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Scale invariance of nonconserved quantities in driven systems
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Noisy nonequilibrium systems involving locally conserved quantities typically exhibit generic scale
invariance —infinite correlation lengths and the associated algebraic decay of correlations without the
tuning of external parameters. It is shown here that if such a conserved field, P„ is coupled linearly to a
nonconserved one, P„, generic power-law decays are induced in the correlations of P„. When symmetry
prevents linear coupling, correlations of the P„ field decay exponentially under generic conditions, unless
P„experiences a broken symmetry, in which case linear coupling and hence algebraic decays can be gen-
erated. Numerical support for these results in simple conserving coupled map lattices is presented.

PACS number(s): 64.60.Ht, 05.40.+j, 05.60.+w, 46.10.+z

I. INTRODUCTION

In equilibrium systems at finite temperature, scale
invariance —infinite correlation lengths and the resulting
power-law decay of spatial and temporal correlations—
typically occur only at critical points or in systems with
certain continuous symmetries (such as the symmetry of
an interface under uniform translations). In certain sto-
chastic nonequilibrium systems, however, scale invari-
ance can occur generically, i.e., without the tuning of a
parameter [1—4]. Fluids driven by a temperature gra-
dient [5) were the first examples of this phenomenon to be
discovered, though more recently driven diffusive systems
[6] and driven interfaces such as stochastic model sand-
piles [1,7] have also been shown to exhibit generic scale
in variance.

For stochastic nonequilibrium systems with a single-
component field in d ) 1 dimensions, local conservation
of that field has been shown [1—3] to be a necessary and
almost sufficient condition for algebraic behavior of
correlations to occur generically. In this paper we con-
sider classical nonequilibrium systems with two or more
coupled fields, some of which are conserved and others
not. Such problems (e.g., a nonconserved magnetization
coupled to a conserved energy) abound. They have been
treated in equilibrium systems near critical points, where
the conservation law can significantly affect the dynamics
[8], but not studied systematically in nonequilibrium situ-
ations. We show here that a linear coupling between the
conserved and nonconserved fields is sufficient to induce
algebraic decays of correlations in the nonconserved vari-
able under generic conditions. The exponents governing
the decay of correlations of the conserved and noncon-
served fields are, moreover, identical in all the instances
we have studied. In cases where symmetry prohibits
linear coupling, nonlinear coupling is typically

insujftcient to induce algebraic behavior. In such situa-
tions, however, spontaneous breaking of symmetry (e.g.,
the development of magnetic order in the example above)
often produces a linear coupling which then induces gen-
eric scale invariance in the nonconserved quantity. We
believe that this phenomenon occurs commonly in the
routes to chaos of conserving systems, in a manner illus-
trated below.

II. LANGEVIN EQUATIONS AND ANALYSIS

These results apply to systems whose long-wavelength
behavior is accurately captured by Langevin equations
for the evolution of course-grained fields with Gaussian
noise terms. Such equations are believed to be appropri-
ate, at sufficiently long length and time scales, for
describing most systems with microscopic interactions of
finite range. To derive our results, we start with the sim-
plest linear model of fluctuating hydrodynamics involving
the coupling of two fields, P, (x, t) and P„(x,t), which are
respectively conserved and not conserved:

ay,
=Qid, +Q20. +n.

at r„P„r,P, +Q3$„+Q——4$, +r1

Here Q; for i = 1,2,3,4 are differential operators taken for
now to satisfy reAection invariance, x~ —x, and whatev-
er other symmetries the problem in question dictates.
For example, for problems respecting the symmetry of a
hypercubic lattice in d space dimensions, Q; would take
the form a, V+b, gd iV +. e;(V ) + . , for constants
a;, b;, and e;. The quantities r„()0) and r, are con-
stants, while ri, (x, t) and q„(x,t) are independent random
noise variables with zero mean, whose correlations are
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taken to be Gaussian. As discussed in the context of
Langevin equations with a single conserved field [1,2], g,
can be chosen either to conserve the field P„as would be
appropriate if P, represented a conserved density (as in
driven diffusive systems [6]), or not, as in certain driven
interfaces (such as stochastic sandpile systems [1,7]), for
which Eq. (1) must be invariant under the transformation
P, ~P, +const. Under generic conditions the noise g„ is
nonconserving [9].

