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In this paper we develop a diagrammatic technique for determining the exact recursive relations
for the partition functions of the Ising model in a field, situated on finitely ramified deterministic
fractal lattices. Applying this method on the members of the two-dimensional Sierpinski gasket type
of fractal lattices, which are characterized by generators of side length b, we first recover the known
exact-space renormalization-group results for b = 2 and 3, in the case of zero field, and for b = 2
when H g 0. Then we obtain new results for all 5 up to b = 15, for H = 0, and up to 5 = 8 for H j 0.
These results enable us to initiate the study of the crossover of thermodynamic properties of the
Ising model caused by changing of the underlying fractal lattices towards the Euclidean (triangular)
lattice. Accordingly, we calculate the temperature dependence of the specific heat, for b & 15, and
susceptibility for 6 & 8, and compare these functions with the known results for the triangular
lattice. This comparison demonstrates the deference between the standard thermodynamic limit
and the fractal-to-Euclidean crossover behavior.

PACS number(s): 05.50.+q, 05.70.Fh, 05.70.Jk, 75.10.—b

I. INTRODUCTION

It has been generally known that a magnetic model
system on a finite Euclidean lattice cannot display crit-
ical behavior at nonzero temperatures. Critical behav-
ior can appear only in the thermodynamic limit, that is,
when the underlying lattice becomes in6nitely large. On
the other hand, it has been demonstrated, via specific
calculations, that the standard Ising model on 6nitely
ramified &actals cannot have a nonzero critical temper-
ature [1—3]. Siinilarly, in the case of the classical O(n)
model, with n & 2, on &actals with the spectral dimen-
sion d, & 2, it has been rigorously proved that there
is no spontaneous magnetization at any 6nite tempera-
ture [4]. Thus one may rightfully study what happens at
the &actal-to-Euclidean crossover. In other words, one
may pose the question whether the Ising critical behav-
ior on a Euclidean lattice can be retrieved via a limit of
infinite number of 6nitely rami6ed &actals whose prop-
erties gradually acquire the corresponding Euclidean val-
ues. Moreover, one can compare this &actal limit with
the standard thermodynamic limit.

Few specific results, related to the preceding question,
have been established so far. For instance, it was shown
[5] that the decay of the spin-spin correlations with in-
creasing temperature is extremely slow on the Sierpinski-
gasket (SG) fractal lattice, causing nontrivial thermody-
namic behavior of the Ising model on all finite &actal
lattices, even if their size is comparable to the size of the
observable universe. Next, an interest was recently shown
[6) for the behavior of antiferromagnetic Ising model on

fractal lattices in the context of spin glasses and the high
ground state &ustration which leads to nonzero macro-
scopic residual entropy. In fact, it was found that con-
trary to the conjecture that existence of fractal holes
should relieve frustration, the residual entropy per spin
of the Ising antiferromagnet on the Sierpinski gasket is
actually higher than that of the antiferromagnet on the
triangular lattice. The effect of the presence of holes may
be addressed by studying families of fractal lattices which
provide a crossover towards the corresponding Euclidean
triangular lattice. The &actal-to-Euclidean crossover be-
havior of the residual entropy was studied on the family
of the SG type of &actal lattices in both the zero field,
and in the maxiinum critical field [8]. In both cases a
smooth crossover behavior of the residual entropy was
established, and a simple crossover formula was found.
Finally, the question of the fractal-to-Euclidean crossover
appears to be rather nontrivial in the case of the O(n)
model for n = Q, that is, in the case of self-avoiding
walks (SAW's) on the SG fractals. Namely, the exact
renormalization-group (RG) results indicated that the
SAW critical exponents might tend toward the corre-
sponding Euclidean values [9], whereas the consequent
finite-size scaling arguments [10] showed that it cannot
be generally true. The latter dichotomy is still a subject
of an active research.

It is thus desirable to address the question of the
&actal-to-Euclidean crossover behavior of Ising model
thermodynamic response functions, which has up to date
remained open. In fact, in the case of the SG &actal fam-
ily which approaches the Euclidean triangular lattice in
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the limit when generator side length b tends to infinity,
the real-space renormalization-group relations have thus
far been established only for b = 2 and 6 = 3 for H = 0
[2,3], and only for the first member of the family (b = 2)
for H g 0 [2]. It may be appropriate to mention here that
in the reference [2] RG relations contained a small incor-
rectness when applied for finite size &actal lattices and
become exact only in the limit of infinitely large fractals.
To study the crossover of thermodynamic behavior, in
this paper we develop a diagrammatic technique for de-
termining the exact recursive relations for the partition
functions. We first establish the equivalence of this pro-
cedure to the standard renormalization-group decimation
technique [2,3] by recovering the exact RG formulas for
b = 2, 3, in the case of H = 0, and for b = 2, in the case
H g 0. Then, as the main contribution of this paper, we

obtain new results for 4 & 6 & 15, in the case H = 0,
and for 3 & b & 8, when H P 0. Using these results we
calculate the temperature dependence of specific heat for
6 & 15 and susceptibility for b & 8, and compare them to
the known results for the triangular lattice.

