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Measurement of reflection of traveling waves near the onset of binary-fluid convection
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We present direct experimental measurements of the re8ection coeflicient r and of the group
velocity 8 for traveling-wave convection in a binary Ruid. We measure the dependence of r and 8

on the separation ratio g. Theory predicts that, for small enough
I Q I, r should vary as

I @ I

1/2

This dependence was not found. Instead, the value of r is almost constant over the range —0.136 &
—0.0096. We conjecture that the variations in concentration near the cell's end walls due to

the traveling waves are responsible for the discrepancy.

PACS number(s): 47.27.Te, 47.20.Bp

It is widely accepted that Rayleigh-Benard convection
in a binary Huid is an appropriate system to study pat-
tern formation and selection due to a Hopf bifurcation
[1,2]. This system is described by four dimensionless pa-
rameters: the Rayleigh number B, which is proportional
to the temperature difference across the Huid layer; the
Prantdl number Pr, which is the ratio of the viscosity v to
the thermal difFusivity K; the separation ratio g measur-
ing the coupling between the temperature and the con-
centration gradients produced by the Soret effect; and
the Lewis number L, which is the ratio of the concentra-
tion diffusivity D to r. All parameters are easily accessi-
ble and are very well controlled experimentally, making
convection in a binary fluid an attractive experimental
system.

The traveling-wave (TW) state, which appears as a re-
sult of a primary Hopf bifurcation, exhibits a remarkably
rich variety of pattern dynamics common to a number of
difFerent nonequilibrium systems [3]. It was shown both
experimentally [3,4] and theoretically [5—7] that the ex-
istence of end walls in the direction of TW propagation
has a profound effect on the convection onset as well as
on the stability of the TW in the convectively unstable
regime. For a geometrically conGned system an addi-
tional parameter, namely, the reHection coefficient r, is
needed to characterize the convection onset [5]. In a H-

nite system the spatial growth of the wave amplitude is
balanced by losses due to reflection at the end walls.

A direct consequence of the Gnite geometry is a shift of
the convection onset ~, = &T, compared with theAT, —AT

onset for an infinite cell, occurring at LT . According
to Cross, the physical mechanism causing the reHection
is the local heating of the end wall as the TW impinges
upon it [5). Thus, the value of the reffection coefffcient
depends on the relative values of the thermal properties
of the Huid and the walls. Based on this assumption,
Cross was able to calculate both the magnitude and the

g dependence of the reffection coefficient [5,8]. Analyt-
ical calculations were performed for unphysical free slip
and permeable boundary conditions [5,7]. Recently, nu-

merical calculations were published for realistic boundary
conditions [8]. Note that this approach neglects the vari-
ations in the concentration Geld near the wall and the
corresponding boundary conditions; i.e. , the boundary
conditions at the end walls are taken to be the same as

in a pure Huid [5,7].
These theoretical efforts provide an opportunity for a

quantitative experimental veriGcation of the theoretical
predictions, particularly for the expected g dependence
of r. Previous experiments [9,10] consistently indicated
that r is independent of @, even down to very small val-
ues of

I
@ I) 0.01. On the other hand, the qualitative de-

pendence of r on the thermal properties of the sidewalls
agrees well with the theory [10]. Another experiment
[ll], performed in the range of very negative values of
@, —0.262 ) @ ) —0.558, also indicated that r is about
constant within the experimental resolution.

In this Rapid Communication we present a direct ex-
perimental determination of r as a function of g. We
measured, in the same experiment, all the relevant pa-
rameters for the determination of the reflection coeScient
from the shift in the convection onset. These are LT
the threshold temperature difference for the onset of con-
vection in an infinite layer; AT„ the temperature differ-
ence at which patterns are first observed; 8, the group
velocity of the TW; and wp, the characteristic time scale
of the convection. As a result of the experiment we find
that for a wide range of @, —0.136 ( @ ( —0.0096, r is
almost constant and does not show the predicted

I g I

r 2

dependence.
The experimental system has been described elsewhere

[2]. The experiment was conducted in narrow rectangular
cells of aspect ratios I' = l/d = 25.6 and 34.4 and width
2d. The cell height d = 1.874 mm was adjusted within

1 pm, as measured interferometrically. The lateral
walls of the cell were made of a low thermal conductivity
plastic (polypropylene, A = 1.2 K). We used ethanol-

water mixtures, with weight concentrations of ethanol

ranging from 23% to 28'%. In this range, Pr 17 and
0.02, are approximately constant. Small heaters

were mounted inside both short lateral walls.
The shift of the convection onset caused by the reflec-

tion at the lateral walls is given by [5]

