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Space-time evolution of a beam-plasma instability in strongly correlated plasmas
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We examine the interaction of an electron beam penetrating a strongly correlated plasma. Conditions

are established for this unstable interaction to lead to an absolute instability. We propose the absolute

instability as a means for probing the strongly correlated plasmas.
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The collective-mode structure of a strongly correlated
(strongly coupled) plasma has characteristic features [1],
distinguishing it from the mode structure of a weakly
correlated system, which is well described by the Vlasov
or random-phase approximation. Most importantly, the
dispersion (Bco/()k) of the plasmon mode is diminished
and becomes negative at a critical value of the coupling
parameter. This latter represents the ratio of the poten-
tial to kinetic energy and is conveniently given either as
I =e /kii Ta (a being the Wigner-Seitz radius) or as the
plasma parameter y =1/4~ND defined through the num-
ber of electrons in the Debye cube ND=n/~D, where
tcD ="(/4mPne is the Debye wave number. Strongly cou-
pled plasmas occur under various physical circumstances.
Here we consider strongly coupled electron plasmas and
study the high-frequency dynamics of a classical plasma.
Our description of the physical scenario and our con-
clusions remain valid both for strongly coupled ionic
plasmas and for strongly coupled degenerate electron
plasmas as well. (A conversion of the coupling parame-
ters pertaining to degenerate and classical plasmas, re-
spectively, can be easily effected [2].)

The critical value of the plasma parameter y has been
determined by computer simulations [3], by theoretical
calculations [4,5], and by experiments on alkali metals
[6], converging to the value y =30—50. When an electron
beam penetrates a plasma, a beam-plasma instability de-
velops. In this Rapid Communication we point out that,
due to the change of the dispersion, the space-time evolu-
tion of the beam-plasma instability changes character as
the correlations become sufficiently strong.

The physical reason for the negative dispersion in the
strongly correlated system is that the correlations induce
a quasilocalization of the particles in a pattern that exhib-
its a short-range order. It is the interaction of the beam
particle with the ordered structure that is ultimately re-
sponsible for the change of the character of the instabili-
ty.

The space-time evolution of the instability in an ob-

a
e(kp cop+ kp V)=0 6(kp cop+kp V) =0 (2)

We consider the interaction of an electron beam
penetrating a strongly correlated plasma. We model the
present beam-plasma system by two plasmas in relative
motion up with difFerent temperatures 1/pb and 1/p, and
different densities nb and n. Hence, these two plasmas
have two different plasma parameters yb and y. The
dielectric function for the present beam-plasma system is
given by

(p(k)yp(k, co)
e(k, co) = 1—

1+Q(k, co)(p(k)yp(k, co)

(p(k)ypb (k, co ku p)—
1+Qb(k co kup)y(k)gpb(k co ku(i)

with yp(k, co) and Q(k, co) denoting the noninteracting
Vlasov density response function and the dynamical local
field, respectively; (p(k) =4me /k is the Coulomb poten-
tial. The dynamical local field describes the correlation

server frame moving with velocity V, in the nonrelativis-
tic limit, is described [7] by the Green function

G(x, t)
d~' dk ei(kx' co'tj—

L 2& F 2' e, (k, co')

d~ dk ei(kx —cot)

L 2K F2' e(k, co+kV)

Here x'=x + Vt; e(k, co) is the dielectric function for the
system under consideration. L and F are the Laplace and
Fourier contours in the co and k planes, respectively. The
behavior of the Green function G(x', t) is totally deter-
mined by the analytic nature of the dielectric function
e(k, co). The time asymptotic form of the Green function
gives the pulse shape in the laboratory frame. It is
known [7] that the pulse shape in the laboratory frame
can be deduced from the analysis of the pinch-point
( kp, cop) condition:
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contribution to the dielectric function, as formulated in
Refs. [1,2,5,8]. In the present paper, we will only con-
sider a special case where the electron beam is weakly
correlated yb &(1 and its temperature is much less than
that of the strongly correlated plasma dg/P& «1. Then
the dielectric function reduces to

2

S 1.2
0)

CC
0.8

e(k, co) =l- b

(co —kvo )

p( k)yo( k, co )

1+Q(k, co)y(k)yv(k, co)
0.4

=b [co —(2a —3)k +2igcok ], (6)

where a and q essentially determine the plasmon group
velocity and damping. a and q as a function of the plas-
ma parameter y have been calculated [4,5]; the results
presented here (Fig. 1) are based on the calculation of
Ref. [5]. The warm Vlasov plasma is obtained in the lim-
it @~0 where a=1.5 and g=0. As y increases, the
plasmon group velocity decreases. Above the critical
value y & 50, the plasmon group velocity becomes nega-
tive. The plasmon damping increases as y increases.

The interaction between the beam waves and the plas-
ma waves in the strongly coupled plasma, as shown in
Fig. 2, is described by Eq. (6). As can be seen, in the
strongly correlated plasma where y )y„;„ the plasmon
group velocity can become opposite of that of the elec-
tron beam waves, thus giving rise to the possibility of an
absolute instability. The absolute instability results from
the phase resonant interaction between the forward beam
waves and backward plasma waves. We now establish
the conditions for the beam-plasma instability to become
absolute.