This paper is organized as follows. In the next section
we develop the technique for determining the exact recur-
sive relations for the partition functions of both ferromag-
netic and antiferromagnetic Ising systems on finitely ram-
ified kactal lattices, and recover the previously known
RG formulas for the first two members of the SG family.
In Sec. III we present the new results for higher members
of the family, together with an overall discussion.

over the nearest neighbor pairs.
The first few stages of construction of the first three

members of the SG fractal family are shown in Fig. 1.
The lattice at stage n is obtained by joining n, structures
of (n 1)th—stage, exclusively at their vertices. For a given
member of the SG family, n is independent of the stage
n. We will further distinguish between vertex spins at a
given stage n (depicted by full circles in Fig. 1) and the
interior spins (depicted by open circles). We will term
interior spins all those spins that are not at vertices at
the nth stage of construction, but are the vertex spins
of the n, constituent (n —l)th-stage structures. In the
b = 2 case, at each stage (n) there are n, = 3 constituent
(n —1)th-stage structures, and N~ = 3 interior spins.
For all members of the SG family, at each stage there are
N~ ——3 vertex spins.

At any stage of construction of the Sierpinski gasket,
one can define eight partial partition functions (Z, , i =
1, . . . , 8) that correspond to eight possible configurations
of the three vertex spins, while the summation is per-
formed over all the other spins. From the symmetry of
the lattice, however, it follows that at each stage there
are only four independent partial partition functions Zq,

II. DIAGRAMMATIC TECHNIQUE FOR
DETERMINING THE EXACT RECURSIVE

RELATIONS FOR THE PARTITION FUNCTIONS
OF THE ISING MODEL ON FINITELY

RAMIFIED FRACTALS

II=2

A. Sierpinski gasket (b = 2)
n=i I1=2

The real-space RG recursive relations for the Ising
model on the Sierpinski gasket have been established for
both zero and nonzero magnetic field [1,2]. We will use
this particular case as a test ground for developing a con-
venient diagrammatic technique for obtaining the recur-
sive relations in a new way. This new technique will later
prove useful in the case of higher members of the SG &ac-
tal family, and it can also be applied in the case of other
finitely ramified fractals. In fact, it will turn out that
even for the Sierpinski gasket in the field, our technique
yields relations which are exact on all stages of construc-
tion of the &actal, while the previously established rela-
tions [2] become exact only in the case of infinitely large
fractal.

We consider Ising systems with the Hamiltonian

X= —J) SS, —H) S, ,

(NN)

where J is the nearest neighbor interaction parameter,
S,. = +1 is the Ising spin variable at the site i, H is the
external magnetic field, and (NN) denotes summation

(c)

AHA /X/X/X

n=1

FIG. 1. First three members of the two-dimensional
Sierpinski-gasket type of fractal lattices constructed from gen-

erators of side length (a) b = 2, (b) b = 3, and (c) b = 4. For
6 = 2 we depict the first three stages of construction, whereas

for b = 3, 4 the first two stages are shown (for n = 1 the fractal
structures are actually finite equilateral wedges of the trian-

gular lattice). Full circles indicate the vertex spins (spins by
which the structures are connected when forming the struc-
ture in the next stage), and open circles indicate the interior
spins (spins which are not at vortices, but are vertex spins of
the constituent structures of the previous stage).
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Z = Z1 + 3Z2 + 3Z3 + Z4) (2)

Z2, Zs, and Z4, corresponding to {++ +), {+—+),
{—+ —), and {———) configurations of the vertex spins,
respectively. This fact can be easily verified to be true
for all members of the SG fractal family. If the recursive
relations between the sets of partial partition functions,
corresponding to any two consecutive stages of construc-
tion of the lattice, are established, using forxnula

+k
+ + +

zI -0/E

+ + + +

+ + — + + — — +

+ — + + + + + + + + — +

+ +

+

+ — + + + +

3ZIZIe

+ +

+ — + + — +J

2ZI ZIC

+ + + + — +

Z,*Z,e Z,'Z, e~

+ + + + + +

+ + + + — + + + + + + +

Z*,Z,e~ Z,'e~ 2Z, Z,Z,e~

one can obtain the partition function at arbitrary stage
of construction of the lattice, and thereby the thermo-
dynamic response functions (as temperature and field
derivatives of Z). The recursive relations for the par-
tial partition functions can also be used to obtain the
real-space RG relations for the interaction parameters.