1nr + O(I' ).I'

We use this expression to directly evaluate r. In order
to achieve this goal, we measure in the same experiment
AT, and AT, which give e„s, and ~p. LT and 7 p

are evaluated by measuring the temporal growth of the
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amplitude of the linear waves during transients according
to the now standard procedure described in Refs. [2,12].
We found ro ——0.1 + 0.005, independent of g within the
experimental error and. in good agreement with the the-
ory [13]. The relative uncertainty in AT, for various g's
is better than 1.0 x 10

To evaluate LT and 8, we developed a thermal
pulse technique, which, together with autocorrelation
and cross-correlation analysis, allows for a reduction in
the experimental error, thus dramatically improving the
resolution of r and. 8, enabling reliable evaluation both of
their magnitude and, particularly, of their g dependence.

In order to find LT we perturb the system at one
of the short sidewalls by launching a heat pulse. The
pulses are short, 8t/to ( 0.1 (to is the period of the TW)
and of small amplitude: Q/Q, —2.5 x 10, where Q
is the perturbation heat flux per period and Q, is the
critical heat Qux needed to support convection. Figure
1 shows a typical time sequence of the propagation of
a heat pulse. As the initial pertubation travels across
the cell, it grows and spreads. In order to quantitatively
describe the pulse evolution, we assume that the initial
perturbation has a Gaussian form. Then, the shape of
the propagating pulse remains Gaussian [14] and at any
given time t can be described by

A(x, t) = a(t) t7 exp[o (z —xp) /2] sin(kx + P) .

Here a(t) and o i are the amplitude and the width of the
pulse at the time t, xp ——st is the pulse peak position, k
is the wave number, and P = vt + C, where v is the TW
phase velocity and C is a correction due to dispersion.
As was found in Ref. [9], this correction is of the next
order and becomes significant only for large values of x.
In ord.er to significantly reduce the effect of geometrical
imperfections of the convection cell and. the optical sys-
tem, which, small as they are, become very important

as e becomes smaller, we compute the spatial autocor-
relation function for the pulse shape as is given by Eq.
(2). Fitting the pulse shape to Eq. (2) [9] involves five
fitting parameters, and produces much larger scatter in
the results and larger error bars, although the results ob-
tained by both methods are similar. Thus, the amplitude
and width of the pulse are obtained by fitting the auto-
correlation of the experimental results to the following
expression obtained from Eq. (2):

20 0

2

x [cos(kAx) —e " ~ cos(kET + P)] . (3)

Using the autocorrelation procedure reduces the number
of fitting parameters to three, which are a, cr, and k. We
neglect the second term in the square brackets since in
our experiment (k/tT) = O(100). A typical profile of
the autocorrelation function is shown in Fig. 2(a). The
temporal dependence of a(t) gives the growth rate for a
given value of LT, which in the linear regime is equal
to e/ro, where e = && . From the dependence ofAT —AT

the growth rate on LT we find LT and 7 p. Figure 3
shows the results of this procedure for g = —0.025. On
the same plot we present results for the determination of
both AT and AT, .

In order to determine the group velocity 8, we com-
puted the spatial cross-correlation function for the prop-
agating pulse for all possible time differences At:

—o (Dx sb t) /2 (k—~ )
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FIG. 1. Spatiotemporal evolution of a pulse. Data are
taken at I' = 34 4, vP = —0 069, and e = 0 005. The
time is measured in units of the thermal diffusion time
r„= d /r. = 34 sec.

Each result was fitted by this expression, which is similar
to Eq. (3), except that the Gaussian is shifted by Ax =
8Lt. A typical result of this procedure is shown in Fig.
2(b). The relevant parameter of the fit, Ax, is plotted in
the inset of Fig. 4 as a function of the time delay in the
cross correlation At. The slope gives the group velocity.

Figure 4 presents the ratio of the group velocity to the
phase velocity, s/v, as a function of g obtained by this
procedure. Good agreement with the theoretical predic-
tions [13],shown as the solid curve in Fig. 4, is obtained
over the whole range of g.

