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Bubbles and stripes in dipolar fiuids
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Dipolar Auids exhibit phase behavior as a function of the dimensionless magnetic energy X& ("magnet-

ic Bond number") and concentration. I propose a phase diagram for such Auids, in an infinite-aspect-

ratio cell, for large Bond numbers. For concentrations P « Ns '~, a two-dimensional lattice of magnet-

ic bubbles should appear, while for higher concentrations, a striped phase has a lower energy. The as-

pect ratio of the stripes, while asymptotically constant at high concentrations or Bond numbers, shows

significant variation near the transition. I expect these results to be relevant to pattern formation in

magnetorheological Auids, and possibly to ferroQuids as well.

PACS number(s): 82.70.Dd, 75.50.Mm, 75.70.Kw

Perhaps the most common frustration-inducing in-
teraction in nature is the dipolar interaction. In most mi-
croscopic contexts, dipolar interactions arising from elec-
trical or magnetic polarizations are quite weak compared
with thermal energy scales, and are thus largely ir-
relevant to the physics. On mesoscopic or macroscopic
length scales, on the other hand, dipolar interactions can
be quite strong compared to competing energy scales, and
can dominate pattern formation on these larger length
scales, as in the domain structure of a ferromagnet.

Of course, the domain structure of a ferromagnet is
largely determined by kinetic effects, due to the ease with
which Bloch walls separating domains of differing magne-
tization may be pinned by impurities. Pattern formation
in dipolar systems is thus more easily studied in liquid
systems, of which a variety have been recently explored.

(1) Electrorheological (ER) fluids consist of suspensions
of electrically polarizable particles of size 0.1 —100 pm in
insulating solvents [1]. These fluids develop fibrillated
and columnar structures parallel to a sufficiently strong
electric field. However, the long-range repulsive part of
the dipolar interaction is suppressed by the presence of
constant potential boundary conditions, which lead to
significant image forces [2]. I will not consider this sys-
tem further in this paper.

(2) Monolayer domains of polar amphiphiles at an air-
water interface show patterns that are determined by the
long-ranged dipolar repulsion [3]. Recent studies have
shown that the phase diagram of these systems is
predominantly determined by amphiphile concentration
[4]. At low concentrations, the lowest-energy state con-
sists of a lattice of "bubbles, '* while at higher concentra-
tions, the lowest-energy state is a striped state. Finally,
at high concentrations, an "inverted bubble" phase, in
which vacancy regions form a lattice, is expected to have
the lowest energy.

(3) Ferrofluids are suspensions of small ( —100 A) per-
manently magnetized particles in a nonmagnetic solvent.
These Auids are different from the ER fIuids mentioned
above in that the magnetic moments are permanent, and
thus thermal energies must always be at least of the order
of magnitude, if not greater, than magnetic energies, in

order to prevent flocculation of the suspension [5]. In a
sufficiently strong field, the magnetic moments rotate in
the direction of the field, leading to a largely field-
independent macroscopic magnetization. These Auids
show a dynamical transition in which a bubble of Quid
confined between glass plates evolves into a "la-
byrinthine" pattern [6].

(4) Magnetorheological (MR) fluids are a close analo-
gue to ER Auids. If a ferroQuid is dispersed, using a sur-
factant, in a third phase, then one has small approximate-
ly micrometer-scale micelles of magnetizable Quid
suspended in a nonmagnetizable fluid [7,8]. The interac-
tion energy between these bubbles may be very much
larger than k~ T, since the magnetic moment of these mi-
celles is induced by the external field. A way of quantify-
ing the distinction between cases (2), (3), and (4) is by us-

ing the "magnetic Bond number, "
M L,

B 0

where M is the magnetization (or polarization for amphi-
philes) per unit volume, L is the extent of the system in
the direction parallel to the field, and o is the surface ten-
sion of the dipolar Quid. In the Inonolayer systems, L is
on the order of molecular dimensions, and one expects
N~ &&1. For the ferroAuid systems, one typically has
N~ —1. In the magnetorheological Auids, the magnetic
interaction between the micrometer-scale micelles is typi-
cally much larger than any other interaction scale. This
implies that the surface energy will be of the order of
magnitude of M rd, where rd —1 pm is the micelle radius
[2,9]. Thus in the MR fluids we expect Nz -L /r& ))1.

In this Rapid Communication I shall be concerned
with the lowest energy structure of a dipolar Quid in the
low-concentration limit. The approximations that I will
use are valid, provided that the concentration P ((1 and
that the aspect ratio of the dipolar domains P=2r~/L is
small. Here 2r~ is the size of the domain in the direction
perpendicular to the field. This latter criterion restricts
us to the case of high magnetic Bond number, although I
expect that my results can be qualitatively extended to
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Nz —1. I shall also suppose that the cell aspect ratio is
infinite; i.e., the extent of the cell in the direction parallel
to the field will be taken as L, while the two-dimensional
extent will be taken as unbounded.

My principal result is that, for low concentrations, the
preferred state is a hexagonal lattice of bubbles, while for
high concentrations, the preferred state is striped. Quali-
tatively, this agrees with the results for Nz «1 reported
by Hurley and Singer [4]. However, the phase boundary
between these two regions goes to zero concentration as
N~

' for large magnetic Bond number. In practice, this
probably means that labyrinthine patterns, which are
disordered striped patterns, will be seen in equilibrium
MR Auids over almost the entire range of concentrations.