(c)
+ + + + + +

+ + + + + + + +

+ + +

Z, Z,'e~ Z, Z,'e~ 2Z,'Z, e~ 2z,z,z,d Z,'e Z, z', e~

1. Recur siee relations for the partial par tition
functi one

k
+

ZI -eilg

+ + — + +

+ — - +

3Z,Z,'e~

+ +

+

3zgz~8 Zl e8jlg

Recursive relations between the partial partition func-
tions {Z,', i = 1, . . . , 4) in the (n+ 1)th stage and the
partial partition functions {Z;,i = 1, . . . , 4) in the nth
stage of construction, are obtained by associating to each
recursive relation a series of diagrams representing the
(n+ 1)th stage of construction with the substructure on
the level of the nth stage. On all the diagrams cor-
responding to the recursive relation for one particular
partial partition function Z,', the vertex spins are fixed
in the corresponding particular spin configuration, while
the configurations of interior spins (which simultaneously
represent vertex spins of the nth-stage structures) vary
from diagram to diagram. Total number of diagrams
for one recursive relation is eight, representing the nuxn-
ber of possible configurations of the three interior spins.
To each diagram (k = 1, . . . , 8) that corresponds to Z!
(i = 1, . . . , 4), we associate a product of three partial
partition functions of the nth stage of construction, mul-
tiplied by the term es(""&~, where

b(k, i) = —) S,(r —1),
j=1

r~ is the number of nth stage structures joined in the (n+
1)th stage by the jth interior site, and P = 1/k~T is the
standard notation for the reciprocal of the product of the
Boltzmann constant and temperature. This exponential
multiplicative factor comes from the fact that the energy
of the (n + 1)th-stage structure is not a simple sum of
energies of the nth-stage structures. That is, when the
nth-stage partial partition functions are multiplied, the
field dependent term in the Hamiltonian is taken into
account as many times as there are nth-stage structures
connected by the jth site. The recursive relation is now
represented as the sum of eight terms, each corresponding
to a difFerent diagram.

In Fig. 2 we present the diagrams associated with dif-
ferent terms of the recursive relations. Each row repre-
sents a set of eight diagrams corresponding to the recur-
sive relation of one partial partition function. It follows

FIG. 2. Diagrams associated with different terms of the
recursive relations (4) for the partial partition functions of
the Sierpinski gasket (b = 2). Each row represents s set of
eight diagrams (corresponding to different configurations of
the interior spins) with vertex spins fixed in one particular
configuratio (corresponding to the recursive relation of one
particular partial partition function). Partition functions ob-
tained by recursive relations (4) are exact in the first stages
of construction of the lattice as well as in the thermodynamic
limit n + oo (see the text).

from Fig. 2 that the recursive relations for partial parti-
tion functions, at any two consecutive stages of construc-
tion of the lattice, have the form

z —z e ~ +3zyz e ~ +3z zs P +z
(4a)

Z2= Z Z2e + Z2e + 2Z1Z2Z3e

+2Z Z2 PH+Z2Z PH+Z2Z

(4b)

Z3 ZyZ2
—3PH + Z1Z2e —PH + 2Z2Z3e —PH

+ 2Z2Z3Z4ep + Z3ep + Z3Z e p

(4c)

Z4 ——Z2e PH+3Z2Z e P +3Z Z4 P + Z4e P

(4d)

In fact it is sufhcient to have recursive relations for the
first two partition functions Z1 and Z2, since the sym-
metry of the system implies that Z3 is obtained &om Z2,
and Z4 from Z1, by substituting Z1,' ,'Z4, Z2 Z3,
and H::—II. However, in Fig. 2 we present all four.
recursive relations for the sake of completeness.

For the initial conditions of the recursive relations (4)
we can choose the partial partition functions of a sixnple
equilateral triangle (zeroth stage of construction of the
fractal), given by
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Z 3PJ+3PHy= e
—PJ+PH

2 ——e

Z —PJ PH3= e

Z 3PJ—3PH

(5a)

(5b)

(5c)

(5d)

Partial partition functions at the arbitrary nth stage of
construction are now obtained &om the initial conditions
(5) by successive application (n times) of recursive rela-
tions (4), and the total partition function is finally given
by (2).