The straightforward solution of Eqs. (1) and (2) shows
that for the asymptotically large distances and times in
which we are interested, the dominant terms in the equa-
tions for the Fourier transformed field variables P, (k, co)
and P„(k,co) yield simply

P, (k, co) —g, /[ —iso —Q„(k)],
P„(k,co)- —rP, (k, co),

(3)

(4)

where r =r, /r„and—Q„(k)—=Q, (k) —rQ2(k) ——a„k
+g„g. ,g. + . . Here a„—=a, —ra2 and b„=b, —
—rb2, and we consider only the stable situation where
a„)0 and b„(0. Thus, aside from the values of the
coeff][cients a„and b„, the small-k and -co behavior of
both P, and P„ is the same as one would obtain for the
conserved field P, (k, co) in the absence of any coupling to
P„, i.e., if Q2 were equal to 0. Hence a necessary and
sufficient condition for P„(x,t) to exhibit generic algebra-
ic decays of correlations in model (1),(2) is that P, (x, t) do
so when Qz=0. Thus the problem has been reduced to
that of the single conserving field considered in Ref. [2],
where it was shown that for lattice systems with d ) 1,
power-law correlations obtain under generic conditions
[9]. Obviously, P„ is just "slave" [10] to P, [11],so corre-
lations of the two fields decay with identical exponents, as
do equal-time cross correlations of P, and P„.

To study the eftect on these results of including non-
linearities, we restrict ourselves to the more common sit-
uation where g, represents conserving noise. Imagine
adding to Eqs. (1) and (2) all analytic nonlinear terms
consistent with the symmetry of the problem. Through
renormalization-group (RG) calculation [8,12], these can
all be shown to be irrelevant (i.e., not to alter the asymp-
totic behavior of correlations), at least for small values of
the coefficients of the nonlinearities, where perturbative
RG analysis is valid. To understand this, recall [12] that
the most relevant nonlinear terms are always those with
the fewest powers of the field and the fewest derivatives,
viz. , terms of the form V (P, ), V (P„), and V (P,P„) in
Eq. (1), and P„P„,and P, P„ in Eq. (2). With the stan-
dard RG scaling, x =bx', t =b't', and P, =b~P,', where
b ( & 1) is the length rescaling parameter, and z and g are
the dynamical [8] and field rescaling exponents, respec-
tively, one readily shows that z =2, and that the
coefficient, A,„,say, of the V (P, ) term in (1) scales like
A.,', =b "

A,„,i.e., is irrelevant for all d. To preserve the
stable solution of the linear problem, the rescaling of P„
must be the same as that of P, ; i.e., P„=b~P'„. It follows
straightforwardly from this unusual scaling that the
BP„/Bt and g„ terms in Eq. (2) are both irrelevant, as are
all other nonlinear terms in Eqs. (1) and (2). For exain-

P, (x, t)=P, (x, t)+cV P„(x,t),
p„(x,t) =p„(x,t), (6)

where c =—c&
—rc2, c =c2/r„, and x =—x —ct. This is easi-

ly seen to remove the V'„ terms (i.e., those proportional to
c, and c2) from the equation for P„while altering only
the coefficients but not the form of either the remaining
pieces of the Q; or the nonlinearities. Aside from the V
terms in the P„equation, which play no role at long dis-
tances and times, the linear equations thus become identi-
cal to (1) and (2), and hence show the same induced scale
invariance in P„. (Note that the transformation can in
principle produce a negative coefficient of the V, g„ term
in the P„equation. We consider only parameter values
for which this coefficient is positive, thus ensuring the
stability of the equations. )

The nonlinearities are again treated with RG methods.
Once more scaling P„ the same way as P, and restricting
oneself to noise g, that conserves, one finds that all terms
in the P„equation except those simply proportional to P,
and P„are irrelevant. Again, it follows immediately that
the asymptotic equal time correlations of both the P, and

P„ fields are the same as would be obtained for P, in the
absence of any coupling to P„. Thus the asymptotic
power-law correlations induced in P„are simply those of
the conserved field P, . Note, however, that, unlike in the
r

exsection

symmetric case where the nonlinear terms
played no role, here the V P, nonlinearity is well known

[1,2, 13] to become marginally irrelevant at d =2, produc-
ing logarithmic corrections to the algebraic decays in
d =2, and nontrivial changes in the exponents for
1(d (2. (For d =1 the conservation law typically does
not produce algebraic correlations even in P, when the
noise g, is conserving [2].)

