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Bit-level correlations in some pseudorandom number generators

K. Kankaala, ' T. Ala-Nissila, and I. Vattulainen
Department of Electrical Engineering, Tampere University of Technology, P O. B. oz 692, FIN 8910-1 Tampere, Finland

Centre for Scientific Computing, P O. .Bov $06, FIN 0210-1 Espoo, Finland
Research Institute for Theoretical Physics, P. O. Box g (Siltavuorenpenger 20 C), FIN 0001-$ University of Helsinki, Finland

(Received 24 August 1993)

We present results of extensive bit-level tests on some pseudorandom number generators which
are commonly used in physics applications. The generators have first been tested with an extended
version of the d-tuple test. Second, we have developed a cluster test where a physical analogy of
the binary numbers with the two-dimensional Ising model has been utilized. We demonstrate that
this new test is rather powerful in finding periodic correlations on bit level. Results of both test
methods are presented for each bit of the output of the generators. Some generators exhibit clear
bit-level correlations but we find no evidence of discernible correlations for generators, which have
recently produced systematic errors in Monte Carlo simulations.

PACS number(s): 02.70.Lq, 05.50.+q, 75.40.Mg

Vast amounts of random numbers are needed in sev-
eral applications such as stochastic optimization [1] and
Monte Carlo simulations [2]. Modern high speed comput-
ers have set rigorous demands for the quality of random
numbers, which are usually produced by pseudorandom-
number-generator algorithms. A prerequisite to the suc-
cess of the methods is the quality of randomness of the
output of the generators. It is usually determined by
statistical tests [3]. Usually many such tests are needed,
since there is no unique recipe for determining when a
given sequence is "random enough. "

Unfortunately, even comprehensive statistical testing
cannot guarantee that a given random-number generator
is reliable for all applications. In fact, tests are needed
which would be more physical, based on the use of gen-
erators in solving actual physical problems. A few such
application-specific tests have been performed [4—7]. In
particular, intriguing results have been reported by Fer-
renberg et al. [8], who employed some of the most com-
monly used random-number generators in simulations of
the two-dimensional Ising model at criticality. When us-
ing the Wolff algorithm [9] they reported anomalously
large errors with a particular generator, called R250. The
same conclusion has been drawn from simulations of self-
avoiding random walks [10],where also other similar gen-
erators failed.

Although there have been prior warnings against the
use of shift register generators such as R250 [11,12], the
results of Refs. [8,10] are surprising, since recent extensive
statistical tests have found no discernible correlations in
R250 [13]. In Ref. [8], the authors suggest that bit-level
correlations in the most significant bits of R250 may be
responsible for their results. If true, this casts serious
doubt on the bit-level reliability of R250. More and also
better tests are then needed to resolve the issue.

The purpose of the present work is to study bit-level
correlations in some commonly used generators in more
detail. To this end we have first extended the d-tuple
test [12,14] to more efficiently find correlations. Second,
we have developed a physical cluster test which is based
on an analogy to the Ising model. The test is imple-

mented on bit level and its efFectiveness compared with
the d-tuple test. We demonstrate that the cluster test
is particularly powerful in finding periodic correlations.
Both the d-tuple and the cluster tests are then applied
to each bit of a number of generators, including some of
the shift-register generators in Refs. [8,10]. Our results
demonstrate that no discernible bit-level correlations can
be found in the shift-register generators with the present
test methods.

The pseudorandom-number generators used here
include two linear congruential generators,
LCG(16807,0,2 —1) [15] known as GGL (CONG in Ref.
[8]), and LCG(69069,1,2 ) [16] implemented as RAND
[17]. Additionally, RAN3 [18] is a LF(55,24, —) based on
a lagged Fibonacci algorithm, whereas RANMAR [19,20]
is a combination generator. Finally, GFSR(250, 103,)
and GFSR(1279,216,$3) are generalized feedback shift-
register generators known as R250 [4,21] and R1279,
respectively. The details of the algorithms can be
found, for example, in Ref. [13]. We note that the
generators were implemented to produce integers ex-
cept for RANMAR, whose 24-bit reals were multiplied
by 2 —1. Initial seed values were chosen from the
set {14159,667790, 1415926535,95141), excluding R250
and R1279 which were initialized with GGL in double-
precision accuracy.