2. RG relations for the interaction parameters.
The H g 0 case

—H" (o,"+ o2 + os ) + A", (6b)

where cr; is the renormalized spin variable, and super-
script n indicates that the corresponding variable has
been renormalized n times. In order to simplify the no-
tation, henceforth we will omit the superscript n, while
quantities corresponding to the following step n + 1 of
construction will be denoted by a prime.

The fact that the four-dimensional parameter space
stays closed under exact RG transformations (no new

parameters are generated) corresponds to the number of
independent partial partition functions (which is in turn
determined by the topology of the lattice). Relations be-
tween the sets (Zq, Z2, Zs, Z4) and (J, Js, H, A) are ob-
tained by explicitly writing the expressions for the partial
partition functions at the nth stage of construction of the
&actal lattice, in terms of the renormalized parameters.
Explicitly, we have

z 3pJ+3pH+p J3+pA (7a))

Z = e PJ+PH —PJ3+PA (7b)7

Z,—= Z, (J, H, J„A) =c ~' -~ +—~"+~", (7.)
Z4= Zg(J, H, —Js, A) = e ~ ~ ~ —'+~ (7d)

To obtain the standard RG recursive relations for the
set of interaction parameters, it is necessary to Cake into
consideration terms of the Hamiltonian with further than
nearest neighbor interactions. Namely, it turns out [2]
that if one starts with the Hamiltonian (1) and applies
the exact RG spin decimation technique, two new param-
eters need to be included in the renormalized Hamilto-
nian. Consequently, the Hamiltonian in the nth stage of
construction is given by

'R = —J) S;S, —Js ) S;S~Sg —H) S;+A,
(i j) (~,~, It, ) 't

(6a)

where J3 is three-spin interaction, A is an additive con-
stant, and (i, j, k) denotes summation over three-spin
sets belonging to upward oriented triangles. In terms of
renormalized parameters, the Hamiltonian at nth stage
is simply given by

PA = C for the stage n+ 1 we can first write

sK'

sB'

sK'

SC'

Zg Z4
Z2Z3'

1Z2

Z3 Z4

Z,' fZ,')'
Z4 EZ,')
Z,'Z4 (Z,'Zs) '.

(8a)

(8b)

(8c)

(8d)

Expressions (7) and (8) are actually valid for al/ members
of the SG fractal family. Now, inserting (7) into (4) we

finally obtain

Z,'= 2e + (e + 'cosh(6K + 38)
+ e 'cosh(2K + 8)),

Z2 ——2e + fe + 'cosh(2K+ 38)
+ 2e + 'cosh(2K + 8)
+ e 'cosh(2K —8)),

Zs = Z2 (K, 8, ——Ks, C),
Z4= Z,'(K, 8, —Ks,—C).

(9a)

(9b)

(9c)

(9d)

Relations (8) and (9) represent the exact real-space RG
relations for the renormalized interaction parameter sets
fK K3 8, C) in two consecutive stages of construction
of the lattice. Except for the field dependent multiplica-
tive terms in front of braces in (9), these equations are
equivalent to the recursive RG relations obtained by Lus-
combe and Desai [2], whose relations are correct only in
the limit n —+ oo.

8. RG relations for the interaction parameters.
The H = 0 case

To recover the exact RG recursive relations for the zero
field case [1], one should first note that it is sufficient to
consider only two terms in the Hamiltonian (6), that is

Z=-J) SS, —A.
(~ 2)

(10)

Z~= Z~ + 3ZyZ2 + 4Z2,

Z2= Z~ Z2 + 4Zg Z2 + 3Z2.
(11a)
(11b)

Using (7) and (10) to introduce

4PJ
Z2' (12)

and using (11), we finally obtain

Also, we have now only two independent partial partition
functions Zq and Z2, which correspond to (+ + +) and

(+ —+) configurations of the vertex spins, respectively.
Substituting Zq ——Z4, Z2 ——Zs, and H = 0 into (4), we

obtain

Solving these equations for the interaction parameters
and substituting PJ = K, PJs ——Ks, PH = 8, and

I t —t+4
t+3 (13)
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Recursion relation (13) was first found by Gefen et cl.
via a different approach [1].