We will suppose that the domains of dipolar Auids may
be modeled either as spheroids with their axis of symme-

try parallel to the field direction (bubbles), or as columns
of elliptical cross section perpendicular to the field
(stripes). In the former case, the radius of the spheroid
parallel to the field is c =L/2, and its radius perpendicu-
lar to the field is rj. In the latter case, we take the ellipti-
cal radius parallel to the field to be c =L/2, and its ra-
dius perpendicular to the field to be r~. In each case, we
define the aspect ratio of that domain as @= rile. By re-
stricting the domain shape to be ellipsoidal, we insure
that the demagnetizing field of a single domain is con-
stant within that domain. We expect this restriction to
work, provided that P& 1, especially if the dipolar fiuid
does not wet the walls of the cell. For P) 1, this approxi-
mation misses logarithmic terms in the demagnetization
factor, which are crucial in the pattern formation [4].

Besides this restriction of the shape of the domains, we
also approximate the interaction of neighboring domains
by supposing that they simply add constant fields at one
another's respective positions. This should be valid at
low concentrations, where the typical distance between
domains r ))r~.

The surface energy per domain is simply Ez=o.S,
where o is the surface energy per unit area and S is the
surface of the domain. The demagnetization energy EM
is more subtle. If the magnetization is in the linear re-
gime, with M= [(p—1)/4~]H, then

One can easily estimate the energies of a two-
dimensional lattice of bubbles or of stripes, in the limit of
small aspect ratio P. The demagnetization arising from
neighboring domains contributes an energy per unit quid
volume E-M V/r -M P /13 for a bubble lattice, and
an energy per unit volume E —M A/r —M P /P for a
stripe lattice, where r is the lattice spacing and A is the
cross-sectional area (or volume per unit length) of the
stripes. The surface energy per unit volume is also in-

versely proportional to P. For the striped lattice, we thus
expect the surface energy to be dominant in determining
the shape of the structure for P«N~ ', while for the
bubble lattices, we expect the surface energy to be dom-
inant for P «N~

For both of these cases, the energy at larger concentra-
tions is -M, so a more precise calculation is necessary
in order to determine which of the two structures has a
lower energy. However, on the low concentration side of
this boundary, it is clear that for stripes, P-Nz '~ and
E-M N~ ', while for the bubbles, P-N~ '~ and
c-M Nz, where I have balanced surface energy with
the demagnetzation of a single domain. Thus we expect
that for P « N~ ', the lowest-energy state will be a bub-
ble lattice.

When one must take into account the demagnetizing
field of neighboring domains, the calculation is somewhat
more involved. I have computed energies and aspect ra-
tios P for both the striped lattice and also for square and
hexagonal bubble lattices. I used the well-known sums

[4]

(4)r g =9.033 6211=
s rn

for a square lattice with spacing r, where the sum is over
all points r„of the lattice and

10

10

(p —1)VW
gm [1+(p—1)nl+ [(p —I)/4']I ]

(2)

where Vis the volume of the domain, n~~(P) is the demag-
netization factor of the domain, & is the applied magnet-
ic field, and the term proportional to a lattice dependent
factor I (P, P) includes the demagnetizating effect of
neighboring domains. On the other hand, if the magneti-
zation is saturated, with

I
M

I
=M„ then

102

10
0.02 0.04 0.06 0.08 0.1 0

EM =4 AM n
~~

(~ + r
(3)

where I have omitted constant terms, and I is again a
function of P and P. To lowest order in g=(p —1)/4',
these two energies are identical up to overall constants
[10]. At higher orders, Eq. (2) is explicitly dependent
upon y; thus, for simplicity, I only study Eq. (3).

FICx. 1. The zero-temperature phase diagram of a dipolar
liquid, as a function of concentration P and magnetic Bond
number N~. At low concentrations, a hexagonal lattice of mag-
netic bubbles has the lowest energy. At higher concentrations,
the preferred state is a striped phase. At high Bond numbers,
the critical concentration P, ~ N~ '~2.
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FIG. 2. Aspect ratio P vs concentration P for Bond number
N~ =1000. On the left is the aspect ratio in the bubble phase;
on the right is the aspect ratio in the striped phase.

r g z
=3.289868 .1

rn
(6)

It was also necessary to use standard formulas for the
demagnetization factors of spheroids and elliptical
cylinders, and for their surface areas [11].

The phase diagram is shown in Fig. 1. The striped
phase is preferred at concentrations higher than

P, (N~)-X~ ' . Below this concentration, the hexago-
nal lattice of magnetic bubbles is preferred. Actually, at
Bond numbers Xz —1, this approximation predicts that
the phase boundary turns around, so that the striped
phase persists to low concentrations. However, in, this re-
gime, the aspect ratio P- 1, so the approximations used
in computing the demagnetization factors are breaking
down.

r g =11.034 1751=
H

for a hexagonal lattice with spacing r, where the sum is
over all points of the lattice.

For the striped lattice of spacing r, we have

FIG. 3. Aspect ratio P vs Bond number Ns for concentration
/=0. 05. On the left is the aspect ratio in the bubble phase; on
the right is the aspect ratio in the striped phase. The transition
value of the striped aspect ratio is roughly twice its asymptotic,
high-Bond-number, value.

In Fig. 2, the aspect ratio as a function of p is shown
for Nz =1000. In Fig. 3, a complementary display of the
aspect ratio as a function of 1V& is shown for fixed

P =0.05. The reader should note that although the
asymptotic aspect ratio in the striped phase is constant,
as predicted by Lemaire, Grasselli, and Bossis [8] the as-
pect ratio still shows a residual dependence on iV~ quite
deep into the striped phase; the transition value of P is
approximately twice the asymptotic value. Thus
surface-energy efFects may be observable, even in relative-
ly concentrated suspensions, or at relatively high magnet-
ic Bond numbers.
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