The d-tuple test is based on studying the properties
of random numbers on bit level [12]. Our realization
follows Ref. [14]. The main difference here is the im-
provement to calculate the y -distributed test statistics
a total of N times and submit their empirical distribu-
tion to a Kolmogorov-Smirnov (KS) test. The final test
variables are therefore the values K+ and K of a KS-
test statistic K [3]. In each test the sequence of bits
was considered to fail if the observed descriptive level
h = P(K ( (K+, K ]~Ho) was less than 0.05 or larger
than 0.95.

Based on previous work [13] the d-tuple test seems
to find correlations more efIiciently than the rank test
[11,12], for example. In order to determine the quanti-
tative efFectiveness of the test we have first studied its
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TABLE I. Results of the d-tuple test with inserted correlations in the bits, with a period of (.
The probability for the test to observe correlations is denoted by p, which equals 1 up to (, 43.

40
1.000

43
0.889

52
0.778

60
0.333

70
0.667

80
0.222

90 100 110
0.333 0 ~ 111 0.222

120
0.000

ability to observe correlations inserted into the output of
GGL, which passes the standard bit tests [13]. The corre-
lations have been inserted periodically by setting the ith
bit (i = 1, 2, . . . , 31) of every (th number always equal to
1. By systematically varying (, we can then find the max-
imum approximate distance ( within which the d-tuple
test can detect periodic correlations. The test was re-
peated three times with parameters d = t = 3, n = 5000,
and K = 1000, where d and t are taken from Refs. [13,14]
and n is the number of samples in a single y test. The
results are shown in Table I, where the parameter p gives
the probability of observing correlations. Thus, the d-

tuple test can always detect periodic correlations up to
(, —43 bits apart. The same test was repeated with
d = 9 and t = 1 to consider single bits only, which gave

50. We also note that we performed similar system-
atic tests for the rank test, which was found to be inferior
to the d-tuple test.

To improve the detection range of the d-tuple test we
have performed its extended version. This can be realized
by testing bits from every kth number and then testing all
k such subsequences. This way all periodic correlations
may be detected up to about k(, (assuming k ( ( ). We
have applied this extended test to GGL, R250, R1279,
and RAN3, which were all tested twice. The results are
summarized in Table II. The most remarkable result is
that, up to k = 20, which corresponds to a distance of
about 860 bits apart, no discernible correlations were ob-
served for the 16 most significant bits of either R250 or
R1279. In addition, we tested R250 with k = 50, k = 100,
and k = 1000 where only one subsequence was studied in
each case. No evidence of correlations was found. This
result is in contrast to Ref. [10], where it was estimated

that for R250 a typical range of correlations is about
400. However, when initialized with RAN3, which itself
contains correlated bits, both R250 and R1279 display
clear bit-level correlations, although the longer feedback
of R1279 seems to be less sensitive to initial correlations.

There is a natural analogy between binary numbers
and the Ising model, which can be made use of in con-
structing a physical cluster test in the following way. We
take ith bits from every successive number and put them
on a two -dimensional lattice of size L . By identifying ze-
ros and cnes with the "down" and "up" spins of the Ising
model, the resulting configuration if truly random

2
should be one of the 2 equally weighted configurations
corresponding to infinite temperature. The easiest quan-
tity that one can then compute from this analogy is the
magnetization. However, a better measure of spatial cor-
relations can be obtained if we study the distribution of
connected spins, or clusters of size s on the lattice. The
cluster size distribution (n, ) is given by [22]

(n ) = »'D (p)

where D, (p)'s are polynomials in p = 1j2. The normal-
ization condition is P, i(n, ) = 1. Enumeration of the
polynomials D, (p) has been done up to s = 17 [22].

The test procedure we have used is as follows. We first
form a L lattice as above and enumerate all the clusters
in it. For such a configuration we calculate the (unnor-
malized) average size of clusters within s = 1, 2, . . . , 17,
denoted as Si7 . This procedure is repeated M times cor-(A:)

responding to configurational averaging, yielding Sip ——

i Si& /M. The theoretical counterpart of this quan-(k)

TABLE II. Results of the extended d-tuple tests. k denotes the extended range of the tests. See
text for details.

