise in an experimental realization.

Such indeterminism is a generic possibility in all but
the simplest of the dangerous bifurcations. It is nongen-
eric for the static fold and saddle connection in planar
flows, where the outset of the saddle fixed point is only
one dimensional. In these cases a coincidental additional
saddle connection would be required to observe indeter-
minacy under small noise excitation. In higher-
dimensional flows, the one-dimensional outset of the des-
troyer might lead away to indeterminate outcomes if it
were involved in an additional Shilnikov saddle-focus
connection. According to Shilnikov [34], even though
the saddle-focus connection is structurally unstable and
nongeneric, the implied horseshoes are robust, so the
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phenomenon should be treated as generic. The existence
of indeterminate static fold and saddle connection bifur-
cations is, however, only conjectural, and no examples
are known at present.

The dangerous bifurcations break down naturally into
three subcategories. The first, (c.l), contains the two
well-known saddle nodes, of fixed point and cycles, re-
spectively. The second, (c.2), contains the three subcriti-
cal local bifurcations. The third, (c.3), contains three glo-
bal bifurcations, starting with the saddle connection in
which a limit cycle slows down and disappears as it col-
lides with a saddle fixed point in its basin boundary. The
final two events, involving the loss of stability of a chaotic
attractor, have been elucidated relatively recently and
warrant a more detailed discussion.

In both of these bifurcations, a chaotic attractor is
eradicated from the phase portrait. This means that the
attractor necessarily collides with at least part of its basin
boundary; hence the term boundary crisis [3]. Following
the emphasis by Zeeman [2] and Abraham [4] on the fun-
damental role of discontinuity of the control-to-phase-
portrait function, the terms catastrophe or blue sky catas-
trophe have also been applied.

Recently it has been noted that the basin boundary
near the points of incipient contact with the chaotic at-
tractor may have a fractal structure [35,36]. The points
of contact are an unstable fixed point or periodic orbit ly-

ing in the basin boundary called an accessible orbit [35],
which is another example of a destroyer. Fractal struc-
ture in the basin boundary occurs if the destroyer outset
branch facing away from the attractor is homoclinic; thus
the regular-fractal basin boundary dichotomy for blue

sky catastrophes is completely analogous to the distinc-
tion between regular-saddle and chaotic-saddle explo-
sions.

There is another perspective on this dichotomy. Often,
as, for example, in the twin-well Duffing oscillator [36]
and the Henon map [35], the basin boundary contains a

periodic point that is not a subharmonic, but has the
same fundamental period as the chaotic attractor (i.e., the
unstable periodic orbit of least period within the attrac-
tor). This fundamental periodic point in the basin bound-

ary may remain accessible and touch the chaotic attrac-
tor itself, in which case a regular-saddle catastrophe is

observed; or it may form a tangle, creating accessible or-
bits that are subharmonics, and remain remote from the
attractor at a chaotic-saddle catastrophe. For example,
upon increasing the parameter a in the Henon map,
regular-saddle catastrophes are observed for b between
zero and about —0.08, with a period-1 accessible orbit
acting as destroyer; for more negative values of b,
chaotic-saddle catastrophes are observed, with destroyers
of period 3 or 3X2".

V. CONCLUSION

Table I has presented a comprehensive list of generic
codimension-1 attractor bifurcations of dissipative
dynamical systems, including local and global bifurca-
tions of regular and chaotic attractors. This list is pro-
posed as a classification scheme based on topological
principles that have physical correlates of foremost con-
cern; it is of course far from a complete classification of
all possible topological configurations, particularly as re-

gards global structure.
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