pie, the coefficients (A,„, say) of the three p2 terms of (2)
all scale like I,' =b' " ' k =b "~

A. One con-
cludes that the results of the linear theory continue to
hold in the presence of nonlinearities.

One can of course treat in similar fashion the less sym-
metric situations that arise commonly in nonequilibrium
systems. Consider, e.g., driven diffusive systems [6] or
stochastic sandpiles [1,7] where particles are both con-
served and driven in a particular (say, the x) direction, so
that mirror symmetry in that direction is violated. If the
conserved field P, is imagined coupled to a nonconserved
(e.g. , magnetization) field P„, the resulting linear equa-
tions of motion continue to take the form of (1) and (2);
however, the differential operators Q; now reflect the lack
of x~ —x symmetry: Q,. -c;V +a;V + for con-
stants c; and a, . While the leading generic nonlinear
terms in the P„equation remain P„, P„P„and P„ the
leading nonlinearities in the P, equation now also incorp-
orate the absence of reAection symmetry; they are
V„(P, ), V (P'„), and V (P,P„).

To analyze these equations, it is helpful to eliminate
the V„ terms from the linear pieces through the following
transformation to new fields P, and P„(dependence on
the spatial coordinates transverse to x being suppressed):
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Next consider situations where symmetry prohibits
linear coupling between the conserved and nonconserved
fields. An elementary example is provided by nonequili-
briurn models with coupled fields representing, e.g., a
conserved density, P„and a nonconserved ferromagnetic
Ising order parameter, P„. If the problem has refiection
and up-down (P„~—P„) symmetry, then the equations
of motion assume the form

=V (P, +A,„„P„+A,„P,)+. . . +g, ,at (7)

a ~ r„P„+y—V P„+A,„,P„P,+A,„„„P„

+ . . +g„. (8)

III. COUPLED-LATTICE-MAP REALIZATION

This phenomenon of power laws induced by the corn-
bination of conservation and broken symmetry is likely to
be a common one in driven systems. The point is that
when systems are prevented from responding to external
driving in a particular mode (q =0, say), because of con-
servation, they frequently respond by breaking symmetry
in a different, nonconserved mode [14]. Let us illustrate
this point with a specific example —a simple system of
coupled lattice maps with conservation. The model is
defined by the simultaneous updating of the equation

Note that owing to the up-down symmetry, these equa-
tions decouple at linear order, unlike Eqs. (1) and (2).
Hence, to this order P, exhibits generic power laws [pro-
vided the lattice anisotropy is manifest either in the el-
lipsis in (7) or the correlations [9] of g, ], but cannot in-
duce scale invariance in P„. Symmetry-allowed non-
linearities, the leading terms of which are shown in Eqs.
(7) and (8), likewise do not induce algebraic behavior in
the P„correlations. To see this, note that in the linear
theory correlations of P„decay exponentially with corre-
lation length (y/r„)'~ . Under standard dynamical RG
transformation, the "mass" r„ increases, approaching the
fixed point at r„= oo, at which correlations of P„remain
exponential. It follows that the field P„does not become
critical; one can integrate it out of Eqs. (7) and (8), pro-
ducing a single equation for the conserved field P, ; the
algebraic decays of correlations of P, are then guaranteed
by the arguments of Ref. [2] to survive the inclusion of
nonlinearities.

The situation becomes more interesting in the ordered
phase of Eqs. (7) and (8) (i.e., r„(0, roughly), where P„
spontaneously develops a nonzero expectation value
M—= (P„). Writing P„=M+/„, one finds that Eqs. (7)
and (8) written in terms of P„ take the form of Eqs. (1)
and (2); i.e., P, and P„become linearly coupled, the cou-
pling constants being proportional to M. In this case,
therefore, power laws are induced in the correlations of
P„, as described above.

+ [—S, (i) S—, (i +2x)]+ri, (i) .