Random-
number
generator
GGL

R250

R250

R1279

R1279

RAN3
R250

R1279

1,5

1,5

20

1,5

20

Failing bits
in the
d-tuple test
none

none

none

none

none

1—5, 25—30
1—2, 27—31

Comments

Double precision mode
(return integers)
Integer mode, initialized
with GGL in double precision
only 16 most significant
bits were studied
Integer mode, initialized
with GGL in double precision
only 16 most significant
bits were studied
Integer mode
Integer mode, initialized
with RAN3 producing integers
Integer mode, initialized
with RAN3 producing integers
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TABLE III. Results of the cluster test with correlations in
the bits, with a period of ( from 1 to 200. Black squares de-
note corresponding distances at which correlations were found
as explained in the text.

Ig; —gator. I

&GGL
(3)

other generators were compared with these values using

1 2 3 4 5 6 7 8 9 10

30+

110+

120+

130+

150+

180+

tity is given by si7 = P, i s(n, ). We also compute the

empirical standard deviation o.i7 of the quantities S$7
For each ith bit the test statistic chosen in this work is

gi =
Oi7

Using this statistic, tests were performed comparatively
between several pseudorandom-number generators, with
results from GGL assumed to be independent variables
[23]. Therefore, the mean value of g, over all the 31 bits of
GGL, denoted as gGGL and the corresponding standard
deviation OGGL were computed and the results for all

The bit i in question failed the test if gi was greater than
3. We also considered other similar choices for the test
parameters and criteria and obtained consistent results.

The effectiveness of the cluster test was first scrutinized
by inserting periodic correlations as in the case of the d-
tuple test. We chose L = 200, M = 10 000 and the
study was repeated for all values of ( = 1, 2, . . . , L. The
results are shown in Table III, where filled squares denote
distances where correlations were detected. With this
choice of parameters the cluster test is able to find all
periodic correlations up to (, 60. This shows that the
cluster test performs somewhat better than either the
d-tuple or rank tests.

Next, we have subjected each bit of the random-
number generators to the cluster test. It was repeated
twice with parameters L = 200 and M = 10000. Ad-
ditional tests with L = 500 gave consistent results. Re-
sults are summarized in Table IV, where also results of
the previous d-tuple and rank tests from Ref. [13] have
been included. Although more powerful than the other
methods, the cluster test still reveals no discernible cor-
relations for either GGL, R250, or R1279. For RANMAR
and RAN3, the cluster test gives results consistent with
Ref. [13], but for RAND additional correlations are re-
vealed in bits 8—12, which passed the d-tuple test.

For completeness, we also tested the distribution of
bits. The bits failed the test if the deviation from the ex-
pected number of 1's (i.e. , L j2) consecutively exceeded
three times the standard deviation of the binomial dis-
tribution with M samples. The test was repeated twice
with M = 4 x 10, and its results are also shown in Ta-
ble IV. No correlations were found for GGL, R250, or
R1279. Surprisingly, however, this rather simple test re-
vealed that the first 11 bits of RAN3 fail (with standard
deviations larger than 6.7) although only the first four or
five bits fail in the other tests. This signals correlations
in these additional bits. On the other hand, for RAND
only bits 22—31 failed, which produced an exact 50-50
distribution of zeros and 1's.

In conclusion, we have performed extensive bit-level
tests of several commonly used pseudorandom-number
generators, including R250 which had been suggested to

TABLE IV. Results of the cluster test. d-tuple and rank test results are from Ref. I13]. The last
column denotes bits which fail in testing the distribution of 1's.

Random-
number

generator

GGL
R250
R1279
RANMAR
RAN3
RAND

Cluster test

none
none
none
25—31

1—4, 25—30
8—31

none
none
none
25—31

1—5, 25—30
13—31

none
none
none
25-31

1—5, 26—30
18—31

Failing bits
d-tuple test Rank test Distribution

of bits

none
none
none
25—31

1—11, 24—30
22—31
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contain bit-level correlations [8]. To this end, we have
performed an extended version of the d-tuple test, and
developed a physical cluster test, which is rather pow-
erful in finding periodic correlations. Our results reveal
significant bit-level correlations in some generators, such
as RAN3 and RAND, but absolutely no discernible corre-
lations in GGL, R250, or R1279. Thus, our results show

that these generators should be good enough for many
applications, where. good bit-level properties of their in
dividual bits are required. However, we note that it is still
of crucial importance to further develop physical tests
along the lines presented here to detect more subtle cor-
relations, which may not be revealed by the present test
methods.
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