B. The 5 = 3 member of the SG fractal family

From Fig. 1 it can be observed that in the case 6 = 3,
at each stage n, there are n, = 6 constituent (n —1)th-
stage structures, and N~ ——7 interior spins. Recursion
relation for each of the four partial partition functions

contains 2N~ = 128 terms. As in the 6 = 2 case, each
term is a product of n = 6 partial partition functions
of the previous stage of construction, multiplied by the
term e ~ "l~+, where b(k, i) is given by 3. The terms are
determined by considering the corresponding diagrams
presented in Fig. 3 (instead of all 128 diagrams for each
recursive relation, we present in this figure only one mem-
ber of each distinct symmetry class). We obtain the fol-
lowing recursive relations for Zl and Z2.

Zl

Z2—

Z e p +6ZlZ e P + Z1Z2e PH+6Z1Z Z3e P +9Z12Z2e

+6Z12Z2Z3e PH+6Z Z Z e P +12Z1Z2Z3 P +2Z e

+3Z]Z2 Z4 + 3Z1 Z2Z3 + 9Z1Z2 Z3 + 6ZlZ2 Z3 + 9Z2 Z3 + 6Z1Z2 Z3 Z4e

+6Z2Z3Z4e + 6Z1Z2Z3e + 2Z2Z3e + 6Z Z3e + 3Z1Z3Z4e
+3Z3Z Z2e4PH + gZ2Z3Z e4PH + S6e4PH + 6S Z3Z2e6PH + Z3Z3eSPH

Z1Z2e + 2Z1Z2Z3e + 4Z1Z2e + Z Z2e
+Z13Z2Z4e-4PH + 2Z13Z2Z2e-4PH + 9Z2Z23S3e-4PH + 3zl Z25e-4PH

+2Z Z Z + 4Z1Z2Z3e + 2Z Z2Z + 2Z Z Z3Z4e

+2Z1Z2Z4e P + 4Z2Z3e P + 10Z1Z2Z e + Z Z2Z Z4

+2Z1Z2Z3Z4+ 8Z1Z2Z3 + Z2Z4+ 3Z2Z3 + 2ZlZ2Z3 + 3ZlZ2Z3Z4
+7Z23Z33+ 3Z24Z3Z4+ 2zlZ2Z3Z2e2PH + 4Zlz2Z33Z4e2PH + 8Z23Z2Z4e2PH

+2Zlz35e2PH + 4Z2Z34 2PH+ 4Z2Z33Z4 2PH+ 2Z2Z35 2PH+ Z23Z43e4PH

+2Z1Z33Z42e4PH + 5Z2Z2Z2 4PH+ 7Z2Z34Z4e4PH+ Z35Z4e4PH

+4Z2Z3 Z4 + 2Z3 Z + Z Z4

(14a)

(14b)

Zl —Zl + 6Z1 Z2 + 8Z1 Z2

+45Z1 Z2 + 48Z1Z2 + 20Z2 &

Z2 = Zl Z2 + 4Z1 Z2 + 18Zl Z2

+32Z1 Z2 + 53Zl Z2 + 20Z2 (15b)

Using (7) and (10) to introduce

—4PJ 2

Zl
(16)

and using (15) we find

Because of the lattice symmetry, the relations for Zs and
Z4 are obtained respectively &om Z2 and Zl, by substi-
tuting Zq', ', Z4, Z2,' ,'Zs, and H:; H. Simi-—
larly to the b = 2 case, these relations are exact for all
stages of construction of the lattice. While relations (8)
hold for all members of the SG family, finding the analogs
of (9) would present a straightforward but rather tedious
job. On the other hand, symbolically writing Eq. (7) as
Z = P(K), Eq. (8) as K' = P ~(Z'), and Eq. (14) as
Z' = g(Z, K), we can write K' = E (g(P(K), K)). In
this sense Eqs. (7), (8), and (14) implicitly contain the
real-space RG recursive relations for interaction param-
eters.

To recover the exact RG recursive relations [3] for H =
0, we first substitute (as in the b = 2 case) Zq ——Z4,
Z2 ——Zs, and H = 0 into (14), to obtain expressions

I 1 +4u+ 18u +32u + 53u + 20u5

1 + 6u + 8u + 45u + 48u + 20u6

Equation (17) was first obtained by Bhattacharya [3],
by application of the standard real-space RG decimation
technique.

C. General case of Snitely rami8ed fractals

In this section we present an overview of the intro-
duced approach for determining the exact RG recursive
relations, and formally generalize it to the case of an ar-
bitrary finitely ramified fractal.