Here S,(i) is the dynamical variable on site i of a two-
dimensional square lattice at time t, j denotes the four
nearest neighbors of i, I is a unit vector along the x axis,
and f (S)=S —S; v (which regulates the nonlinear
diffusive coupling between sites) and a are constants;
ii, (i) is a random noise variable generated from a second
set of noise variables g, (i), so as to preserve the local con-
servation of the S,(i) inherent in the deterministic part of
(9) [i.e., p= g;S—,(i)/N is independent of t, where N is the
number of sites]. Specifically, ri, (i)=g, (i +x)—ri, (i —x);
the ri, (i) are chosen independently and randomly from ei-
ther a Gaussian distribution of width o., or a distribution
uniform for

~ g~
~ cr and zero otherwise.

This model, introduced in Ref. [15], has a complex
phase diagram with several different phases. The phase
of interest here is a spatially ordered, checkerboard
("staggered"), temporal two-cycle, in which the odd and
even sublattices interchange values at each time step.
This phase clearly breaks spontaneously the (discrete)
spatial and temporal translational invariance of the rule
(9). It is convenient to eliminate the complication of the
temporal two-cycle oscillations by iterating (9) once to
express S,+z(i) as a function of the {S,(j)]. In terms of
this once-iterated rule, the phase in question is a steady-
state checkerboard wherein the spatial broken symmetry
is characterized by a nonzero expectation value of the
staggered order parameter, the q=(~, m. ) Fourier com-
ponent of S: M—= (S,(q=(m, n))). Thus the once-
iterated model (9) is naturally described by two coupled
fields, one conserved field [analogous to P, in Eq. (7)],
representing the fiuctuations near q=(0, 0), and the other
[analogous to P„ in (8)], representing the nonconserved
staggered fluctuations around q=(vr, rr). Since model (9)
has the P„~—P„symmetry of Eqs. (7) and (8), these
equations provide a correct long-wavelength description
of the once-iterated version of (9).

The broken-symmetry checkerboard phase of (9) is
therefore equivalent at long wavelengths to the ordered
phase of (7) and (8), in which M—:(P„)%0. We argued
above that this syrnrnetry breaking induces a linear cou-
pling between P„and P„ i.e., between the fiuctuations
near q=(0, 0) and q=(m, vr), and hence produces power-
law correlations in P„as well as P, . Given the form of
the noise in (7) and (8), it is straightforward to show
[2,15] at the linear approximation level that both
G, (r) —= ( P, (r)P, (0) ) and G„(r)= ( P„(r)P„(0)) decay
like I/r for large r, correlations in the x and y directions
having opposite signs [2,3]. It follows that the equal-time
correlations, G(i)—:(S,(i)S,(0)), of the field S;(t) of
model (9) decay algebraically with a mixed uniform and
staggered character, i.e.,

(10)

for sites whose separation is in the x direction, say, where
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A and B are constants.
To test these conclusions we have simulated [15]model

(9) numerically, computing the correlation function
G(x). The results, shown in Fig. 1, show the staggered

I 0.0 1.0 2.0 4.0

log, r

FIG. 1. Log-log plot of
I G(rx)

I
vs r in the two-cycle checker-

board phase of model (9), with v=1.30, a=0.25, p=0.10, and
o.=0.02, on an 80X80 lattice with periodic boundary condi-
tions. The straight lines, drawn as guides to the eye, have slope
—2. The staggering of points for even and odd r shows "in-
duced scale invariance" in the q = (m, m ) mode.

behavior predicted in Eq. (10). Interestingly, such
behavior is observed both in the presence of external
noise [o WO in (9)], or in the absence of noise, in a two-
cycle checkerboard phase with chaotic fiuctuations [15].
(It is data for the noisy case that are shown in the figure. )

How generally the induced scale invariance discussed
here holds in the presence of deterministic chaotic Auc-
tuations rather than external noise is an intriguing open
question.

Even with the two coupled fields we have considered so
far, there are obviously different possible symmetries that
might occur in different physical situations. In systems
with three or more coupled fields, at least one of which is
conserved, the number of possibilities grows rapidly. The
spirit of this paper being illustrative rather than exhaus-
tive, we have made no attempt to classify all of these. We
point out only that the simplest generalization of Eqs. (1)
to three linearly coupled fields, one of which, P„ is con-
served while the others are not, produces generic powers
in the correlations of the nonconserved fields, as in the
two-field case. It therefore seems clear that induced scale
invariance through either direct or broken-symmetry-
generated linear coupling is quite general. Application of
the methods discussed here should enable one quickly to
decide whether any given nonlinear problem with arbi-
trary numbers of fields and symmetry exhibits this
phenomenon.
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