We would like to point out the experimental difhculties
and limitations in measuring LT and the TW group ve-
locity. The pulse amplitude should be small enough to
remain linear; otherwise both 8 and LT would be sig-
nificantly in error. On the other hand, it is clear that
a too small pulse amplitude makes the determination of
the growth rate uncertain due to a small signal-to-noise
ratio. The linear pulses grow exponentially downstream
with a growth rate e/s7o. The linear dependence of the
growth rate on e leads to a strong dependence of the
pulse amplitude on the spatial inhomogeneity of the cell.
Thus, a height nonuniformity of 5 x 10 causes spa-
tial variations in e on the order of be = 1.5 x 10, i.e. ,



N QF TRAVE~&NGMEASUREMENT OF R

p.07

R663

the working range.e. In orderore than 15% error in
}ed fast enough to

more
roblems, we samp . n

to overcome b "P
the excitat1on bosurements close to econduct the measur

ll the linear regime.

atjon o e TW f'reque«y
f the existencee ulse spectrum or e

es. Furthermore we co
ll as checking the pu se

omputed the0 1gf h her-order mo es. ur
tion for all ava1 a e'l bl data and aver-cross-co

. (). heter t appearing 1n
~ ~

~ ~ ~000 cross-correlation compuing 1

0.04

0.01

—0.02—

—0.05
8.38

I

8.41
I II

(K)

I

8.47 8.50

0.0
a5

wth rate p for KT (diamonds) and

is evaluated from t ei f the lots with zero. 7p is evaintersection o t e p o
slopes.

400

—0.4—14.0
I

—7.0 0.0 7.0
hx (units of d)

14.0

ll time intervals, us-ments over sma
d ofd' tlln'n cross-corre ation analysis instea o 1r

ero ra es werra reduce the errord erforming many averag, r
in edetermining s to wi in

sured arametersg p
corn ute the value of t e re ec

h
'

h ' to E . (1).
0

f b subst1tu ingcient as a funct1on o y b t

0.6 1.03

0.3 0.98

0.0 ~O.9&—
N 0.0

44 —0.3—
0
O

—0.6—8.50 —4.25 0..00 4.25 8.50
bx (units of d)

1 2.75

'-" 0

0.83
pp

I

0.03

—1.2
0.88—

C

I

1.0 2.0
at, (~,)

0.06
I

0.09 0.12 0.15

rootle. Data aret ical autocorrelatxon pro
Th fit o d did t

t ' ' +d o d o. (bk t account the atta wit zn a
t of parameterslca

j. The time d18'erencecefort e a a'as in a .

cit divided by the phase velocity as ao I

th o o I toTh in et: the shift o e a
x of the time delayAx as a function o

~ = 0.004.



R664 ERAN KAPLAN AND VICTOR STEINBERG 48

0.4.0

0.30

4 0.20

0.10

0.00

0.01 0.1

r r I » t l & & t J r

0.04 0.120.08 0.1 6

FIG. 5. The reflection coefBcient as a function of vP. The
solid line is the theoretical prediction [8]. The inset: our data
(x) combined with previously published data [9, 11]. Dia-
monds, data taken from Ref. [9], squares: data taken from
Ref. [11].

The results are shown in Fig. 5, together with the recent
theoretical calculations for realistic boundary conditions
[8]. The main source of error in the determination of r,
besides the above estimated error in 8, is the uncertainty
in the determination of e, . For fixed s and 70, one gets

)1
. Then for a relative uncertainty of 1 x 10)

which we And for LT, and LT, we obtain —"= 0.03.
Thus, we estimate the overall error in r to be about 5—
7%. The discrepancy between the experimental data and
the theory is well outside the experimental error and is
especially clear for smaller values of

[ g [. In the inset we
also present experimental data from Refs. [9] and [11].
Those data were obtained in cells made of ULTEM, a
plastic material having twice the thermal conductivity of
polypropylene, leading to slightly lower re8ection coe%-
cients. It is obvious from the inset that the agreement
between theory and experiment at g = —0.558 is acci-
dental. One can safely conclude from the data presented
that the reOection coeKcient is almost constant down to
very small values of

[ g [.
In conclusion, a significant discrepancy between the

theoretical predictions and the experimental data has
been found. The discrepancy is especially striking con-
sidering that s(@) and ro, which are also computed by
the linear theory, are found to agree well with the pre-
dicted values. In light of these observations, we conjec-
ture that the problem lies in the boundary conditions
for the concentration field of the TW. We suggest that
the simplified linear theory, which completely neglects
the variation of the concentration Geld near the lateral
boundaries, should be modified. Further theoretical de-
velopment is needed to explain the experimental data
presented.
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