A common feature of deterministic finitely ramified
&actals is that they can be constructed iteratively, by
joining at each stage a constant number n, of previous
stage lattices connected exclusively by a constant number
of vertices. In contrast, the number of spins shared by
constituent parts of infinitely ramified &actals increases
with the stage of construction. At a given stage of con-
struction of a ramified fractal, one can define a set of
2~~ partial partition functions (Z;), each correspond-
ing to a particular fixed configuration of the N~ vertex
spins, while the summation is performed over all the pos-
sible configurations of all the other spins. Because of the
symmetry some of the partial partition functions can be
equal to each other so that the total number of inde-
pendent functions is n~ & 2 ". Recursive relations be-
tween the partial partition functions (Z,', i = 1, . . . , n, )
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Z', e~ 6Z', Z',e~ Z', Z',e~ 6Z', Z,'Z, e~ SZ', Z',e~ 6Z', Z',Z,e~

444,
6Z', Z,'Z', e iBZ,Z,'Z, e~ BZ,'e~ 3Z, Z,'Z, 3Z', Z, Z,'9Z, Z,'Z',

6Z,'Z',

~@+ ~'A
3Z,'Z 6Z, Z', Z', Z P 6Z,'Z, Z d 6Z,Z,Z,'d

1'MP /x/~
BZ', Z,'d 6Z,'Z', d 3Z, Z,'Z, e~ 3Z,'Z, z', e~ 3Z', Z', Z,e~ 6Z,'Z', Z,e~

A,/X/X

Z,'e~ 6Z, Z', Z,'d Z,'Z,'d

in the (n+ 1)th stage and the partial partition functions
(Z, , i =1, . . . , n, ) in the nth stage of construction, are
obtained by associating to each recursive relation a series
of diagrams representing the (n+ 1)th stage of construc-
tion with the substructure on the level of the nth stage.
On all the diagrams corresponding to the recursive re-
lation for one particular partial partition function Z,',
the vertex spins are fixed in the corresponding particu-
lar spin configuration, while the configurations of interior
spins (which simultaneously represent vertex spins of the
nth-stage structures) vary from diagram to diagram. To-
tal number of diagrams for one recursive relation is 2
representing the number of possible configurations of the
N~ interior spins. To each diagram (k = 1, . . . , 2~~)
we associate a product of n partial partition functions
of the nth stage of construction, multiplied by the term
es("")'H, where b(k, i) is given by 3. The recursive re-
lation for a given partial partition function Z, is now
represented as the sum of 2N~ terms corresponding to
diferent diagrams, that is

2Ng ~Z

g -,s(k, ')PH Z (e,&, )j e
A:=1

(18)

/VVX R,R,R, /VM R.R,R,
Z', Z.e~ 2Z', Z, Z.e~ 4Z'tz,'e~ Z', Z.'e~

RAP PR.R,
Z', Z.'Z, e~ 2~Z.'e~ 3Z', ZlZ. e~

k k, k k, k, k, k,
/VVX /VIVX /VVX MR. /VVX /V/VX AP R,

6Z'tz,'Z, e~ 3Z, Z.'e~ 2Z', Z,'Z'.e~ 4Z, Z,'Z, e~ 2Z', Z,Z',e~ 2Z', Z'Z.z,e~ 2Z, Z.'Z, e~

where p&*& a(E, k, i) = n„and i = 1, . . . , n, . Because of
the symmetry some of the terms in the sum in (l8) can
be equivalent, and we can write

k + k,
Rn.A r r n, Rz/m /vs r /vx &PA r r A

Z' —X drk ice ("'&)PH
' Za(e, k, i)

%=1
(19)

2Z.'Z, e~ 2Z:Z,e~ 2Z, Z*.Z.'e~ 4Z,Z+e~ 4Z, Z,'Z', e~ Z', Z, Z,'Z, 2Z, Z,'Z, Z,

NAP
2zf Zgzg 6Z, ZlZl Z.'Z. 3Z,'Zl 2Z Z Z,

' 3Z ZlZlZ. ZlZl

AlM~
2zlzl

D,l&X A7U'X P,RA Pj'XP
2z,'z,' 3Z.'z.z, 2z,z,'z,z,*d 2z,z,z.'z.d 2z,z,z,'z,~

4, -
2z:z,*z,P" 4Z,'z,'Z,P'

AWE, MR
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FIG. 3. Diagrams associated with difFerent terms of the
recursive relations (14) for the partial partition functions of
the 6 = 3 member of the Sierpinski-gasket family. Instead of
all the 128 terms for each of the four recursion relations we
depict only one representative of each of the (a) 27 distinct
symmetry classes for the recursive relation (14a), and (b) 56
classes for the relation (14b). The open circles here represent
the down oriented spins. Recursive relations for Z3 and Z4 are
obtained from (14b) aud (14a), respectively, by substituting
Zg ', ,'Z4, Z2 ', ', Z3, and H::—H.