Here b = n& /n, and k, v, and co are normalized to aD, the
electron thermal velocity uT=&1/mP, and the plasma
frequency co~=+4nne /m. , respectively. The zeros of
this dielectric function are given by

(~ kuv ) [—k —Z(co/k)+ Q(k, co)Z(co/k)]

=b [k +Q(k, co)Z(co/k)], (5)

with Z denoting the plasma dispersion function [9]. In
the long-wavelength limit, i.e., k /~D && 1, the above
equation becomes

(co —kvo) [co —1 2ak—+2iqcok ]
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FIG. 2. Redo vs Rek, as given by Eq. (6). 2 and B denote
Redo for the weakly (y =0) and strongly (y =87) correlated plas-
mas; C gives the beam wave.

We begin with an analysis of the solutions to Eq. (6)
for the real k. The results are presented in the complex co

plane in Fig. 3. The branch with co; & 0 indicates that the
beam-plasma system exhibits an instability. The max-
imum growth of this instability occurs when condition
~kvo~ =1 is met. Note that Eq. (6) is an adequate repre-
sentation to Eq. (5) only in the long-wavelength limit.
Hence, in order for our above analysis and the following
to be valid, the velocity of the electron beam should be
much greater than the thermal velocity of the strongly
correlated plasma. The electron number, on the other
hand, should be much smaller than that of the strongly
correlated plasma so as not to disturb the strongly corre-
lated plasma too much. The beam parameters b =0.001
and Uo = 10 are chosen to meet above conditions.

We employ the pinch-point analysis [7] to determine
the nature of the space-time evolution for the present
beam-plasma system. The pinch-point analysis consists
of mapping the complex co plane into the complex k
plane. Through this analysis, the solutions to Eq. (2) can
be easily determined. It is obvious from Eqs. (2), (5), and
(6) that the asymptotic form of the Green function is
influenced by the plasmon group velocity a and damping
g. The damping in the strongly correlated situation is al-
most exclusively collisional, moderated by the increased
tendency of the particles to localize and to avoid their
neighbors; Landau damping is negligible. We have per-
formed the pinch-point analysis for the present beam-
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FICx. 1. The plasmon group velocity a and damping g as a
function of the plasma parameter y.

FICx. 3. Numerical solutions to Eq. (6) in the co plane for

0.0 & k & 0.2 for y =87.
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FIG. 4. Convective-absolute boundary in the a—g plane, to-
gether with the results for o. and g as a function of y (dashed
curve).

FIG. 5. The pulse shape for the beam-plasma system. Solid
and dashed curves give the pulse shape in the strongly (y =87)
and weakly (y =0) correlated plasmas.

plasma system: it is found that lowering a moves the
trailing edge of the pulse shape to the negative direction,
while increasing g moves the trailing edge toward the op-
posite direction. Hence, under favorable conditions, the
trailing edge of the pulse shape lies in the negative side of
the origin, and the beam-plasma instability becomes abso-
lute [7]. In Fig. 4, we present the condition for uo =10
and b =0.001. In the a-q plane, these conditions form a
boundary line separating convective instability from ab-
solute instability for the present beam-plasma system.

In the strongly correlated plasma, e and g are deter-
mined by the plasma parameter y. Plotting a and g as a
function of y yields another curve in Fig. 4. We find
that the present curve intersects with the boundary curve
which separates convective from absolute instabilities at
the point corresponding to y -60. Calculations based on
other analyses of the plasmon dispersion [1,4] would give
somewhat lower, but not substantially different results.
Therefore, for y & 60, the beam-plasma instability in
strongly correlated plasmas is absolute for the present
choice of the parameters.

As mentioned earlier, the pinch-point analysis not only
distinguishes convective from absolute space-time evolu-
tion, but also yields the asymptotic form of the Green
function G(x', t) or the pulse shape. We present the
pulse shape for the beam-plasma system in the weakly
and strongly correlated plasmas in Fig. 5. As can be
seen, the trailing edges of the pulse shape in the weakly
correlated plasma such as y =0 and in the strongly corre-
lated plasma such as y=87 lie on the opposite sides of
the origin, revealing the nature of the space-time evolu-
tion for the corresponding beam-plasma system. The
leading edges, however, are in the same place, despite the
differences between these two different plasmas. As
demonstrated in a previous study [11],the leading edges
always reside in the same place as long as the beam plas-
ma is cold. It has been shown that the thermal motion in
the electron beam would slow down the leading edge.
Hence, this would not interfere with the nature of the

space-time evolution of the present beam-plasma system.
The distinguishing feature between an absolute and a

convective instability is the bandwidth of the observed
frequency spectrum. For an absolute instability it has
been shown [10] that an absolute instability corresponds
to a narrow-band emission centered around the pinch-
point frequency in the laboratory frame. Meanwhile, a
convective instability corresponds to a broadband emis-
sion. We propose the difference in the emission spectrum
to be used as a means to probe and identify strongly
correlated plasmas. Depending on the actual nature of
the plasma to be experimentally studied, different ways of
producing, injecting, and designing the electron beam can
be envisioned. In particular, a degenerate electron gas in
a solid would serve as an ideal target [6]:electron beams
could be injected into such a plasma by strong electric
fields. As emphasized in our analysis for the probing pur-
poses, the electron number density in the electron beam
should be much smaller than the density of the main
strongly correlated plasma, so that the latter would not
be disturbed by the former too much. We expect that the
present paper will be a useful guide to the planning and
interpretation of such probing experiments.

To summarize, we find that particle correlations pro-
foundly affect the manner the beam-plasma system
evolves with time. As the plasma parameter increases,
the nature of the beam-plasma instability is changed from
convective to absolute, at a critical value of the plasma
parameter. This phenomenon may provide a useful ex-
perimental approach to probe and identify strongly corre-
lated plasmas.
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