Z=) c(i)Z;, (20)

where c(i) is the number of times the partial partition
function Z; is found in the set (Z;, i = 1, . . . , 2""}.

The recursive relations for the partial partition func-
tions, together with the relations between these functions
and the set of interaction parameters (K;) (which repre-
sent the parameters of the standard real-space RG pro-
cedure), implicitly contain the recursive relations for the
set of interactions (K;,i = 1, . . . , n, ). We have demon-
strated this fact by recovering the exact RG formulas for
SG &actals with b = 2 and 6 = 3, for H = 0 [2,3], and
for b = 2, when H g 0 [2], that were obtained by the
standard RG decimation technique.

We conclude this section by noting that the set of all
independent partial partition functions can be regarded
as a basis in the parameter space of real-space RG trans-
formations, obtained by nonlinear transformations of the
original basis (represented by the interaction parame-
ters). In this new basis the RG recursive relations acquire
a very simple (polynomial) form. We now proceed to the
higher members of the SG fractal family, and to the ques-

where n; & 2 ~ . These relations are exact for all stages
of construction of the lattice, that is, they are valid for
small systems as well as in the thermodynamic limit. The
total partition function of the system at each stage is
determined by
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tion of kactal-to-Euclidean crossover of thermodynamic
response functions.

III. FRACTAL-TO-EUCLIDEAN CROSSOVER OF
THE THERMODYNAMIC RESPONSE

FUNCTIONS

In this section we will first address the question of cal-
culating the response functions from the exact recursive
relations for the partial partition functions, and then we
willpresent our datacalculated for 2 & b & 15, for H = 0,
and2&b&8, for HQO.

In the case of members of SG fractal family with b ) 3
the number of diagrams corresponding to one recursive
relation is 2 ~, where NH = +

~
+ —3. Already

for b = 4 the number of interior spins is N~ ——12, so
each of the recursive relations for the four partial parti-
tion functions is determined by 4096 diagrams. The dia-
grammatic technique can, however, be computerized, and
we have developed a computer algorithm for determin-
ing coefficients d(k, i) and exponents b(k, i) and a(E, k, i)
(k = 1, . . .n;;i = 1, . . .4;I. = 1, . . .n, ) in recursive rela-
tions (19). In this way we have obtained results for b & 8,
in the case H g 0, and for b & 15 when H = 0 [11].The
actual obtained data are too massive to be presented here
in the form of tables (each recursive relation for b = 8,
H g 0 consists of approximately 35000 terms), but can
be obtained from the authors upon request in the form
of data files.

As it was mentioned in the preceding section, re-
lations (7) and (8) between sets (Zi, Z2, Zs, Z4) and
jK, Ks, B,Cj are valid for all members of the SG frac-
tal family (for 2 & b & oo), so that the RG recursive
relations between parameters (K,Ks, B,C) in two con-
secutive stages of construction can, in principle, be ob-
tained &om the corresponding recursive relations for the
partial partition functions. Such explicit analytic expres-

A. Calculation of the response functions

Specific heat, magnetization, and susceptibility per
spin at the nth stage of fractal construction are given
by the general formulas

1 21BzZ 1BZ
N kH T

Z BT2 + 2k &TZ BT

, t'1 BZI'
(Z BT) (21a)

kHT 1 BZ()=
kHT 1 BzZ

N ZBH2
W

(1 BZi'
(Z BH)

(21b)

(21c)

where N is the total number of spins. From here one
can proceed to calculate the partition function .at a
given stage (for different values of temperature and field),
and then perform numerical differentiation to calculate
the response functions. It turns out, however, that re-
quirements for computational precision rapidly increase
with system size (higher stages of construction and/or
higher members of the fractal family). In fact, quadruple
FORTRAN precision REAL*16 is not sufiicient to analyze
our data. This problem can be solved by finding the ap-
propriate recursive relations for the field and temperature
derivatives of the partial partition functions. Formally,
differentiating (19) with respect to temperature we ob-
tain

sions, however, become too lengthy, already for b = 3 in
nonzero field. Nevertheless, the thermodynamic response
functions at each stage of construction can be obtained
directly &om the matrices a, b, and d that determine the
recursive relations for the partition functions.

and

' =) d(k i)ep (") ' +) a(E k i)— Z ( '"")
lk=1 /=1 e'=1

(22a)

., pHs(s;) t (Hb(k, i) ) 2Hb(k, i)
k&T

+z

+) a(l, k, i)
e=l
~z TL g

y) a(E, k i) )a(E', k i) — Z (

eye el I —1

and differentiating (19) with respect to field we find

2Hb(k, i) 1 BZ& . ( 1 BZg) 1 B2Zg

ksT Zt BT Zg BT Zg BT2

(22b)

I fbi

) d(k i) PHb(k, i)
BH

Az

Pb(k, i) + ) a(E, k, i) Zq,(—
Zg BH) (22c)
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A g

' —) (k i)e~ 'l""l P b(k, i) + ) a(t', k, i)/+2
%=i

1 &9Zg g ~ . 1 0Zg) a(E', k, i)
eye1=1

+r
a{I",k, i)
pl I

~I ~ ~ ~

e =1
(22d)

B. Results and discussion

In Fi . 4 we presen e st the specific heat and susceptibility
k t (b = 2) for several initial stages

~ ~ ~

of the Sierpinski gasket
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FIG. 5. (a) Saturated specific-heat curves (large n) for the

members of the Sierpinski-gasket family with 2 & b & 15, and

(b) the specific-hest curves for the corresponding generators
(equilateral wedges of the triangular lattice). Specific heat
of the Ising chain and of the infinite triangular lattice are
also shown for comparison. For large generator base 6 the
specific-heat curves of infinite fractals become very similar to
those of the corresponding generators, and are thus explained
by finite size scaling. Irregular behavior of the Schottky peak
maxima, for the first few members, is attributed to strong
dependence of percentages of spins with different coordination
numbers, on the stage of construction.

FIG. 6. Logarithm of susceptibility of the members of the
Sierpinski-gasket family with 2 & 5 & 8 for (a) infinite fractal
lattices and (b) for the corresponding generators. Suscep-
tibility of the Ising chain and high temperature susceptibil-
ity of the triangular lattice are also shown for comparison in
both cases. While finitely ramified fractals do not exhibit a
phase transition at nonzero temperatures, susceptibility ap-
pears to be surprisingly large before temperature reaches the
zero value (for all b) indicating early appearance of long-range
spin-spin correlations, in contrast to the case of generators
(n = 1).

the long range spin-spin correlations that exist in the infi-
nite fractal lattices at finite temperatures [2,4]. A better
impression about the crossover behavior of the &actal
susceptibilities can be gained from Fig. 7 in which 1/y is
drawn versus temperature for the first seven members of
the SG &actal family. It should be noted that our data
(for C and y) are obtained from exact recursive relations,
without using numerical differentiation. In this sense all
the curves may be regarded as exact, since any region
may be magnified with arbitrary precision.

In conclusion, we can state that our results make
expectation about the smooth &actal-to-Euclidean
crossover for the thermodynamic response functions more
plausible. Note, for instance, that no such conclusion
could have been drawn if only the specific-heat curves
for the Brst five members of the &actal family were avail-
able [see Fig. 5(a)]. In this respect, our results are closely
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FIG. 7. Inverse susceptibility for the first seven members

of the Sierpinski-gasket family, together with susceptibility of
the Ising chain and the triangular lattice.
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related to the rigorous proof [14,15] that the free energy
per spin of the Ising model system on the &actal lat-
tices under study converge to the free energy per spin
of the same model situated on the Euclidean triangu-
lar lattice. However, when the latter proof was provided
a word of caution was made concerning the possibility
of a smooth crossover of the thermodynamic response
functions (because of the simple fact that response func-
tions are the second derivatives of the &ee energy). Now,
on the grounds of presented 6ndings, one can rightfully
expect the smooth crossover for the thermodynamic re-
sponse functions as well.

Independent studies have also been performed [16] on
the fractal-to-Euclidean crossover of the Ising model on
a family of hierarchical lattices. The main diBerence be-
tween these lattices and the Sierpinski gasket family is
that they display critical behavior at nonzero tempera-
tures. Evidence was found [16] that the corresponding
sequence of critical exponents converges towards the ex-
act values of the Euclidean lattice. A rigorous proof of
the existence of the thermodynamic limit for the free en-
ergy of various spin models on hierarchical lattices was
also given in [17].
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